Chapter 6: RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA

RELATIONAL MODEL CONCEPTS
The relational model represents the database as a collection of relations. In the formal relational model terminology, a row is called a tuple, a column header is called an attribute, and the table is called a relation. The data type describing the types of values that can appear in each column is represented by a domain of possible values.

Domains, Attributes, Tuples, and Relations
A domain D is a set of atomic values. By atomic we mean that each value in the domain is indivisible as far as the relational model is concerned. A common method of specifying a domain is to specify a data type. It is also useful to specify a name for the domain, to help in interpreting its values. Some examples of domains follow:

- USA_phone_numbers: The set of ten-digit phone numbers valid in the United States.
- Local_phone_numbers: The set of seven-digit phone numbers valid within a particular area code in the United States.

The preceding are called logical definitions of domains. A data type or format is also specified for each domain. For example, the data type for the domain USA_phone_numbers can be declared as a character string of the form (ddd)ddd-dddd, where each d is a numeric (decimal) digit and the first three digits form a valid telephone area code.

A relation schema R, denoted by R(A₁, A₂, ..., Aₙ), is made up of a relation name R and a list of attributes A₁, A₂, ..., Aₙ. Each attribute Aᵢ is the name of a role played by some domain D in the relation schema R. D is called the domain of Aᵢ and is denoted by dom(Aᵢ). A relation schema is used to describe a relation; R is called the name of this relation. The degree of a relation is the number of attributes n of its relation schema.

Characteristics of Relations
Ordering of Tuples in a Relation: A relation is defined as a set of tuples. Mathematically, elements of a set have no order among them; hence, tuples in a relation do not have any particular order. When we display a relation as a table, the rows are displayed in a certain order. Tuple ordering is not part of a relation definition, because a relation attempts to represent facts at a logical or abstract level.

Ordering of Values within a Tuple, and an Alternative Definition of a Relation
According to the preceding definition of a relation, an n-tuple is an ordered list of n values, so the ordering of values in a tuple-and hence of attributes in a relation schema-is important. However, at a logical level, the order of attributes and their values is not that important as long as the correspondence between attributes and values is maintained.

Prof. Sushant. S. Sundikar

Introduction Database Management Systems
An alternative definition of a relation can be given as relation schema \(R = \{A_1, A_2, \ldots, A_n\} \) is a set of attributes, and a relation state \(r(R) \) is a finite set of mappings \(r = \{t_1, t_2, \ldots, t_m\} \) where each tuple \(t \) is a mapping from \(R \) to \(D \), and \(D \) is the union of the attribute domains; that is, \(D = \text{dom}(A_1) \cup \text{dom}(A_2) \cup \ldots \cup \text{dom}(A_n) \).

Values and Nulls in the Tuples. Each value in a tuple is an atomic value; that is, it is not divisible into components within the framework of the basic relational model. Hence, composite and multivalued attributes are not allowed. An important concept is that of nulls, which are used to represent the values of attributes that may be unknown or may not apply to a tuple. A special value, called null, is used for these cases.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted as a declaration or a type of assertion. For example, the schema of the STUDENT relation asserts that, in general, a student entity has a Name, SSN, HomePhone, Address, OfficePhone, Age, and Performance. Notice that some relations may represent facts about entities, whereas other relations may represent facts about relationships.

Relational Model Notation

We will use the following notation in our presentation:

- A relation schema \(R \) of degree \(n \) is denoted by \(R(A_1, A_2, \ldots, A_n) \).
- An \(n \)-tuple \(t \) in a relation \(r(R) \) is denoted by \(t = \langle v_1, v_2, \ldots, v_n \rangle \), where \(v_i \) is the value corresponding to attribute \(A_i \).
- The following notation refers to component values of tuples:
 - Both \(t[A_i] \) and \(t.A_i \) refer to the value \(v_i \) in \(t \) for attribute \(A_i \).
 - Both \(t[A_{i1}, A_{i2}, \ldots, A_{in}] \) and \(t.(A_{i1} A_{i2}, \ldots, A_{in}) \), where \(A_{i1}, A_{i2}, \ldots, A_{in} \) is a list of attributes from \(R \), refer to the subtuple of values \(\langle v_{i1}, v_{i2}, \ldots, v_{in} \rangle \) from \(t \) corresponding to the attributes specified in the list.
- The letters \(Q, R, S \) denote relation names.
- The letters \(q, r, s \) denote relation states.
- The letters \(t, u, v \) denote tuples.
- In general, the name of a relation schema such as STUDENT also indicates the current set of tuples in that relation—the current relation state—whereas STUDENT(Name, SSN, ...) refers only to the relation schema.
- An attribute \(A \) can be qualified with the relation name \(R \) to which it belongs by using the dot notation \(R.A \)—for example, STUDENT.Name or STUDENT.Age.

RELATIONAL MODEL CONSTRAINTS AND RELATIONAL DATABASE SCHEMAS

There are generally many restrictions or constraints on the actual values in a database state. These constraints are derived from the rules in the miniworld that the database represents.
Constraints on databases can generally be divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent model-based constraints.
2. Constraints that can be directly expressed in the schemas of the data model, typically by specifying them in the DDL. We call these schema-based constraints.
3. Constraints that cannot be directly expressed in the schemas of the data model, and hence must be expressed and enforced by the application programs. We call these application-based constraints.

Domain Constraints

Domain constraints specify that within each tuple, the value of each attribute A must be an atomic value from the domain dom(A). The data types associated with domains typically include standard numeric data types for integers (such as short integer, integer, and long integer) and real numbers (float and double-precision float). Characters, booleans, fixed-length strings, and variable-length strings are also available, as are date, time, timestamp, and, in some cases, money data types.

Key Constraints and Constraints on Null Values

A relation is defined as a set of tuples. By definition, all elements of a set are distinct; hence, all tuples in a relation must also be distinct. This means that no two tuples can have the same combination of values for all their attributes. Suppose that we denote one such subset of attributes by SK, then for any two distinct tuples \(t_1 \) and \(t_2 \) in a relation state \(r \) of \(R \), we have the constraint that

\[
t_1[SK] \neq t_2[SK]
\]

Any such set of attributes \(SK \) is called a superkey of the relation schema \(R \). A superkey \(SK \) specifies a uniqueness constraint that no two distinct tuples in any state \(r \) of \(R \) can have the same value for \(SK \). Every relation has at least one default superkey. A superkey can have redundant attributes, however, so a more useful concept is that of a key, which has no redundancy. A key \(K \) of a relation schema \(R \) is a superkey of \(R \) with the additional property that removing any attribute \(A \) from \(K \) leaves a set of attributes \(K' \) that is not a superkey of \(R \) any more. Hence, a key satisfies two constraints:

1. Two distinct tuples in any state of the relation cannot have identical values for (all) the attributes in the key.
2. It is a minimal superkey - that is, a superkey from which we cannot remove any attributes and still have the uniqueness constraint in condition 1 hold.

In general, a relation schema may have more than one key. In this case, each of the keys is called a candidate key. For example, the CAR relation has two candidate keys: LicenseNumber and EngineSerialNumber. It is common to designate one of the candidate keys as the primary key of the relation. Notice that when a relation schema has several candidate keys, the choice of one to become the
primary key is arbitrary; however, it is usually better to choose a primary key with a single attribute or a small number of attributes.

Another constraint on attributes specifies whether null values are or are not permitted. For example, if every STUDENT tuple must have a valid, nonnull value for the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

Entity Integrity, Referential Integrity, and Foreign Keys

The entity integrity constraint states that no primary key value can be null. This is because the primary key value is used to identify individual tuples in a relation. Having null values for the primary key implies that we cannot identify some tuples. Key constraints and entity integrity constraints are specified on individual relations. The referential integrity constraint is specified between two relations and is used to maintain the consistency among tuples in the two relations. Informally, the referential integrity constraint states that a tuple in one relation that refers to another relation must refer to an *existing tuple* in that relation.

To define referential integrity more formally, we first define the concept of a foreign key. The conditions for a foreign key, given below, specify a referential integrity constraint between the two relation schemas R1 and R2. A set of attributes FK in relation schema R1 is a foreign key of R2 that references relation R2 if it satisfies the following two rules:

1. The attributes in FK have the same domain(s) as the primary key attributes PK of R2; the attributes FK are said to reference or refer to the relation R2.
2. A value of FK in a tuple t1 of the current state r1 (R1) either occurs as a value of PK for some tuple t2 in the current state r2(R2) or is null.

In the former case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or refers to the tuple t2. In this definition, R1 is called the referencing relation and R2 is the referenced relation. If these two conditions hold, a referential integrity constraint from R1 to R2 is said to hold. In a database of many relations, there are usually many referential integrity constraints. See Fig 5.7

Other Types of Constraints

The preceding integrity constraints do not include a large class of general constraints, sometimes called semantic integrity constraints, which may have to be specified and enforced on a relational database. Examples of such constraints are "the salary of an employee should not exceed the salary of the employee’s supervisor" and "the maximum number of hours an employee can work on all projects per week is 56." Such constraints can be specified and enforced within the application programs that update the database, or by using a general-purpose constraint specification language. Mechanisms called triggers and assertions can be used.

The types of constraints we discussed so far may be called state constraints, because they define the constraints that a valid state of the database must satisfy. Another type of constraint, called transition constraints,
constraints, can be defined to deal with state changes in the database. An example of a transition constraint is: "the salary of an employee can only increase."

Relational Databases and Relational Database Schemas

A relational database schema S is a set of relation schemas $S = (R_1, R_2, \ldots, R_m)$ and a set of integrity constraints IC. A relational database state DB of S is a set of relation states $DB = (r_1, r_2, \ldots, r_m)$ such that each r_i is a state of R_i, and such that the relation states satisfy the integrity constraints specified in IC.

Figure 5.5 shows a relational database schema that we call $\text{COMPANY} = \{\text{EMPLOYEE}, \text{DEPARTMENT}, \text{DEPT_LOCATIONS}, \text{PROJECT}, \text{WORKS_ON}, \text{DEPENDENT}\}$. The underlined attributes represent primary
Chapter 6: Relational Data Model and Relational Algebra

keys. Figure 5.6 shows a relational database state corresponding to the COMPANY schema.

![Diagram of relational database schema](image)

DEPARTMENT

<table>
<thead>
<tr>
<th>DNAME</th>
<th>DNUMBER</th>
<th>MGSRIN</th>
<th>MGSTARTDATE</th>
</tr>
</thead>
</table>

PROJECT

<table>
<thead>
<tr>
<th>PNAME</th>
<th>PNUMBER</th>
<th>PLOCATION</th>
<th>DNUM</th>
</tr>
</thead>
</table>

WORKS_ON

<table>
<thead>
<tr>
<th>ESSIN</th>
<th>PNO</th>
<th>HOURS</th>
</tr>
</thead>
</table>

DEPENDENT

<table>
<thead>
<tr>
<th>ESSIN</th>
<th>DEPENDENT_NAME</th>
<th>SEX</th>
<th>BOAT</th>
<th>RELATIONSHIP</th>
</tr>
</thead>
</table>

Figure 5.5 Schema diagram for the COMPANY relational database schema.
UPDATE OPERATIONS AND DEALING WITH CONSTRAINT VIOLATIONS

There are three basic update operations on relations: insert, delete, and modify. Insert is used to insert a new tuple or tuples in a relation. Delete is used to delete tuples, and Update (or Modify) is used to change the values of some attributes in existing tuples. Whenever these operations are applied, the integrity constraints specified on the relational database schema should not be violated.

The Insert Operation

The Insert operation provides a list of attribute values for a new tuple that is to be inserted into a relation R. Insert can violate any of the four types of constraints discussed in the previous section. Domain constraints can be violated if an attribute value is given that does not appear in the corresponding domain. Key constraints can be violated if a key value in the new tuple already exists in another tuple in the relation r(R). Entity integrity can be violated if the primary key of the new tuple is null. Referential integrity can be violated if the value of any foreign key in r refers to a tuple that does not exist in the referenced relation. If an insertion violates one or more constraints, the default option is to reject the insertion.

For Example:
Insert <Cecilia', 'F', 'Kolonsky', '677678989', '1960-04-05', '6357 Windy Lane, Katv, TX', F, 28000, null, 4> into EMPLOYEE.

The Delete Operation

The Delete operation can violate only referential integrity, if the tuple being deleted is referenced by the foreign keys from other tuples in the database. To specify deletion, a condition on the attributes of the relation selects the tuple (or tuples) to be deleted. Here are some examples.

1. Delete the works_on tuple with ESSN = '999887777' and PNO = 10.
 - This deletion is acceptable.

2. Delete the employee tuple with ESSN = '999887777'.
 - This deletion is not acceptable, because tuples in works_on refer to this tuple. Hence, if the tuple is deleted, referential integrity violations will result.

Several options are available if a deletion operation causes a violation. The first option is to reject the deletion. The second option is to attempt to cascade (or propagate) the deletion by deleting tuples that reference the tuple that is being deleted. For example, in operation 2, the DBMS could automatically delete the offending tuples from works_on with ESSN = '999887777'. A third option is to modify the
referencing attribute values that cause the violation; each such value is either set to null or changed to reference another valid tuple. Combinations of these three options are also possible.

The Update Operation
The Update (or Modify) operation is used to change the values of one or more attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condition on the attributes of the relation to select the tuple (or tuples) to be modified. Updating an attribute that is neither a primary key nor a foreign key usually causes no problems; the DBMS need only check to confirm that the new value is of the correct data type and domain. Modifying a primary key value is similar to deleting one tuple and inserting another in its place, because we use the primary key to identify tuples. If a foreign key attribute is modified, the DBMS must make sure that the new value refers to an existing tuple in the referenced relation (or is null).

For Example:
Update the SALARY of the EMPLOYEE tuple with SSN = '999887777' to 28000.
Update the DNO of the EMPLOYEE tuple with SSN = '999887777' to 1.

The Relational Algebra
The basic set of operations for the relational model is the relational algebra. These operations enable a user to specify basic retrieval requests. A sequence of relational algebra operations forms a relational algebra expression, whose result will also be a relation that represents the result of a database query (or retrieval request). The relational algebra is very important for several reasons. First, it provides a formal foundation for relational model operations. Second, and perhaps more important, it is used as a basis for implementing and optimizing queries in relational database management systems (RDBMSs. Third, some of its concepts are incorporated into the SQL standard query language for RDBMSs.

BASIC RELATIONAL OPERATIONS

The SELECT Operation
The SELECT operation is used to select a subset of the tuples from a relation that satisfy a selection condition. One can consider the SELECT operation to be a filter that keeps only those tuples that satisfy a qualifying condition. The SELECT operation can also be visualized as a horizontal partition of the relation into two sets of tuples—those tuples that satisfy the condition and are selected, and those tuples that do not satisfy the condition and are discarded. For example, to select the EMPLOYEE tuples whose department is 4, or those whose salary is greater than $30,000, we can individually specify each of these two conditions with a SELECT operation as follows:

\(\sigma_{DNO=4}(\text{EMPLOYEE}) \)

\(\sigma_{\text{SALARY}>30000}(\text{EMPLOYEE}) \)
In general, the SELECT operation is denoted by

\[\sigma <\text{selection condition}> (R) \]

where the symbol \(\sigma \) (sigma) is used to denote the SELECT operator, and the selection condition is a Boolean expression specified on the attributes of relation \(R \). The Boolean expression specified in <selection condition> is made up of a number of clauses of the form

\[<\text{attribute name}> <\text{comparison op}> <\text{constant value}> , \]

or

\[<\text{attribute name}> <\text{comparison op}> <\text{attribute name}> \]

where \(<\text{attribute name}> \) is the name of an attribute of \(R \), \(<\text{comparison op}> \) is normally one of the operators \{ =, <, >, \leq, \geq, \neq \} \), and \(<\text{constant value}> \) is a constant value from the attribute domain. Clauses can be arbitrarily connected by the Boolean operators AND, OR, and NOT to form a general selection condition. For example, to select the tuples for all employees who either work in department 4 and make over $25,000 per year, or work in department 5 and make over $30,000, we can specify the following SELECT operation:

\[\sigma (DNO=4 \text{ AND } SALARY>25000) \text{ OR } (DNO=5 \text{ AND } SALARY > 30000) \text{ (EMPLOYEE)} \]

In general, the result of a SELECT operation can be determined as follows. The <selection condition> is applied independently to each tuple \(t \) in \(R \). This is done by substituting each occurrence of an attribute \(A_i \) in the selection condition with its value in the tuple \(t[A_i] \). If the condition evaluates to TRUE, then tuple \(t \) is selected. All the selected tuples appear in the result of the SELECT operation. The Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

- (cond1 AND cond2) is TRUE if both (cond 1) and (cond2) are TRUE; otherwise, it is FALSE.
- (cond1 OR cond2) is TRUE if either (cond 1) or (cond2) or both are TRUE; otherwise, it is FALSE.
- (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE. The SELECT operator is unary; that is, it is applied to a single relation.

Notice that the SELECT operation is commutative; that is,

\[(\sigma <\text{cond1}> (\sigma <\text{cond2}> (R))) = (\sigma <\text{cond2}> ((\sigma <\text{cond1}> (R))) \]

The PROJECT Operation

The PROJECT operation, on the other hand, selects certain columns from the table and discards the other columns. If we are interested in only certain attributes of a relation, we use the PROJECT
operation to \textit{project} the relation over these attributes only. The result of the PROJECT operation can hence be visualized as a \textit{vertical partition} of the relation into two relations: one has the needed columns (attributes) and contains the result of the operation, and the other contains the discarded columns. For example, to list each employee's first and last name and salary, we can use the PROJECT operation as follows:

\[\pi \text{LNAME, FNAME, SALARY}(\text{EMPLOYEE}) \]

The general form of the PROJECT operation is:

\[\pi \text{<attribute list>} (R) \]

where \(\pi \) (pi) is the symbol used to represent the PROJECT operation, and \text{<attribute list>} is the desired list of attributes from the attributes of relation \(R \). The result of the PROJECT operation has only the attributes specified in \text{<attribute list> in the same order as they appear in the list}. Hence, its degree is equal to the number of attributes in \text{<attribute list>}. If the attribute list includes only non key attributes of \(R \), duplicate tuples are likely to occur. The PROJECT operation \textit{removes any duplicate tuples}, so the result of the PROJECT operation is a set of tuples, and hence a valid relation. This is known as \textit{duplicate elimination}. For example, consider the following PROJECT operation:

\[\pi \text{SEX, SALARY}(\text{EMPLOYEE}) \]

Sequences of Operations and the RENAME Operation

Sometimes, we may want to apply several relational algebra operations one after the other. Either we can write the operations as a single relational algebra expression by nesting the operations, or we can apply one operation at a time and create intermediate result relations. In the latter case, we must give names to the relations that hold the intermediate results. For example, to retrieve the first name, last name, and salary of all employees who work in department number 5, we must apply a SELECT and a PROJECT operation. We can write a single relational algebra expression as follows:

\[\pi \text{FNAME, LNAME, SALARY}(\text{S DNO=5 (EMPLOYEE)}) \]

Alternatively, we can explicitly show the sequence of operations, giving a name to each intermediate relation:

\[\text{DEP5_EMPS} \leftarrow \text{DNO=5 (EMPLOYEE)} \]

\[\text{RESULT} \leftarrow \pi \text{FNAME, LNAME, SALARY (DEP5_EMPS)} \]

It is often simpler to break down a complex sequence of operations by specifying intermediate result relations than to write a single relational algebra expression. We can also use this technique to \textit{rename} the attributes in the intermediate and result relations. This can be useful in connection with more complex operations such as UNION and JOIN. To rename the attributes in a relation, we simply list the new attribute names in parentheses, as in the following example:
Chapter 6: Relational Data Model and Relational Algebra

TEMP ← σDNO=5 (EMPLOYEE)

R (FIRSTNAME, LASTNAME, SALARY) ← π FNAME, LNAME, SALARY (TEMP)

The general rename operation when applied to a relation R of degree n is denoted by any of the following three forms:

ρS(B1, B2, ..., Bn)R or ρS(R) or ρ (B1, B2, ..., Bn)(R)

where the symbol ρ (rho) is used to denote the rename operator, S is the new relation name, and B1, B2, ..., Bn are the new attribute names. The first expression renames both the relation and its attributes, the second renames the relation only, and the third renames the attributes only.

RELEVANT ALGEBRA OPERATIONS FROM SET THEORY

The UNION, INTERSECTION, and MINUS Operations

Several set theoretic operations are used to merge the elements of two sets in various ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called MINUS). These are binary operations; that is, each is applied to two sets (of tuples). When these operations are adapted to relational databases, the two relations on which any of these three operations are applied must have the same type of tuples; this condition has been called union compatibility. Two relations R(A₁, A₂, ..., Aₙ) and S(B₁, B₂, ..., Bₙ) are said to be union compatible if they have the same degree n and if dom(Aᵢ) = dom(Bᵢ) for 1 ≤ i ≤ n. This means that the two relations have the same number of attributes, and each corresponding pair of attributes has the same domain.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE on two union-compatible relations R and S as follows:

- **UNION**: The result of this operation, denoted by R U S, is a relation that includes all tuples that are either in R or in S or in both R and S. Duplicate tuples are eliminated.
- **INTERSECTION**: The result of this operation, denoted by R ⋂ S, is a relation that includes all tuples that are in both R and S.
- **SET DIFFERENCE (OR MINUS)**: The result of this operation, denoted by R - S, is a relation that includes all tuples that are in R but not in S.

Notice that both UNION and INTERSECTION are commutative operations; that is,

R U S = S U R, and R ⋂ S = S ⋂ R

Both UNION and INTERSECTION can be treated as n-ary operations applicable to any number of relations because both are associative operations; that is

Prof. Sushant S. Sundikar

Introduction Database Management Systems
The MINUS operation is *not commutative*; that is, in general,

\[R - S \neq S - R \]

The CARTESIAN PRODUCT (or CROSS PRODUCT) Operation

Next we discuss the CARTESIAN PRODUCT operation—also known as CROSS PRODUCT or CROSS JOIN—which is denoted by \(\times \). This is also a binary set operation, but the relations on which it is applied do *not* have to be union compatible. This operation is used to combine tuples from two relations in a combinatorial fashion. In general, the result of \(R(A_1, A_2, \ldots, A_n) \times S(B_1, B_2, \ldots, B_m) \) is a relation \(Q \) with degree \(n + m \) attributes \(Q(A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_m) \), in that order.

For example, suppose that we want to retrieve a list of names of each female employee’s dependents. We can do this as follows:

FEMALE_EMPS \(\leftarrow \sigma_{SEX='F'} \) (EMPLOYEE)

EMP_NAMES \(\leftarrow \pi_{FNAME, LNAME, SSN} \) (FEMALE_EMPS)

EMP_DEPENDENTS \(\leftarrow \) EMP_NAMES \(\times \) DEPENDENT

ACTUAL_DEPENDENTS \(\leftarrow \sigma_{SSN=ESSN} \) (EMP_DEPENDENTS)

RESULT \(\leftarrow \pi_{FNAME, LNAME, DEPENDENT_LNAME} \) (ACTUAL_DEPENDENTS)

BINARY RELATIONAL OPERATIONS:

The JOIN Operation

The JOIN operation, denoted \(\bowtie \) by is used to combine *related tuples* from two relations into single tuples. This operation is very important for any relational database with more than a single relation, because it allows us to process relationships among relations. To illustrate JOIN, suppose that we want to retrieve the name of the manager of each department. To get the manager’s name, we need to combine each department tuple with the employee tuple whose SSN value matches the MGRSSN value in the department tuple. We do this by using the JOIN operation, and then projecting the result over the necessary attributes, as follows:

DEPT_MGR \(\leftarrow \) DEPARTMENT \(\bowtie_{MGRSSN=SSN} \) EMPLOYEE

RESULT \(\leftarrow \pi_{DNAME, LNAME, FNAME} \) (DEPT_MGR)

The general form of a JOIN operation on two relations \(R(A_1, A_2, \ldots, A_n) \) and \(S(B_1, B_2, \ldots, B_m) \) is

\[R \bowtie_{<join
condition>} S \]
Chapter 6: Relational Data Model and Relational Algebra

The result of the JOIN is a relation Q with $n + m$ attributes $Q (A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_m)$ in that order; Q has one tuple for each combination of tuples—one from R and one from S—whenever the combination satisfies the join condition. This is the main difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combinations of tuples satisfying the join condition appear in the result, whereas in the CARTESIAN PRODUCT all combinations of tuples are included in the result.

The EQUI JOIN and NATURAL JOIN Variations of JOIN

The most common use of JOIN involves join conditions with equality comparisons only. Such a JOIN, where the only comparison operator used is $=$, is called an EQUIJOIN. Notice that in the result of an EQUIJOIN we always have one or more pairs of attributes that have identical values in every tuple. For example the values of the attributes MGRSSN and SSN are identical in every tuple of DEPT_MGR query because of the equality join condition specified on these two attributes. Because one of each pair of attributes with identical values is superfluous, a new operation called NATURAL JOIN—denoted by \ast—was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair of join attributes) have the same name in both relations. If this is not the case, a renaming operation is applied first. In the following example, we first rename the DNUMBER attribute of DEPARTMENT to DNUM—so that it has the same name as the DNUM attribute in PROJECT—and then apply NATURAL JOIN:

$$\text{proj}_\text{DEPT} \leftarrow \text{PROJECT} \ast \rho_{(\text{DNAME}, \text{DNUM}, \text{MGRSSN}, \text{MGRSTARTDATE})}(\text{DEPARTMENT})$$

The same query can be done in two steps by creating an intermediate table DEPT as follows:

$$\text{DEPT} \leftarrow \rho_{(\text{DNAME}, \text{DNUM}, \text{MGRSSN}, \text{MGRSTARTDATE})}(\text{DEPARTMENT})$$

$$\text{proj}_\text{DEPT} \leftarrow \text{PROJECT} \ast \text{DEPT}$$

The attribute DNUM is called the join attribute. If the attributes on which the natural join is specified already have the same names in both relations, renaming is unnecessary.

As we can see, the JOIN operation is used to combine data from multiple relations so that related information can be presented in a single table. Note that sometimes a join may be specified between a relation and itself such operations are also known as inner joins.

The Division Operator

The DIVISION operation, denoted by \div, is useful for a special kind of query that sometimes occurs in database applications. An example is “Retrieve the names of employees who work on all the projects that 'John Smith' works on.” To express this query using the DIVISION operation, proceed as follows. First, retrieve the list of project numbers that 'JohnSmith' works on in the intermediate relation SMITH_PNOS:
Next, create a relation that includes a tuple <PNO, ESSN> whenever the employee whose social security number is ESSN works on the project whose number is PNO in the intermediate relation SSN_PNOS:

\[
SSN_{-}PNOS \leftarrow \pi_{\text{ESSN}, \text{PNO}}(\text{WORKS_ON})
\]

Finally, apply the DIVISION operation to the two relations, which gives the desired employees' social security numbers:

\[
SSNS(\text{SSN}) \leftarrow SSN_{-}PNOS \div SMITH_{-}PNOS
\]

Aggregate Functions and Grouping

The request that cannot be expressed in the basic relational algebra can be expressed in mathematical aggregate functions on collections of values from the database. Examples of such functions include retrieving the average or total salary of all employees or the total number of employee tuples. These functions are used in simple statistical queries that summarize information from the database tuples. Common functions applied to collections of numeric values include \text{SUM}, \text{AVERAGE}, \text{MAXIMUM}, \text{MINIMUM}.

We can define an AGGREGATE FUNCTION operation, using the symbol \(\text{\sum} \) (pronounced “script \(\Sigma \)”), to specify these types of requests as follows:

\[
<\text{grouping attributes}> \text{\sum} <\text{function list}> (R)
\]

where \(<\text{grouping attributes}> \) is a list of attributes of the relation specified in \(R \), and \(<\text{function list}> \) is one of the allowed functions such as \text{SUM}, \text{AVERAGE}, \text{MAXIMUM}, \text{MINIMUM}, \text{COUNT}.

For Example: The query get the DNO, Count of Employees and Average salary of the employees.

\[
\rho_{(\text{DNO}, \text{NO_OF_EMPLOYEES}, \text{AVERAGE_SAL})}(\text{DNO} \text{\sum COUNT SSN, AVERAGE SALARY (EMPLOYEE)})
\]

Outer Join Operation

We now discuss some extensions to the JOIN operation that are necessary to specify certain types of queries. The JOIN operations described earlier match tuples that satisfy the join condition. For example, for a NATURAL JOIN operation \(R \ast S \), only tuples from \(R \) that have matching tuples in \(S \) -and vice versa- appear in the result. Hence, tuples without a matching (or related) tuple are eliminated from the JOIN.
result. Tuples with null values in the join attributes are also eliminated. This amounts to loss of information, if the result of JOIN is supposed to be used to generate a report based on all the information in the component relations.

A set of operations, called outer joins, can be used when we want to keep all the tuples in R, or all those in S, or all those in both relations in the result of the JOIN, regardless of whether or not they have matching tuples in the other relation. This satisfies the need of queries in which tuples from two tables are to be combined by matching corresponding rows, but without losing any tuples for lack of matching values.

For example, suppose that we want a list of all employee names and also the name of the departments they manage if they happen to manage a department; if they do not manage any, we can so indicate with a null value. We can apply an operation LEFT OUTER JOIN, denoted by \(\text{LEFT OUTER JOIN} \), to retrieve the result as follows:

\[
\text{RESULT} \leftarrow \pi_{\text{FNAME, MINIT, LNAME, DNAME}}(\text{TEMP})
\]

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in \(\Join \), R S; if no matching tuple is found in S, then the attributes of S in the join result are filled or "padded" with null values. A similar operation, RIGHT OUTER JOIN, denoted by \(\text{RIGHT OUTER JOIN} \), keeps every tuple in the second, or right, relation S in the result of R S. A third operation, FULL OUTER JOIN, denoted by \(\text{FULL OUTER JOIN} \), keeps all tuples in both the left and the right relations when no matching tuples are found, padding them with null values as needed.

RELATIONAL DATABASE DESIGN USING ER-TO-RELATIONAL MAPPING

We now describe the steps of an algorithm for ER-to-relational mapping. We will use the COMPANY database example to illustrate the mapping procedure. The COMPANY ER schema is shown again in Figure A, and the corresponding COMPANY relational database schema is shown in Figure B to illustrate the mapping steps.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E. Include only the simple component attributes of a composite attribute. Choose one of the key attributes of E as primary key for R. If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R. In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in Figure B to correspond to the regular entity types EMPLOYEE, DEPARTMENT, and PROJECT from Figure A. The foreign key and relationship attributes, if any, are not included yet; they will be added during subsequent steps. These include the attributes SUPERSSN and DNO of EMPLOYEE, MGRSSN and MGRSTARTDATE of DEPARTMENT, and DNUM of PROJECT. In our example, we choose SSN, DNUMBER, and PNUMBER as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT.
The relations that are created from the mapping of entity types are sometimes called entity relations because each tuple (row) represents an entity instance.

Step 2: Mapping of Weak Entity Types: For each weak entity type \(W \) in the ER schema with owner entity type \(E \), create a relation \(R \) and include all simple attributes of \(W \), as attributes of \(R \). In addition, include the primary key attribute that correspond to the owner entity type(s) as foreign key attributes of \(R \); this takes care of the identifying relationship type of \(W \). The primary key of \(R \) is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type \(W \), if any.

In our example, we create the relation \(\text{DEPENDENT} \) in this step to correspond to the weak entity type \(\text{DEPENDENT} \). We include the primary key \(\text{SSN} \) of the \(\text{EMPLOYEE} \) relation—which corresponds to the owner entity type—as a foreign key attribute of \(\text{DEPENDENT} \); we renamed it \(\text{ESSN} \), although this is not necessary.
primary key of the \textsc{dependent} relation is the combination \{\textsc{essn}, \textsc{dependent_name}\} because \textsc{dependent_name} is the partial key of \textsc{dependent}.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 relationship type \(R\) in the ER schema, identify the relations \(S\) and \(T\) that correspond to the entity types participating in \(R\). There are three possible approaches: (1) the foreign key approach, (2) the merged relationship approach, and (3) the cross-reference or relationship relation approach.

1. **Foreign key approach:** Choose one of the relations-\(S\), and include as a foreign key in \(S\) the primary key of \(T\). It is better to choose an entity type with *total participation* in \(R\) in the role of \(S\). Include all the simple attributes (or simple components of composite attributes) of the 1:1 relationship type \(R\) as attributes of \(S\).

2. **Merged relation option:** An alternative mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when *both participations are total*.

Prof. Sushant. S. Sundikar

Introduction Database Management Systems
3. **Cross-reference or relationship relation option:** The third alternative is to set up a third relation R for the purpose of cross-referencing the primary keys of the two relations Sand T representing the entity types. This approach is required for binary M:N relationships. The relation R is called a relationship relation, (or sometimes a lookup table), because each tuple in R represents a relationship instance that relates one tuple from S with one tuple of T.

Step 4: Mapping of Binary 1:N Relationship Types: For each regular binary 1:N relationship type R, identify the relation S that represents the participating entity type at the N-side of the relationship type. Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R; this is done because each entity instance on the N-side is related to at most one entity instance on the 1-side of the relationship type. Include any simple attributes of the 1:N relationship type as attributes of S.

In our example, we now map the 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION from Figure A. For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO. For SUPERVISION we include the primary key of the EMPLOYEE relation as foreign key in the EMPLOYEE relation itself because the relationship is recursive and call it SUPERSSN. The CONTROLS relationship is mapped to the foreign key attribute DNUM of PROJECT, which references the primary key DNUMBER of the DEPARTMENT relation.

Step 5: Mapping of Binary M:N Relationship Types: For each binary M:N relationship type R, create a new relation S to represent R. Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S. Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S. Notice that we cannot represent an M:N relationship type by a single foreign key attribute in one of the participating relations (as we did for 1:1 or I:N relationship types) because of the M:N cardinality ratio; we must create a separate relationship relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure A by creating the relation WORKS_ON in Figure B. We include the primary keys of the PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and rename them PNO and ESSN, respectively. We also include an attribute HOURS in WORKS_ON to represent the HOURS attribute of the relationship type. The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, PNO}.

Step 6: Mapping of Multivalued Attributes: For each multivalued attribute A, create a new relation R. This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type or relationship type that has A as an attribute. The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.

In our example, we create a relation DEPT_LOCATIONS. The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign key-represents the primary key of the DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the combination of

Prof. Sushant. S. Sundikar

Introduction Database Management Systems
{DNUMBER, DLOCATION}. A separate tuple will exist in DEPT_LOCATIONS for each location that a department has.