
Chapter 8: Introduction to PL/SQL 1

Prof. Sushant S.Sundikar Introduction to Database Systems

What is PL/SQL?

PL/SQL stands for Procedural Language extension of SQL. PL/SQL is a combination of SQL along with the

procedural features of programming languages. It was developed by Oracle Corporation in the early 90’s

to enhance the capabilities of SQL.

A Simple PL/SQL Block:

Each PL/SQL program consists of SQL and PL/SQL statements which from a PL/SQL block.

A PL/SQL Block consists of three sections:

• The Declaration section (optional).

• The Execution section (mandatory).

• The Exception (or Error) Handling section (optional).

Declaration Section:

The Declaration section of a PL/SQL Block starts with the reserved keyword DECLARE. This section is

optional and is used to declare any placeholders like variables, constants, records and cursors, which are

used to manipulate data in the execution section. Placeholders may be any of Variables, Constants and

Records, which stores data temporarily. Cursors are also declared in this section.

Execution Section:

The Execution section of a PL/SQL Block starts with the reserved keyword BEGIN and ends with END.

This is a mandatory section and is the section where the program logic is written to perform any task.

The programmatic constructs like loops, conditional statement and SQL statements from the part of

execution section.

Exception Section:

The Exception section of a PL/SQL Block starts with the reserved keyword EXCEPTION. This section is

optional. Any errors in the program can be handled in this section, so that the PL/SQL Blocks terminates

gracefully. If the PL/SQL Block contains exceptions that cannot be handled, the Block terminates

abruptly with errors. Every statement in the above three sections must end with a semicolon. PL/SQL

blocks can be nested within other PL/SQL blocks. Comments can be used to document code.

Chapter 8: Introduction to PL/SQL 2

Prof. Sushant S.Sundikar Introduction to Database Systems

This is how a sample PL/SQL Block looks.

DECLARE

 Variable declaration

BEGIN

 Program Execution

EXCEPTION

 Exception handling

END;

Advantages of PL/SQL

These are the advantages of PL/SQL.

• Block Structures: PL SQL consists of blocks of code, which can be nested within each other. Each

block forms a unit of a task or a logical module. PL/SQL Blocks can be stored in the database and

reused.

• Procedural Language Capability: PL SQL consists of procedural language constructs such as

conditional statements (if else statements) and loops like (FOR loops).

• Better Performance: PL SQL engine processes multiple SQL statements simultaneously as a

single block, thereby reducing network traffic.

• Error Handling: PL/SQL handles errors or exceptions effectively during the execution of a PL/SQL

program. Once an exception is caught, specific actions can be taken depending upon the type of

the exception or it can be displayed to the user with a message.

PL/SQL Placeholders

Placeholders are temporary storage area. Placeholders can be any of Variables, Constants and Records.

Oracle defines placeholders to store data temporarily, which are used to manipulate data during the

execution of a PL SQL block. Depending on the kind of data you want to store, you can define

placeholders with a name and a datatype. Few of the datatypes used to define placeholders are as given

below. Number (n,m) , Char (n) , Varchar2 (n) , Date , Long , Long raw, Raw, Blob, Clob, Nclob, Bfile

PL/SQL Variables

These are placeholders that store the values that can change through the PL/SQL Block.

The General Syntax to declare a variable is:

variable_name datatype [NOT NULL := value];

Chapter 8: Introduction to PL/SQL 3

Prof. Sushant S.Sundikar Introduction to Database Systems

• variable_name is the name of the variable.

• datatype is a valid PL/SQL datatype.

• NOT NULL is an optional specification on the variable.

• value or DEFAULT valueis also an optional specification, where you can initialize a variable.

Each variable declaration is a separate statement and must be terminated by a semicolon. For example,

if you want to store the current salary of an employee, you can use a variable.

DECLARE
salary number (6);

* “salary” is a variable of datatype number and of length 6.

When a variable is specified as NOT NULL, you must initialize the variable when it is declared. For

example: The below example declares two variables, one of which is a not null.

DECLARE
salary number(4);
dept varchar2(10) NOT NULL := “HR Dept”;

The value of a variable can change in the execution or exception section of the PL/SQL Block. We can

assign values to variables in the two ways given below.

1) We can directly assign values to variables. The General Syntax is:

 variable_name:= value;

2) We can assign values to variables directly from the database columns by using a SELECT.. INTO

statement. The General Syntax is:

SELECT column_name

INTO variable_name

FROM table_name

[WHERE condition];

Example: The below program will get the salary of an employee with id '1116' and display it on the

screen.

DECLARE
 var_salary number(6);
 var_emp_id number(6) = 1116;
BEGIN
 SELECT salary
 INTO var_salary
 FROM employee
 WHERE emp_id = var_emp_id;

Chapter 8: Introduction to PL/SQL 4

Prof. Sushant S.Sundikar Introduction to Database Systems

 dbms_output.put_line(var_salary);
 dbms_output.put_line('The employee ' || var_emp_id || ' has salary ' ||
var_salary);
END;
/

NOTE: The backward slash '/' in the above program indicates to execute the above PL/SQL Block.

Scope of Variables

PL/SQL allows the nesting of Blocks within Blocks i.e, the Execution section of an outer block can contain

inner blocks. Therefore, a variable which is accessible to an outer Block is also accessible to all nested

inner Blocks. The variables declared in the inner blocks are not accessible to outer blocks. Based on their

declaration we can classify variables into two types.

• Local variables - These are declared in a inner block and cannot be referenced by outside Blocks.

• Global variables - These are declared in a outer block and can be referenced by its itself and by

its inner blocks.

For Example: In the below example we are creating two variables in the outer block and assigning their

product to the third variable created in the inner block. The variable 'var_mult' is declared in the inner

block, so cannot be accessed in the outer block i.e. it cannot be accessed after line 11. The variables

'var_num1' and 'var_num2' can be accessed anywhere in the block.

1> DECLARE
2> var_num1 number;
3> var_num2 number;
4> BEGIN
5> var_num1 := 100;
6> var_num2 := 200;
7> DECLARE
8> var_mult number;
9> BEGIN
10> var_mult := var_num1 * var_num2;
11> END;
12> END;
13> /

PL/SQL Constants

As the name implies a constant is a value used in a PL/SQL Block that remains unchanged throughout

the program. A constant is a user-defined literal value. You can declare a constant and use it instead of

actual value.

For example: If you want to write a program which will increase the salary of the employees by 25%, you

can declare a constant and use it throughout the program. Next time when you want to increase the

salary again you can change the value of the constant which will be easier than changing the actual

value throughout the program.

Chapter 8: Introduction to PL/SQL 5

Prof. Sushant S.Sundikar Introduction to Database Systems

The General Syntax to declare a constant is:

constant_name CONSTANT datatype := VALUE;

• constant_name is the name of the constant i.e. similar to a variable name.

• The word CONSTANT is a reserved word and ensures that the value does not change.

• VALUE - It is a value which must be assigned to a constant when it is declared. You cannot assign

a value later.

For example, to declare salary_increase, you can write code as follows:

DECLARE

salary_increase CONSTANT number (3) := 10;

You must assign a value to a constant at the time you declare it. If you do not assign a value to a

constant while declaring it and try to assign a value in the execution section, you will get a error. If you

execute the below Pl/SQL block you will get error.

DECLARE

 salary_increase CONSTANT number(3);

BEGIN

 salary_increase := 100;

 dbms_output.put_line (salary_increase);

END;

PL/SQL Records

What are records?

Records are another type of datatypes which oracle allows to be defined as a placeholder. Records are

composite datatypes, which means it is a combination of different scalar datatypes like char, varchar,

number etc. Each scalar data types in the record holds a value. A record can be visualized as a row of

data. It can contain all the contents of a row.

Declaring a record:

To declare a record, you must first define a composite datatype; then declare a record for that type.

The General Syntax to define a composite datatype is:

TYPE record_type_name IS RECORD
(first_col_name column_datatype,
second_col_name column_datatype, ...);

Chapter 8: Introduction to PL/SQL 6

Prof. Sushant S.Sundikar Introduction to Database Systems

• record_type_name – it is the name of the composite type you want to define.

• first_col_name, second_col_name, etc.,- it is the names the fields/columns within the record.

• column_datatype defines the scalar datatype of the fields.

There are different ways you can declare the datatype of the fields.

1) You can declare the field in the same way as you declare the fieds while creating the table.

2) If a field is based on a column from database table, you can define the field_type as follows:

col_name table_name.column_name%type;

By declaring the field datatype in the above method, the datatype of the column is dynamically applied

to the field. This method is useful when you are altering the column specification of the table, because

you do not need to change the code again.

NOTE: You can use also %type to declare variables and constants.

The General Syntax to declare a record of a uer-defined datatype is:

record_name record_type_name;

The following code shows how to declare a record called employee_rec based on a user-defined type.

DECLARE
TYPE employee_type IS RECORD
(employee_id number(5),
 employee_first_name varchar2(25),
 employee_last_name employee.last_name%type,
 employee_dept employee.dept%type);
 employee_salary employee.salary%type;
 employee_rec employee_type;

If all the fields of a record are based on the columns of a table, we can declare the record as follows:

record_name table_name%ROWTYPE;

For example, the above declaration of employee_rec can as follows:

DECLARE
 employee_rec employee%ROWTYPE;

The advantages of declaring the record as a ROWTYPE are:

1) You do not need to explicitly declare variables for all the columns in a table.

2) If you alter the column specification in the database table, you do not need to update the code.

The disadvantage of declaring the record as a ROWTYPE is:

1) When u create a record as a ROWTYPE, fields will be created for all the columns in the table and

memory will be used to create the datatype for all the fields. So use ROWTYPE only when you are using

all the columns of the table in the program.

Chapter 8: Introduction to PL/SQL 7

Prof. Sushant S.Sundikar Introduction to Database Systems

NOTE: When you are creating a record, you are just creating a datatype, similar to creating a variable.

You need to assign values to the record to use them.

The following table consolidates the different ways in which you can define and declare a pl/sql record.

Syntax Description

TYPE record_type_name IS RECORD

(column_name1 datatype, column_name2

datatype, ...);

Define a composite datatype, where each

field is scalar.

col_name table_name.column_name%type; Dynamically define the datatype of a

column based on a database column.

record_name record_type_name; Declare a record based on a user-defined

type.

record_name table_name%ROWTYPE; Dynamically declare a record based on an

entire row of a table. Each column in the

table corresponds to a field in the record.

Passing Values To and From a Record

When you assign values to a record, you actually assign values to the fields within it. The General Syntax

to assign a value to a column within a record direclty is:

record_name.col_name := value;

If you used %ROWTYPE to declare a record, you can assign values as shown:

record_name.column_name := value;

We can assign values to records using SELECT Statements as shown:

SELECT col1, col2
INTO record_name.col_name1, record_name.col_name2
FROM table_name
[WHERE clause];

If %ROWTYPE is used to declare a record then you can directly assign values to the whole record instead

of each columns separately. In this case, you must SELECT all the columns from the table into the record

as shown:

SELECT * INTO record_name
FROM table_name
[WHERE clause];

Lets see how we can get values from a record. The General Syntax to retrieve a value from a specific

field into another variable is:

Chapter 8: Introduction to PL/SQL 8

Prof. Sushant S.Sundikar Introduction to Database Systems

var_name := record_name.col_name;

The following table consolidates the different ways you can assign values to and from a record:

Syntax Usage

record_name.col_name := value; To directly assign a value to a specific

column of a record.

record_name.column_name := value; To directly assign a value to a specific

column of a record, if the record is

declared using %ROWTYPE.

SELECT col1, col2 INTO record_name.col_name1,

record_name.col_name2 FROM table_name [WHERE

clause];

To assign values to each field of a record

from the database table.

SELECT * INTO record_name FROM table_name [WHERE

clause];

To assign a value to all fields in the record

from a database table.

variable_name := record_name.col_name; To get a value from a record column

and assigning it to a variable.

 Conditional Statements in PL/SQL
As the name implies, PL/SQL supports programming language features like conditional

statements, iterative statements.

The programming constructs are similar to how you use in programming languages like Java

and C++. In this section I will provide you syntax of how to use conditional statements in PL/SQL

programming.

IF THEN ELSE STATEMENT

1)
IF condition
THEN
 statement 1;
ELSE
 statement 2;
END IF;

2)
IF condition 1
THEN
 statement 1;
 statement 2;

Chapter 8: Introduction to PL/SQL 9

Prof. Sushant S.Sundikar Introduction to Database Systems

ELSIF condtion2 THEN
 statement 3;
ELSE
 statement 4;
END IF

3)
IF condition 1
THEN
 statement 1;
 statement 2;
ELSIF condtion2 THEN
 statement 3;
ELSE
 statement 4;
END IF;

4)
IF condition1 THEN
ELSE
 IF condition2 THEN
 statement1;
 END IF;
ELSIF condition3 THEN
 statement2;
END IF;

Iterative Statements in PL/SQL

An iterative control Statements are used when we want to repeat the execution of one or more

statements for specified number of times. These are similar to those in

There are three types of loops in PL/SQL:

• Simple Loop

• While Loop

• For Loop

1) Simple Loop

A Simple Loop is used when a set of statements is to be executed at least once before the loop

terminates. An EXIT condition must be specified in the loop, otherwise the loop will get into an infinite

number of iterations. When the EXIT condition is satisfied the process exits from the loop.

The General Syntax to write a Simple Loop is:

LOOP
 statements;
 EXIT;
 {or EXIT WHEN condition;}
END LOOP;

These are the important steps to be followed while using Simple Loop.

Chapter 8: Introduction to PL/SQL 10

Prof. Sushant S.Sundikar Introduction to Database Systems

1) Initialise a variable before the loop body.

2) Increment the variable in the loop.

3) Use a EXIT WHEN statement to exit from the Loop. If you use a EXIT statement without WHEN

condition, the statements in the loop is executed only once.

2) While Loop

A WHILE LOOP is used when a set of statements has to be executed as long as a condition is true. The

condition is evaluated at the beginning of each iteration. The iteration continues until the condition

becomes false.

The General Syntax to write a WHILE LOOP is:

WHILE <condition>
 LOOP statements;
END LOOP;

Important steps to follow when executing a while loop:

1) Initialise a variable before the loop body.

2) Increment the variable in the loop.

3) EXIT WHEN statement and EXIT statements can be used in while loops but it's not done oftenly.

3) FOR Loop

A FOR LOOP is used to execute a set of statements for a predetermined number of times. Iteration

occurs between the start and end integer values given. The counter is always incremented by 1. The

loop exits when the counter reachs the value of the end integer.

The General Syntax to write a FOR LOOP is:

FOR counter IN val1..val2
 LOOP statements;
END LOOP;

• val1 - Start integer value.

• val2 - End integer value.

Important steps to follow when executing a while loop:

1) The counter variable is implicitly declared in the declaration section, so it's not necessary to declare it

explicity.

2) The counter variable is incremented by 1 and does not need to be incremented explicitly.

3) EXIT WHEN statement and EXIT statements can be used in FOR loops but it's not done oftenly.

�OTE: The above Loops are explained with a example when dealing with Explicit Cursors.

Chapter 8: Introduction to PL/SQL 11

Prof. Sushant S.Sundikar Introduction to Database Systems

What are Cursors?

A cursor is a temporary work area created in the system memory when a SQL statement is executed. A

cursor contains information on a select statement and the rows of data accessed by it. This temporary

work area is used to store the data retrieved from the database, and manipulate this data. A cursor can

hold more than one row, but can process only one row at a time. The set of rows the cursor holds is

called the active set.

There are two types of cursors in PL/SQL:

Implicit cursors:

These are created by default when DML statements like, INSERT, UPDATE, and DELETE statements are

executed. They are also created when a SELECT statement that returns just one row is executed.

Explicit cursors:

They must be created when you are executing a SELECT statement that returns more than one row.

Even though the cursor stores multiple records, only one record can be processed at a time, which is

called as current row. When you fetch a row the current row position moves to next row.

Both implicit and explicit cursors have the same functionality, but they differ in the way they are

accessed.

Stored Procedures

What is a Stored Procedure?

A stored procedure or in simple a proc is a named PL/SQL block which performs one or more specific

task. This is similar to a procedure in other programming languages. A procedure has a header and a

body. The header consists of the name of the procedure and the parameters or variables passed to the

procedure. The body consists or declaration section, execution section and exception section similar to a

general PL/SQL Block. A procedure is similar to an anonymous PL/SQL Block but it is named for repeated

usage.

We can pass parameters to procedures in three ways.

1) IN-parameters

2) OUT-parameters

3) IN OUT-parameters

A procedure may or may not return any value.

General Syntax to create a procedure is:

CREATE [OR REPLACE] PROCEDURE proc_name [list of parameters]
IS
 Declaration section
BEGIN
 Execution section

Chapter 8: Introduction to PL/SQL 12

Prof. Sushant S.Sundikar Introduction to Database Systems

EXCEPTION
 Exception section
END;

IS - marks the beginning of the body of the procedure and is similar to DECLARE in anonymous PL/SQL

Blocks. The code between IS and BEGIN forms the Declaration section.

The syntax within the brackets [] indicate they are optional. By using CREATE OR REPLACE together the

procedure is created if no other procedure with the same name exists or the existing procedure is

replaced with the current code.

The below example creates a procedure ‘employer_details’ which gives the details of the employee.

1> CREATE OR REPLACE PROCEDURE employer_details
2> IS
3> CURSOR emp_cur IS
4> SELECT first_name, last_name, salary FROM emp_tbl;
5> emp_rec emp_cur%rowtype;
6> BEGIN
7> FOR emp_rec in sales_cur
8> LOOP
9> dbms_output.put_line(emp_cur.first_name || ' ' ||emp_cur.last_name
10> || ' ' ||emp_cur.salary);
11> END LOOP;
12>END;
13> /

How to execute a Stored Procedure?

There are two ways to execute a procedure.

1) From the SQL prompt.

 EXECUTE [or EXEC] procedure_name;

2) Within another procedure – simply use the procedure name.

 procedure_name;

NOTE: In the examples given above, we are using backward slash ‘/’ at the end of the program. This

indicates the oracle engine that the PL/SQL program has ended and it can begin processing the

statements.

PL/SQL Functions

What is a Function in PL/SQL?

A function is a named PL/SQL Block which is similar to a procedure. The major difference between a

procedure and a function is, a function must always return a value, but a procedure may or may not

return a value.

The General Syntax to create a function is:

Chapter 8: Introduction to PL/SQL 13

Prof. Sushant S.Sundikar Introduction to Database Systems

CREATE [OR REPLACE] FUNCTION function_name [parameters]
RETURN return_datatype;
IS
Declaration_section
BEGIN
Execution_section
Return return_variable;
EXCEPTION
exception section
Return return_variable;
END;

1) Return Type: The header section defines the return type of the function. The return datatype can be

any of the oracle datatype like varchar, number etc.

2) The execution and exception section both should return a value which is of the datatype defined in

the header section.

For example, let’s create a frunction called ''employer_details_func' similar to the one created in stored

proc

1> CREATE OR REPLACE FUNCTION employer_details_func
2> RETURN VARCHAR(20);
3> IS
5> emp_name VARCHAR(20);
6> BEGIN
7> SELECT first_name INTO emp_name
8> FROM emp_tbl WHERE empID = '100';
9> RETURN emp_name;
10> END;
11> /

In the example we are retrieving the ‘first_name’ of employee with empID 100 to variable ‘emp_name’.

The return type of the function is VARCHAR which is declared in line no 2.

The function returns the 'emp_name' which is of type VARCHAR as the return value in line no 9.

How to execute a PL/SQL Function?

A function can be executed in the following ways.

1) Since a function returns a value we can assign it to a variable.

employee_name := employer_details_func;

If ‘employee_name’ is of datatype varchar we can store the name of the employee by assigning the

return type of the function to it.

2) As a part of a SELECT statement

SELECT employer_details_func FROM dual;

3) In a PL/SQL Statements like,

Chapter 8: Introduction to PL/SQL 14

Prof. Sushant S.Sundikar Introduction to Database Systems

dbms_output.put_line(employer_details_func);

This line displays the value returned by the function.

Parameters in Procedure and Functions

How to pass parameters to Procedures and Functions in PL/SQL ?

In PL/SQL, we can pass parameters to procedures and functions in three ways.

1) IN type parameter: These types of parameters are used to send values to stored procedures.

2) OUT type parameter: These types of parameters are used to get values from stored procedures. This

is similar to a return type in functions.

3) IN OUT parameter: These types of parameters are used to send values and get values from stored

procedures.

NOTE: If a parameter is not explicitly defined a parameter type, then by default it is an IN type

parameter.

1) IN parameter:

This is similar to passing parameters in programming languages. We can pass values to the stored

procedure through these parameters or variables. This type of parameter is a read only parameter. We

can assign the value of IN type parameter to a variable or use it in a query, but we cannot change its

value inside the procedure.

The General syntax to pass a IN parameter is

CREATE [OR REPLACE] PROCEDURE procedure_name (
 param_name1 IN datatype, param_name12 IN datatype ...)

• param_name1, param_name2... are unique parameter names.

• datatype - defines the datatype of the variable.

• IN - is optional, by default it is a IN type parameter.

2) OUT Parameter:

The OUT parameters are used to send the OUTPUT from a procedure or a function. This is a write-only

parameter i.e, we cannot pass values to OUT paramters while executing the stored procedure, but we

can assign values to OUT parameter inside the stored procedure and the calling program can recieve this

output value.

The General syntax to create an OUT parameter is

CREATE [OR REPLACE] PROCEDURE proc2 (param_name OUT datatype)

Chapter 8: Introduction to PL/SQL 15

Prof. Sushant S.Sundikar Introduction to Database Systems

The parameter should be explicity declared as OUT parameter.

3) IN OUT Parameter:

The IN OUT parameter allows us to pass values into a procedure and get output values from the

procedure. This parameter is used if the value of the IN parameter can be changed in the calling

program.

By using IN OUT parameter we can pass values into a parameter and return a value to the calling

program using the same parameter. But this is possible only if the value passed to the procedure and

output value have a same datatype. This parameter is used if the value of the parameter will be changed

in the procedure.

The General syntax to create an IN OUT parameter is

CREATE [OR REPLACE] PROCEDURE proc3 (param_name IN OUT datatype)

The below examples show how to create stored procedures using the above three types of parameters.

Example1:

Using IN and OUT parameter:

Let’s create a procedure which gets the name of the employee when the employee id is passed.

1> CREATE OR REPLACE PROCEDURE emp_name (id IN NUMBER, emp_name OUT NUMBER)
2> IS
3> BEGIN
4> SELECT first_name INTO emp_name
5> FROM emp_tbl WHERE empID = id;
6> END;
7> /

We can call the procedure ‘emp_name’ in this way from a PL/SQL Block.

1> DECLARE
2> empName varchar(20);
3> CURSOR id_cur SELECT id FROM emp_ids;
4> BEGIN
5> FOR emp_rec in id_cur
6> LOOP
7> emp_name(emp_rec.id, empName);
8> dbms_output.putline('The employee ' || empName || ' has id ' || emp-
rec.id);
9> END LOOP;
10> END;
11> /

Chapter 8: Introduction to PL/SQL 16

Prof. Sushant S.Sundikar Introduction to Database Systems

In the above PL/SQL Block

In line no 3; we are creating a cursor ‘id_cur’ which contains the employee id.

In line no 7; we are calling the procedure ‘emp_name’, we are passing the ‘id’ as IN parameter and

‘empName’ as OUT parameter.

In line no 8; we are displaying the id and the employee name which we got from the procedure

‘emp_name’.

Example 2:

Using IN OUT parameter in procedures:

1> CREATE OR REPLACE PROCEDURE emp_salary_increase
2> (emp_id IN emptbl.empID%type, salary_inc IN OUT emptbl.salary%type)
3> IS
4> tmp_sal number;
5> BEGIN
6> SELECT salary
7> INTO tmp_sal
8> FROM emp_tbl
9> WHERE empID = emp_id;
10> IF tmp_sal between 10000 and 20000 THEN
11> salary_inout := tmp_sal * 1.2;
12> ELSIF tmp_sal between 20000 and 30000 THEN
13> salary_inout := tmp_sal * 1.3;
14> ELSIF tmp_sal > 30000 THEN
15> salary_inout := tmp_sal * 1.4;
16> END IF;
17> END;
18> /

The below PL/SQL block shows how to execute the above 'emp_salary_increase' procedure.

1> DECLARE
2> CURSOR updated_sal is
3> SELECT empID,salary
4> FROM emp_tbl;
5> pre_sal number;
6> BEGIN
7> FOR emp_rec IN updated_sal LOOP
8> pre_sal := emp_rec.salary;
9> emp_salary_increase(emp_rec.empID, emp_rec.salary);
10> dbms_output.put_line('The salary of ' || emp_rec.empID ||
11> ' increased from '|| pre_sal || ' to '||emp_rec.salary);
12> END LOOP;
13> END;
14> /

Exception Handling

In this section we will discuss about the following,

1) What is Exception Handling.

Chapter 8: Introduction to PL/SQL 17

Prof. Sushant S.Sundikar Introduction to Database Systems

2) Structure of Exception Handling.

3) Types of Exception Handling.

1) What is Exception Handling?

PL/SQL provides a feature to handle the Exceptions which occur in a PL/SQL Block known as exception

Handling. Using Exception Handling we can test the code and avoid it from exiting abruptly. When an

exception occurs a messages which explains its cause is recieved.

PL/SQL Exception message consists of three parts.

1) Type of Exception

2) An Error Code

3) A message

By Handling the exceptions we can ensure a PL/SQL block does not exit abruptly.

2) Structure of Exception Handling.

The General Syntax for coding the exception section

 DECLARE
 Declaration section
 BEGIN
 Exception section
 EXCEPTION
 WHEN ex_name1 THEN
 -Error handling statements
 WHEN ex_name2 THEN
 -Error handling statements
 WHEN Others THEN
 -Error handling statements
END;

General PL/SQL statments can be used in the Exception Block.

When an exception is raised, Oracle searches for an appropriate exception handler in the exception

section. For example in the above example, if the error raised is 'ex_name1 ', then the error is handled

according to the statements under it. Since, it is not possible to determine all the possible runtime

errors during testing fo the code, the 'WHEN Others' exception is used to manage the exceptions that

are not explicitly handled. Only one exception can be raised in a Block and the control does not return to

the Execution Section after the error is handled.

If there are nested PL/SQL blocks like this.

 DELCARE
 Declaration section
 BEGIN
 DECLARE
 Declaration section

Chapter 8: Introduction to PL/SQL 18

Prof. Sushant S.Sundikar Introduction to Database Systems

 BEGIN
 Execution section
 EXCEPTION
 Exception section
 END;
 EXCEPTION
 Exception section
 END;

In the above case, if the exception is raised in the inner block it should be handled in the exception block

of the inner PL/SQL block else the control moves to the Exception block of the next upper PL/SQL Block.

If none of the blocks handle the exception the program ends abruptly with an error.

3) Types of Exception.

There are 3 types of Exceptions.

a) Named System Exceptions

b) Unnamed System Exceptions

c) User-defined Exceptions

a) Named System Exceptions

System exceptions are automatically raised by Oracle, when a program violates a RDBMS rule. There are

some system exceptions which are raised frequently, so they are pre-defined and given a name in Oracle

which are known as Named System Exceptions.

For example: NO_DATA_FOUND and ZERO_DIVIDE are called Named System exceptions.

Named system exceptions are:

1) Not Declared explicitly,

2) Raised implicitly when a predefined Oracle error occurs,

3) caught by referencing the standard name within an exception-handling routine.

Exception Name Reason Error Number

CURSOR_ALREADY_OPEN When you open a cursor that is already open. ORA-06511

INVALID_CURSOR When you perform an invalid operation on a

cursor like closing a cursor, fetch data from a

cursor that is not opened.

ORA-01001

NO_DATA_FOUND When a SELECT...INTO clause does not return any

row from a table.

ORA-01403

TOO_MANY_ROWS When you SELECT or fetch more than one row

into a record or variable.

ORA-01422

ZERO_DIVIDE When you attempt to divide a number by zero. ORA-01476

Chapter 8: Introduction to PL/SQL 19

Prof. Sushant S.Sundikar Introduction to Database Systems

For Example: Suppose a NO_DATA_FOUND exception is raised in a proc, we can write a code to handle

the exception as given below.

BEGIN
 Execution section
EXCEPTION
WHEN NO_DATA_FOUND THEN
 dbms_output.put_line ('A SELECT...INTO did not return any row.');
 END;

b) Unnamed System Exceptions

Those system exception for which oracle does not provide a name is known as unamed system

exception. These exception do not occur frequently. These Exceptions have a code and an associated

message.

There are two ways to handle unnamed sysyem exceptions:

1. By using the WHEN OTHERS exception handler, or

2. By associating the exception code to a name and using it as a named exception.

We can assign a name to unnamed system exceptions using a Pragma called EXCEPTION_INIT.

EXCEPTION_INIT will associate a predefined Oracle error number to a programmer_defined exception

name.

Steps to be followed to use unnamed system exceptions are

• They are raised implicitly.

• If they are not handled in WHEN Others they must be handled explicity.

• To handle the exception explicity, they must be declared using Pragma EXCEPTION_INIT as given above

and handled referecing the user-defined exception name in the exception section.

The general syntax to declare unnamed system exception using EXCEPTION_INIT is:

DECLARE
 exception_name EXCEPTION;
 PRAGMA
 EXCEPTION_INIT (exception_name, Err_code);
BEGIN
Execution section
EXCEPTION
 WHEN exception_name THEN
 handle the exception
END;

For Example: Lets consider the product table and order_items table from sql joins.

Here product_id is a primary key in product table and a foreign key in order_items table.

If we try to delete a product_id from the product table when it has child records in order_id table an

Chapter 8: Introduction to PL/SQL 20

Prof. Sushant S.Sundikar Introduction to Database Systems

exception will be thrown with oracle code number -2292.

We can provide a name to this exception and handle it in the exception section as given below.

 DECLARE
 Child_rec_exception EXCEPTION;
 PRAGMA
 EXCEPTION_INIT (Child_rec_exception, -2292);
BEGIN
 Delete FROM product where product_id= 104;
EXCEPTION
 WHEN Child_rec_exception
 THEN Dbms_output.put_line('Child records are present for this
product_id.');
END;
/

c) User-defined Exceptions

Apart from sytem exceptions we can explicity define exceptions based on business rules. These are

known as user-defined exceptions.

Steps to be followed to use user-defined exceptions:

• They should be explicitly declared in the declaration section.

• They should be explicitly raised in the Execution Section.

• They should be handled by referencing the user-defined exception name in the exception section.

For Example: Lets consider the product table and order_items table from sql joins to explain user-

defined exception.

Lets create a business rule that if the total no of units of any particular product sold is more than 20,

then it is a huge quantity and a special discount should be provided.

DECLARE
 huge_quantity EXCEPTION;
 CURSOR product_quantity is
 SELECT p.product_name as name, sum(o.total_units) as units
 FROM order_tems o, product p
 WHERE o.product_id = p.product_id;
 quantity order_tems.total_units%type;
 up_limit CONSTANT order_tems.total_units%type := 20;
 message VARCHAR2(50);
BEGIN
 FOR product_rec in product_quantity LOOP
 quantity := product_rec.units;
 IF quantity > up_limit THEN
 message := 'The number of units of product ' || product_rec.name ||
 ' is more than 20. Special discounts should be provided.
 Rest of the records are skipped. '
 RAISE huge_quantity;
 ELSIF quantity < up_limit THEN
 v_message:= 'The number of unit is below the discount limit.';
 END IF;
 dbms_output.put_line (message);

Chapter 8: Introduction to PL/SQL 21

Prof. Sushant S.Sundikar Introduction to Database Systems

 END LOOP;
 EXCEPTION
 WHEN huge_quantity THEN
 dbms_output.put_line (message);
 END;
/

RAISE_APPLICATION_ERROR ()

RAISE_APPLICATION_ERROR is a built-in procedure in oracle which is used to display the user-defined

error messages along with the error number whose range is in between -20000 and -20999.

Whenever a message is displayed using RAISE_APPLICATION_ERROR, all previous transactions which are

not committed within the PL/SQL Block are rolled back automatically (i.e. change due to INSERT,

UPDATE, or DELETE statements).

RAISE_APPLICATION_ERROR raises an exception but does not handle it.

RAISE_APPLICATION_ERROR is used for the following reasons,

a) to create a unique id for an user-defined exception.

b) to make the user-defined exception look like an Oracle error.

The General Syntax to use this procedure is:

RAISE_APPLICATION_ERROR (error_number, error_message);

• The Error number must be between -20000 and -20999

• The Error_message is the message you want to display when the error occurs.

Steps to be folowed to use RAISE_APPLICATION_ERROR procedure:

1. Declare a user-defined exception in the declaration section.

2. Raise the user-defined exception based on a specific business rule in the execution section.

3. Finally, catch the exception and link the exception to a user-defined error number in

RAISE_APPLICATION_ERROR.

Using the above example we can display a error message using RAISE_APPLICATION_ERROR.

DECLARE
 huge_quantity EXCEPTION;
 CURSOR product_quantity is
 SELECT p.product_name as name, sum(o.total_units) as units
 FROM order_tems o, product p
 WHERE o.product_id = p.product_id;
 quantity order_tems.total_units%type;
 up_limit CONSTANT order_tems.total_units%type := 20;
 message VARCHAR2(50);
BEGIN
 FOR product_rec in product_quantity LOOP
 quantity := product_rec.units;
 IF quantity > up_limit THEN

Chapter 8: Introduction to PL/SQL 22

Prof. Sushant S.Sundikar Introduction to Database Systems

 RAISE huge_quantity;
 ELSIF quantity < up_limit THEN
 v_message:= 'The number of unit is below the discount limit.';
 END IF;
 Dbms_output.put_line (message);
 END LOOP;
 EXCEPTION
 WHEN huge_quantity THEN
 raise_application_error(-2100, 'The number of unit is above the
discount limit.');
 END;
/

What is a Trigger?

A trigger is a pl/sql block structure which is fired when a DML statements like Insert, Delete, Update is

executed on a database table. A trigger is triggered automatically when an associated DML statement is

executed.

Syntax of Triggers

The Syntax for creating a trigger is:
 CREATE [OR REPLACE] TRIGGER trigger_name
 {BEFORE | AFTER | INSTEAD OF }
 {INSERT [OR] | UPDATE [OR] | DELETE}
 [OF col_name]
 ON table_name
 [REFERENCING OLD AS o NEW AS n]
 [FOR EACH ROW]
 WHEN (condition)
 BEGIN
 --- sql statements
 END;

• CREATE [OR REPLACE] TRIGGER trigger_name - This clause creates a trigger with the given name

or overwrites an existing trigger with the same name.

• {BEFORE | AFTER | INSTEAD OF } - This clause indicates at what time should the trigger get fired.

i.e for example: before or after updating a table. INSTEAD OF is used to create a trigger on a

view. before and after cannot be used to create a trigger on a view.

• {INSERT [OR] | UPDATE [OR] | DELETE} - This clause determines the triggering event. More than

one triggering events can be used together separated by OR keyword. The trigger gets fired at

all the specified triggering event.

• [OF col_name] - This clause is used with update triggers. This clause is used when you want to

trigger an event only when a specific column is updated.

• CREATE [OR REPLACE] TRIGGER trigger_name - This clause creates a trigger with the given name

or overwrites an existing trigger with the same name.

• [ON table_name] - This clause identifies the name of the table or view to which the trigger is

associated.

• [REFERENCING OLD AS o NEW AS n] - This clause is used to reference the old and new values of

the data being changed. By default, you reference the values as :old.column_name or

:new.column_name. The reference names can also be changed from old (or new) to any other

Chapter 8: Introduction to PL/SQL 23

Prof. Sushant S.Sundikar Introduction to Database Systems

user-defined name. You cannot reference old values when inserting a record, or new values

when deleting a record, because they do not exist.

• [FOR EACH ROW] - This clause is used to determine whether a trigger must fire when each row

gets affected (i.e. a Row Level Trigger) or just once when the entire sql statement is

executed(i.e.statement level Trigger).

• WHEN (condition) - This clause is valid only for row level triggers. The trigger is fired only for

rows that satisfy the condition specified.

