
Chapter 5: Functional Dependencies and Normalization for Relational Databases 1

Prof. Sushant S. Sundikar Introduction to Database Management System

Chapter 5: FUNCTIONAL DEPENDENCIES AND NORMALIZATION FOR
RELATIONAL DATABASES

INFORMAL DESIGN GUIDELINES FOR RELATION SCHEMAS
We discuss four informal measures of quality for relation schema design in this section:

• Semantics of the attributes
• Reducing the redundant values in tuples
• Reducing the null values in tuples
• Disallowing the possibility of generating spurious tuples

Semantics of the Relation Attributes
If the conceptual design is done carefully, followed by a systematic mapping into relations, most of the
semantics will have been accounted for and the resulting design should have a clear meaning. In
general, the easier it is to explain the semantics of the relation, the better the relation schema design
will be.
To illustrate this, consider a simplified version of the COMPANY relational database schema. The meaning
of the EMPLOYEE relation schema is quite simple: Each tuple represents an employee, with values for the
employee's name (ENAME), social security number (SSN), birth date (BDATE), and address (ADDRESS), and
the number of the department that the employee works for (DNUMBER). The DNUMBER attribute is a
foreign key that represents an implicit relationship between EMPLOYEE and DEPARTMENT. The semantics
of the DEPARTMENT and PROJECT schemas are also straightforward: Each DEPARTMENT tuple represents a
department entity, and each PROJECT tuple represents a project entity. The attribute DMGRSSN of
DEPARTMENT relates a department to the employee who is its manager, while DNUM of PROJECT relates a
project to its controlling department; both are foreign key attributes. The ease with which the meaning
of a relation's attributes can be explained is an informal measure of how well the relation is designed.

Chapter 5: Functional Dependencies and Normalization for Relational Databases 2

Prof. Sushant S. Sundikar Introduction to Database Management System

GUIDELINE 1. Design a relation schema so that it is easy to explain its meaning. Do not combine
attributes from multiple entity types and relationship types into a single relation. Intuitively, if a relation
schema corresponds to one entity type or one relationship type, it is straightforward to explain its
meaning. Otherwise, if the relation corresponds to a mixture of multiple entities and relationships,
semantic ambiguities will result and the relation cannot be easily explained.

Redundant Information in Tuples and Update Anomalies
One goal of schema design is to minimize the storage space used by the base relations. Grouping
attributes into relation schemas has a significant effect on storage space. For example, compare the
space used by the two base relations EMPLOYEE and DEPARTMENT in Figure A with that for an EMP_DEPT

base relation in Figure B which is the result of applying the NATURAL JOIN operation to EMPLOYEE and
DEPARTMENT.

Figure A: EMPLOYEE and DEPARTMENT Relations

Figure B: Natural join on EMPLOYEE & DEPARTMENT

Chapter 5: Functional Dependencies and Normalization for Relational Databases 3

Prof. Sushant S. Sundikar Introduction to Database Management System

In EMP_DEPT, the attribute values pertaining to a particular department (DNUMBER, DNAME, DMGRSSN) are
repeated for every employee who works for that department. In contrast, each department's
information appears only once in the DEPARTMENT relation in Figure A. Only the department number
(DNUMBER) is repeated in the EMPLOYEE relation for each employee who works in that department.

Another serious problem with using the relations in Figure B as base relations is the problem of update
anomalies. These can be classified into insertion anomalies, deletion anomalies, and modification
anomalies.

Insertion Anomalies: Insertion anomalies can be differentiated into two types, based on the EMP_DEPT

relation:

• To insert a new employee tuple into EMP_DEPT, we must include either the attribute values for

the department that the employee works for, or nulls (if the employee does not work for a
department as yet).

• It is difficult to insert a new department that has no employees as yet in the EMP_DEPT relation.
The only way to do this is to place null values in the attributes for employee. This causes a
problem because SSN is the primary key of EMP_DEPT, and each tuple is supposed to represent
an employee entity-not a department entity.

Deletion Anomalies: If we delete from EMP_DEPT an employee tuple that happens to represent the last
employee working for a particular department, the information concerning that department is lost from
the database. This problem does not occur in the database of Figure A because DEPARTMENT tuples are
stored separately.

Modification Anomalies: In EMP_DEPT, if we change the value of one of the attributes of a particular
department-say, the manager of department 5-we must update the tuples of all employees who work in
that department; otherwise, the database will become inconsistent. If we fail to update some tuples, the
same department will be shown to have two different values for manager in different employee tuples,
which would be wrong.

GUIDELINE 2. Design the base relation schemas so that no insertion, deletion, or modification
anomalies are present in the relations. If any anomalies are present, note them clearly and make sure
that the programs that update the database will operate correctly.

Null Values in Tuples
If many of the attributes do not apply to all tuples in the relation, we end up with many nulls in those
tuples. This can waste space at the storage level and may also lead to problems with understanding the
meaning of the attributes and with specifying JOIN operations at the logical level. Another problem with
nulls is how to account for them when aggregate operations such as COUNT or SUM are applied. Moreover,
nulls can have multiple interpretations, such as the following:

Chapter 5: Functional Dependencies and Normalization for Relational Databases 4

Prof. Sushant S. Sundikar Introduction to Database Management System

• The attribute does not apply to this tuple.

• The attribute value for this tuple is unknown.

• The value is known but absent; that is, it has not been recorded yet.

Having the same representation for all nulls compromises the different meanings they may have.
Therefore, we may state another guideline.

GUIDELINE 3: As far as possible, avoid placing attributes in a base relation whose values may
frequently be null. If nulls are unavoidable, make sure that they apply in exceptional cases only and do
not apply to a majority of tuples in the relation.

Generation of Spurious Tuples
Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 2A, which can be used instead of
the single EMP_PROJ relation of Figure 2B. A tuple in EMP_LOCS means that the employee whose name is
ENAME works on some project whose location is PLOCATION.

A tuple in EMP_PROJ1 means that the employee whose social security number is SSN works HOURS per
week on the project whose name, number, and location are PNAME, PNUMBER, and PLOCATION. Suppose
that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of EMP_PROJ. This produces a
particularly bad schema design, because we cannot recover the information that was originally in
EMP_PROJ from EMP_PROJ1 and EMP_LOCS. If we attempt a NATURALJOIN operation on EMP_PROJ1 and
EMP_LOCS, the result produces many more tuples than the original set of tuples in EMP_PROJ.

Figure 2

Chapter 5: Functional Dependencies and Normalization for Relational Databases 5

Prof. Sushant S. Sundikar Introduction to Database Management System

Additional tuples that were not in EMP_PROJ are called spurious tuples because they represent spurious
or wrong information that is not valid.
Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because, when we JOIN them back
using NATURAL JOIN, we do not get the correct original information. This is because in this case
PLOCATION is the attribute that relates EMP_LOCS and EMP_PROJ1, and PLOCATION is neither a primary key
nor a foreign key in either EMP_LOCS or EMP_PROJ1.We can now informally state another design
guideline.

GUIDELINE 4: Design relation schemas so that they can be joined with equality conditions on attributes
that are either primary keys or foreign keys in a way that guarantees that no spurious tuples are
generated. Avoid relations that contain matching attributes that are not (foreign key, primary key)
combinations, because joining on such attributes may produce spurious tuples.

Summary and Discussion of Design Guidelines
We informally discussed situations that lead to problematic relation schemas, and we proposed informal
guidelines for a good relational design. The problems we pointed out, which can be detected without
additional tools of analysis, are as follows:

• Anomalies that cause redundant work to be done during insertion into and modification of a
relation, and that may cause accidental loss of information during a deletion from a relation

• Waste of storage space due to nulls and the difficulty of performing aggregation operations and
joins due to null values

• Generation of invalid and spurious data during joins on improperly related base relations

FUNCTIONAL DEPENDENCIES
A functional dependency (FD) is a constraint between two sets of attributes in a relation from a
database.

Given a relation R, a set of attributes X in R is said to functionally determine another attribute Y, also in
R, (written X → Y) if and only if each X value is associated with precisely one Y value. Customarily we call
X the determinant set and Y the dependent attribute. Thus, given a tuple and the values of the attributes
in X, one can determine the corresponding value of the Y attribute. For the purposes of simplicity, given
that X and Y are sets of attributes in R, X → Y denotes that X functionally determines each of the
members of Y - in this case Y is known as the dependent set. Thus, a candidate key is a minimal set of
attributes that functionally determine all of the attributes in a relation.

A functional dependency FD: X → Y is called trivial if Y is a subset of X.

The determination of functional dependencies is an important part of designing databases in the
relational model, and in database normalization and denormalization. The functional dependencies,
along with the attribute domains, are selected so as to generate constraints that would exclude as much
data inappropriate to the user domain from the system as possible.

Chapter 5: Functional Dependencies and Normalization for Relational Databases 6

Prof. Sushant S. Sundikar Introduction to Database Management System

For example, suppose one is designing a system to track vehicles and the capacity of their engines. Each
vehicle has a unique vehicle identification number (VIN). One would write VIN → EngineCapacity
because it would be inappropriate for a vehicle's engine to have more than one capacity. (Assuming, in
this case, that vehicles only have one engine.) However, EngineCapacity → VIN, is incorrect because
there could be many vehicles with the same engine capacity.

This functional dependency may suggest that the attribute EngineCapacity be placed in a relation with
candidate key VIN. However, that may not always be appropriate. For example, if that functional
dependency occurs as a result of the transitive functional dependencies VIN → VehicleModel and
VehicleModel → EngineCapacity then that would not result in a normalized relation.

Irreducible function depending set
Functional depending set S is irreducible if the set has three following properties:

• Each right set of a functional dependency of S contains only one attribute.

• Each left set of a functional dependency of S is irreducible. It means that reducing any one
attribute from left set will change the content of S (S will lose some information).

• Reducing any functional dependency will change the content of S.

Sets of Functional Dependencies(FD) with these properties are also called canonical or minimal.

Properties of functional dependencies
Given that X, Y, and Z are sets of attributes in a relation R, one can derive several properties of
functional dependencies. Among the most important are Armstrong's axioms, which are used in
database normalization:

• Subset Property (Axiom of Reflexivity): If Y is a subset of X, then X → Y
• Augmentation (Axiom of Augmentation): If X → Y, then XZ → YZ
• Transitivity (Axiom of Transitivity): If X → Y and Y → Z, then X → Z

From these rules, we can derive these secondary rules:

• Union: If X → Y and X → Z, then X → YZ
• Decomposition: If X → YZ, then X → Y and X → Z
• Pseudotransitivity: If X → Y and WY → Z, then XW → Z

Equivalent sets of functional dependencies are called covers of each other. Every set of functional
dependencies has a canonical cover

Chapter 5: Functional Dependencies and Normalization for Relational Databases 7

Prof. Sushant S. Sundikar Introduction to Database Management System

For example, suppose that we specify the following set F of obvious functional dependencies on the
relation schema of Figure a:

F= {SSN à {ENAME, BDATE, ADDRESS, DNUMBER},

DNUMBER à {DNAME, DMGRSSN}}

Some of the additional functional dependencies that we can inferfrom F are the following:

SSN à {DNAME, DMGRSSN}

SSN àSSN

DNUMBER àDNAME

Database normalization
In the field of relational database design, normalization is a systematic way of ensuring that a database
structure is suitable for general-purpose querying and free of certain undesirable characteristics—
insertion, update, and deletion anomalies—that could lead to a loss of data integrity.

Background to normalization: definitions

Functional dependency
In a given table, an attribute Y is said to have a functional dependency on a set of attributes X (written X
→ Y) if and only if each X value is associated with precisely one Y value. For example, in an "Employee"
table that includes the attributes "Employee ID" and "Employee Date of Birth", the functional
dependency {Employee ID} → {Employee Date of Birth} would hold.

Trivial functional dependency
A trivial functional dependency is a functional dependency of an attribute on a superset of itself.
{Employee ID, Employee Address} → {Employee Address} is trivial, as is {Employee Address} →
{Employee Address}.

Full functional dependency
An attribute is fully functionally dependent on a set of attributes X if it is

• functionally dependent on X, and

Chapter 5: Functional Dependencies and Normalization for Relational Databases 8

Prof. Sushant S. Sundikar Introduction to Database Management System

• not functionally dependent on any proper subset of X. {Employee Address} has a functional
dependency on {Employee ID, Skill}, but not a full functional dependency, because it is also
dependent on {Employee ID}.

Transitive dependency
A transitive dependency is an indirect functional dependency, one in which X→Z only by virtue of X→Y
and Y→Z.

Multivalued dependency
A multivalued dependency is a constraint according to which the presence of certain rows in a table
implies the presence of certain other rows.

Join dependency
A table T is subject to a join dependency if T can always be recreated by joining multiple tables each
having a subset of the attributes of T.

Superkey
A superkey is an attribute or set of attributes that uniquely identifies rows within a table; in other
words, two distinct rows are always guaranteed to have distinct superkeys. {Employee ID, Employee
Address, Skill} would be a superkey for the "Employees' Skills" table; {Employee ID, Skill} would also be a
superkey.

Candidate key
A candidate key is a minimal superkey, that is, a superkey for which we can say that no proper subset of
it is also a superkey. {Employee Id, Skill} would be a candidate key for the "Employees' Skills" table.

Non-prime attribute
A non-prime attribute is an attribute that does not occur in any candidate key. Employee Address would
be a non-prime attribute in the "Employees' Skills" table.

Primary key
Most DBMSs require a table to be defined as having a single unique key, rather than a number of
possible unique keys. A primary key is a key which the database designer has designated for this
purpose.

Normal forms
The normal forms (abbrev. NF) of relational database theory provide criteria for determining a table's
degree of vulnerability to logical inconsistencies and anomalies. The higher the normal form applicable
to a table, the less vulnerable it is to inconsistencies and anomalies. Each table has a "highest normal
form" (HNF): by definition, a table always meets the requirements of its HNF and of all normal forms
lower than its HNF; also by definition, a table fails to meet the requirements of any normal form higher
than its HNF

Chapter 5: Functional Dependencies and Normalization for Relational Databases 9

Prof. Sushant S. Sundikar Introduction to Database Management System

The normal forms are applicable to individual tables; to say that an entire database is in normal form n is
to say that all of its tables are in normal form n.

First normal form
First normal form (1NF or Minimal Form) is a normal form used in database normalization. A relational
database table that adheres to 1NF is one that meets a certain minimum set of criteria. These criteria
are basically concerned with ensuring that the table is a faithful representation of a relation and that it
is free of repeating groups.

A table is in 1NF if and only if it is "isomorphic to some relation", which means, specifically, that it
satisfies the following five conditions:

1. There's no top-to-bottom ordering to the rows.
2. There's no left-to-right ordering to the columns.
3. There are no duplicate rows.
4. Every row-and-column intersection contains exactly one value from the applicable domain (and

nothing else).
5. All columns are regular [i.e. rows have no hidden components such as row IDs, object IDs, or

hidden timestamps].

Violation of any of these conditions would mean that the table is not strictly relational, and therefore
that it is not in 1NF.

Examples of tables (or views) that would not meet this definition of 1NF are:

• A table that lacks a unique key. Such a table would be able to accommodate duplicate rows, in
violation of condition 3.

• A view whose definition mandates that results be returned in a particular order, so that the row-
ordering is an intrinsic and meaningful aspect of the view. This violates condition 1. The tuples in
true relations are not ordered with respect to each other.

• A table with at least one nullable attribute. A nullable attribute would be in violation of
condition 4, which requires every field to contain exactly one value from its column's domain.

Example

Suppose a novice designer wishes to record the names and telephone numbers of customers. He
defines a customer table which looks like this:

Customer
Customer ID First Name Surname Telephone Number
123 Robert Ingram 555-861-2025
456 Jane Wright 555-403-1659
789 Maria Fernandez 555-808-9633

Chapter 5: Functional Dependencies and Normalization for Relational Databases 10

Prof. Sushant S. Sundikar Introduction to Database Management System

The designer then becomes aware of a requirement to record multiple telephone numbers for some
customers. He reasons that the simplest way of doing this is to allow the "Telephone Number" field in
any given record to contain more than one value:

Customer
Customer ID First Name Surname Telephone Number
123 Robert Ingram 555-861-2025
456 Jane Wright 555-403-1659

555-776-4100
789 Maria Fernandez 555-808-9633

Assuming, however, that the Telephone Number column is defined on some Telephone Number-like
constraint (e.g. strings of 12 characters in length), the representation above is not in 1Nf as it prevents
a single field from containing more than one value from its column's domain.

The designer might attempt to get around this restriction by defining multiple Telephone Number
columns:

Customer
Customer ID First Name Surname Tel. No. 1 Tel. No. 2 Tel. No. 3
123 Robert Ingram 555-861-2025
456 Jane Wright 555-403-1659 555-776-4100 555-403-1659
789 Maria Fernandez 555-808-9633

This representation, however, makes use of nullable columns, and therefore does not conform to Date's
definition of 1NF and causes logical problems. These problems include:

• Difficulty in querying the table. Answering such questions as "Which customers have telephone
number X?"

• Inability to enforce uniqueness of Customer-to-Telephone Number links through the RDBMS.
Customer 789 might mistakenly be given a Tel. No. 2 value that is exactly the same as her Tel.
No. 1 value.

• Restriction of the number of telephone numbers per customer to three. If a customer with four
telephone numbers comes along, we are constrained to record only three and leave the fourth
unrecorded. This means that the database design is imposing constraints on the business
process, rather than (as should ideally be the case) vice-versa.

Chapter 5: Functional Dependencies and Normalization for Relational Databases 11

Prof. Sushant S. Sundikar Introduction to Database Management System

A design that is unambiguously in 1NF makes use of two tables: a Customer Name table and a Customer
Telephone Number table.

Customer Name
Customer
ID

First
Name

Surname

123 Robert Ingram
456 Jane Wright
789 Maria Fernandez

Customer Telephone
Number

Customer
ID

Telephone
Number

123 555-861-
2025

456 555-403-
1659

456 555-776-
4100

789 555-808-
9633

Repeating groups of telephone numbers do not occur in this design. Instead, each Customer-to-
Telephone Number link appears on its own record.

Second normal form
A table that is in first normal form (1NF) must meet additional criteria if it is to qualify for second normal
form. Specifically: a 1NF table is in 2NF if and only if, given any candidate key K and any attribute A that
is not a constituent of a candidate key, A depends upon the whole of K rather than just a part of it.

In slightly more formal terms: a 1NF table is in 2NF if and only if all its non-prime attributes are
functionally dependent on the whole of a candidate key. (A non-prime attribute is one that does not
belong to any candidate key.)

Example

Consider a table describing employees' skills:

Employees' Skills
Employee Skill Current Work Location
Jones Typing 114 Main Street
Jones Shorthand 114 Main Street
Jones Whittling 114 Main Street
Bravo Light Cleaning 73 Industrial Way
Ellis Alchemy 73 Industrial Way
Ellis Flying 73 Industrial Way
Harrison Light Cleaning 73 Industrial Way

Neither {Employee} nor {Skill} is a candidate key for the table. This is because a given Employee might
need to appear more than once (he might have multiple Skills), and a given Skill might need to appear

Chapter 5: Functional Dependencies and Normalization for Relational Databases 12

Prof. Sushant S. Sundikar Introduction to Database Management System

more than once (it might be possessed by multiple Employees). Only the composite key {Employee, Skill}
qualifies as a candidate key for the table.

The remaining attribute, Current Work Location, is dependent on only part of the candidate key, namely
Employee. Therefore the table is not in 2NF. Note the redundancy in the way Current Work Locations
are represented: we are told three times that Jones works at 114 Main Street, and twice that Ellis works
at 73 Industrial Way. This redundancy makes the table vulnerable to update anomalies: it is, for
example, possible to update Jones' work location on his "Typing" and "Shorthand" records and not
update his "Whittling" record. The resulting data would imply contradictory answers to the question
"What is Jones' current work location?"

A 2NF alternative to this design would represent the same information in two tables: an "Employees"
table with candidate key {Employee}, and an "Employees' Skills" table with candidate key {Employee,
Skill}:

Employees
Employee Current Work

Location
Jones 114 Main Street
Bravo 73 Industrial Way
Ellis 73 Industrial Way
Harrison 73 Industrial Way

Employees' Skills
Employee Skill
Jones Typing
Jones Shorthand
Jones Whittling
Bravo Light Cleaning
Ellis Alchemy
Ellis Flying
Harrison Light Cleaning

Neither of these tables can suffer from update anomalies.

Third normal form
The third normal form (3NF) is a normal form used in database normalization. 3NF was originally
defined by E.F. Codd in 1971. Codd's definition states that a table is in 3NF if and only if both of the
following conditions hold:

• The relation R (table) is in second normal form (2NF)
• Every non-prime attribute of R is non-transitively dependent (i.e. directly dependent) on every

candidate key of R.

A non-prime attribute of R is an attribute that does not belong to any candidate key of R. A transitive
dependency is a functional dependency in which X → Z (X determines Z) indirectly, by virtue of X → Y
and Y → Z (where it is not the case that Y → X).

Example
An example of a 2NF table that fails to meet the requirements of 3NF is:

Chapter 5: Functional Dependencies and Normalization for Relational Databases 13

Prof. Sushant S. Sundikar Introduction to Database Management System

Tournament Winners
Tournament Year Winner Winner Date of Birth

Indiana Invitational 1998 Al Fredrickson 21 July 1975
Cleveland Open 1999 Bob Albertson 28 September 1968
Des Moines Masters 1999 Al Fredrickson 21 July 1975
Indiana Invitational 1999 Chip Masterson 14 March 1977

Because each row in the table needs to tell us who won a particular Tournament in a particular Year, the
composite key {Tournament, Year} is a minimal set of attributes guaranteed to uniquely identify a row.
That is, {Tournament, Year} is a candidate key for the table.

The breach of 3NF occurs because the non-prime attribute Winner Date of Birth is transitively
dependent on the candidate key {Tournament, Year} via the non-prime attribute Winner. The fact that
Winner Date of Birth is functionally dependent on Winner makes the table vulnerable to logical
inconsistencies, as there is nothing to stop the same person from being shown with different dates of
birth on different records.

In order to express the same facts without violating 3NF, it is necessary to split the table into two:

Tournament Winners

Tournament Year Winner
Indiana Invitational 1998 Al Fredrickson
Cleveland Open 1999 Bob Albertson
Des Moines Masters 1999 Al Fredrickson
Indiana Invitational 1999 Chip Masterson

Player Dates of Birth
Player Date of Birth
Chip Masterson 14 March 1977
Al Fredrickson 21 July 1975
Bob Albertson 28 September 1968

Update anomalies cannot occur in these tables, which are both in 3NF.

Boyce-Codd normal form
Boyce-Codd normal form (or BCNF or 3.5NF) is a normal form used in database normalization. It is a
slightly stronger version of the third normal form (3NF). A table is in Boyce-Codd normal form if and only
if for every one of its non-trivial [dependencies] X → Y, X is a superkey—that is, X is either a candidate
key or a superset thereof.

BCNF was developed in 1974 by Raymond F. Boyce and Edgar F. Codd to address certain types of
anomaly not dealt with by 3NF as originally defined.

Only in rare cases does a 3NF table not meet the requirements of BCNF. Depending on what its
functional dependencies are, a 3NF table with two or more overlapping candidate keys may or may not
be in BCNF.

An example of a 3NF table that does not meet BCNF is:

Chapter 5: Functional Dependencies and Normalization for Relational Databases 14

Prof. Sushant S. Sundikar Introduction to Database Management System

Today's Court Bookings
Court Start Time End Time Rate Type
1 09:30 10:30 SAVER
1 11:00 12:00 SAVER
1 14:00 15:30 STANDARD
2 10:00 11:30 PREMIUM-B
2 11:30 13:30 PREMIUM-B
2 15:00 16:30 PREMIUM-A

1. Each row in the table represents a court booking at a tennis club that has one hard court (Court
1) and one grass court (Court 2)

2. A booking is defined by its Court and the period for which the Court is reserved
3. Additionally, each booking has a Rate Type associated with it. There are four distinct rate types:

• SAVER, for Court 1 bookings made by members
• STANDARD, for Court 1 bookings made by non-members

• PREMIUM-A, for Court 2 bookings made by members

• PREMIUM-B, for Court 2 bookings made by non-members

The table's candidate keys are:

• {Court, Start Time}

• {Court, End Time}

• {Rate Type, Start Time}

• {Rate Type, End Time}

In the Today's Court Bookings table, there are no non-prime attributes: that is, all attributes belong to
candidate keys. Therefore the table adheres to both 2NF and 3NF.

The table does not adhere to BCNF. This is because of the dependency Rate Type → Court, in which the
determining attribute (Rate Type) is neither a candidate key nor a superset of a candidate key.

Any table that falls short of BCNF will be vulnerable to logical inconsistencies. In this example, enforcing
the candidate keys will not ensure that the dependency Rate Type → Court is respected. There is, for
instance, nothing to stop us from assigning a PREMIUM A Rate Type to a Court 1 booking as well as a
Court 2 booking—a clear contradiction, as a Rate Type should only ever apply to a single Court.

Chapter 5: Functional Dependencies and Normalization for Relational Databases 15

Prof. Sushant S. Sundikar Introduction to Database Management System

The design can be amended so that it meets BCNF:

Rate Types
Rate Type Court Member

Flag
SAVER 1 Yes
STANDARD 1 No
PREMIUM-A 2 Yes
PREMIUM-B 2 No

Today's Bookings
Court Start

Time
End
Time

Member
Flag

1 09:30 10:30 Yes
1 11:00 12:00 Yes
1 14:00 15:30 No
2 10:00 11:30 No
2 11:30 13:30 No
2 15:00 16:30 Yes

The candidate keys for the Rate Types table are {Rate Type} and {Court, Member Flag}; the candidate
keys for the Today's Bookings table are {Court, Start Time} and {Court, End Time}. Both tables are in
BCNF. Having one Rate Type associated with two different Courts is now impossible, so the anomaly
affecting the original table has been eliminated.

