

A Division of Macmillan USA
201 West 103rd St., Indianapolis, Indiana, 46290 USA

Stephen Walther

Jonathan Levine

E-Commerce
Programming
with ASP

in 21 Days

Teach Yourself

 00 0672318989 fm 3/30/00 8:21 AM Page i

Sams Teach Yourself E-Commerce
Programming with ASP in 21 Days
Copyright © 2000 by Sams
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0672318989

Library of Congress Catalog Card Number: 99-068489

Printed in the United States of America

First Printing: April, 2000

02 01 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author(s) and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

ASSOCIATE PUBLISHER

Bradley L. Jones

EXECUTIVE EDITOR

Chris Webb

DEVELOPMENT EDITOR

Kevin Howard

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Elizabeth Roberts

COPY EDITOR

Rhonda Tinch-Mize

INDEXER

Erika Millen

PROOFREADER

Jill Mazurczyk

TECHNICAL EDITOR

Jia Wang

TEAM COORDINATOR

Meggo Barthlow

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

COPYWRITER

Eric Borgert

LAYOUT TECHNICIAN

Eric S. Miller

 00 0672318989 fm 3/30/00 8:21 AM Page ii

Contents at a Glance
Introduction 1

WEEK 1 At a Glance 5

Day 1 Introduction to E-Commerce 7

Day 2 Interacting with the Customer 21

Day 3 Using Application and Session Objects in E-Commerce Applications 47

Day 4 Working with Files in Your E-Commerce Application 69

Day 5 Building Your Product Catalog Database 89

Day 6 Displaying Your Products 119

Day 7 Searching for Products 143

WEEK 1 In Review 163

WEEK 2 At a Glance 167

Day 8 Building the Transaction Databases 169

Day 9 Building the Shopping Cart 191

Day 10 Checking Out 213

Day 11 Working with Credit Cards 237

Day 12 Letting Customers Track Their Orders 259

Day 13 Creating a Subscription-Based Site 273

Day 14 Customizing the Shopping Experience 297

WEEK 2 In Review 319

WEEK 3 At a Glance 323

Day 15 Securing Your Store 325

Day 16 Debugging Your E-Commerce Applications 345

Day 17 Administering Your Store Remotely with ASPs 377

Day 18 Using Email from Active Server Pages 409

Day 19 Generating Store Reports 441

 00 0672318989 fm 3/30/00 8:21 AM Page iii

Day 20 Working with Wallets 467

Day 21 Promoting Your Site and Managing Banner Advertising 495

WEEK 3 In Review 519

Appendix A Quiz Answers 523

Appendix B Frequently Asked Questions About Active Server Pages 545

Appendix C SQL Reference 559

Index 571

 00 0672318989 fm 3/30/00 8:21 AM Page iv

Contents
Introduction 1

WEEK 1 At A Glance 5

DAY 1 Introduction to E-Commerce 7

What Is E-Commerce? ..8
Microsoft Technologies for E-Commerce ..9

Microsoft Personal Web Server ..10
Microsoft Internet Information Server ..10
Microsoft Access ..11
Microsoft SQL Server ..11
Microsoft Visual InterDev ..12

What Is an ASP Page? ..13
Active Server Pages Contain Scripts ..14
Active Server Pages Contain Objects and Components15
Active Server Pages and Database Access ..17

Summary ..17
Q&A ..18
Workshop ..18

Quiz ..18

DAY 2 Interacting with the Customer 21

Working with the Response Object ..22
Outputting Long Strings ..23
Displaying Special Characters ..23
Displaying Quotation Marks ..24
Using the <%= and %> Output Delimiters ..26
Ending Script Execution with the Response Object26

Working with the Request Object ..27
Using Query Strings ..28
Using the Form Collection ..31

Retrieving Query String and Form Variables ..38
Working with Server Variables ..39
Retrieving the Customer’s Internet Address ..41

Summary ..43
Q&A ..43
Workshop ..44

Quiz ..44
Exercise ..45

 00 0672318989 fm 3/30/00 8:21 AM Page v

DAY 3 Using Application and Session Objects in E-Commerce
Applications 47

Tracking Customers with Cookies ..48
Adding a Cookie to a Customer’s Browser ..50
Reading Cookies from a Customer’s Browser ..51

Tracking Customers with Session Variables ..52
Storing Arrays in Session Variables ..54
Tracking a Session with a SessionID ..56
Ending a User Session ..56

Using Application Variables ..57
Storing Arrays in Application Variables ..60
Removing Application Variables From Memory ..61

Using the Global.asa File ..62
Summary ..65
Q&A ..66
Workshop ..67

Quiz ..67
Exercise ..68

DAY 4 Working with Files in Your E-Commerce Application 69

Including Files in an ASP Page ..69
Dynamically Including Files ..73

Using File Redirection ..75
Using the File Access Component ..77

Managing Text Files ..81
Displaying the Contents of a Folder ..83
Sample Application: Recording Marketing Data ..84

Summary ..85
Q&A ..86
Workshop ..86

Quiz ..87
Exercise ..87

DAY 5 Building Your Product Catalog 89

Creating the Store Database ..89
Creating the Products Table ..91
Connecting to a Database ..93
Adding Products to the Products Table ..95

Creating the AddProducts Form ..97
A Problem with Databases and Quotation Marks ..102

Updating Product Information in the Products Table ..104
Displaying the List of Products to Update ..106
Creating the updateProduct Form ..109

vi Sams Teach Yourself E-Commerce Programming with ASP in 21 Days

 00 0672318989 fm 3/30/00 8:21 AM Page vi

A Problem with HTML Forms and Quotation Marks112
Updating a Database Record ..113

Summary ..117
Q&A ..117
Workshop ..118

Quiz ..118
Exercises ..118

DAY 6 Displaying Your Products 119

Using Recordsets ..119
Using the SQL SELECT Statement ..121
Recordset Cursor Types ..122

Displaying Products ..123
Selecting Product Categories ..125
Displaying the List of Products ..126
Creating the Main Store Page ..128
Displaying Product Details ..130
Paging Through A Recordset ..134

Making Your Store More Scalable ..137
Summary ..140
Q&A ..140
Workshop ..140

Quiz ..140
Exercise ..141

DAY 7 Searching for Products 143

Displaying a Rotating List of Featured Products ..143
Selecting the List of Featured Products ..144
Retrieving the List of Featured Products ..146
Optimizing the Display of Featured Products ..149

Creating a Search Page ..152
Optimizing the Search Page ..157

Creating Indexable Web Pages ..158
Summary ..160
Q&A ..160
Workshop ..160

Quiz ..160
Exercise ..161

WEEK 1 In Review 163

Bonus Project ..163
Creating a Customer Feedback Form ..163

Contents vii

 00 0672318989 fm 3/30/00 8:21 AM Page vii

WEEK 2 At A Glance 167

DAY 8 Building the Transaction Databases 169

The Transaction Database Tables ..170
Creating the Users Database Table ..171
Registering Users ..172

Creating the cart.asp Page ..172
Creating the register.asp Page ..174
The Registration Functions ..176

Gracefully Handling Form Errors ..181
Using the Secure Sockets Layer ..183

Enabling SSL on Your Web Server ..185
Applying for a Server Certificate ..186
Installing Your Server Certificate ..187
Using SSL in an ASP Page ..187

Summary ..188
Q&A ..189
Workshop ..189

Quiz ..189
Exercise ..190

DAY 9 Building the Shopping Cart 191

Using Session Variables to Create
a Shopping Cart ..191

Creating the SessionCart.asp Page ..193
Using Native ADO Methods ..200

Creating Updateable Recordsets ..200
Adding New Records with AddNew ..201
Updating Existing Records ..202
Deleting Records with Delete ..203

Using a Database Table to Create
a Shopping Cart ..204

Creating the addCart.asp Page ..206
Summary ..211
Q&A ..211
Workshop ..212

Quiz ..212
Exercise ..212

DAY 10 Checking Out 213

Understanding Transactions ..213
ASP Page Transactions ..214
ADO Transactions ..218
Database Transactions ..219

viii Sams Teach Yourself E-Commerce Programming with ASP in 21 Days

 00 0672318989 fm 3/30/00 8:21 AM Page viii

Completing the Order ..219
Retrieving Address and Payment Information ..220
Updating Address and Payment Information ..221
Transferring the Shopping Cart ..224

Processing Orders ..226
Summary ..234
Q&A ..234
Workshop ..235

Quiz ..235
Exercises ..235

DAY 11 Working with Credit Cards 237

Methods of Processing Credit Cards ..237
Offsite Payment Processors ..238
Payment Terminal Solutions ..239
Component-Based Solutions ..239
Choosing a Method of Processing Credit Cards ..240

Preparing for CyberCash ..240
Opening a Credit Card Merchant Account ..241
Registering at CyberCash ..242
Installing the CyberCash Software ..243

Authorizing a Credit Card Transaction ..245
Integrating the Authorization Script into Your Store248

Settling Credit Card Transactions ..254
Summary ..256
Q&A ..256
Workshop ..257

Quiz ..257

DAY 12 Letting Customers Track Their Orders 259

Enabling Customers to Track Orders with a Web Page260
Calculating Shipping Costs ..264

Installing the iisCARTship Component ..265
iisCARTship Properties and Methods ..265
iisCARTship Component Sample Application ..269

Summary ..271
Q&A ..272
Workshop ..272

Quiz ..272

DAY 13 Creating a Subscription-Based Site 273

Using HTTP Authentication ..274
Enabling HTTP Authentication ..275
When You Should Use HTTP Authentication ..276

Contents ix

 00 0672318989 fm 3/30/00 8:21 AM Page ix

Using Database Authentication ..276
Passing Security Information From Page to Page ..285

Using Hybrid Authentication ..287
Understanding How Basic Authentication Works ..288
Forcing a Password Dialog to Appear ..288
Decoding the AUTHORIZATION Header ..290

Summary ..294
Q&A ..295
Workshop ..295

Quiz ..295

DAY 14 Customizing the Shopping Experience 297

Retrieving the Existing User Settings ..297
Creating mypage.asp ..298

Showing Past Purchases ..302
Advertising Items Your Customers Would Like ..307

Updating the Users Table for Favorites ..307
Building the favorites.asp Page ..308
Building the savefavorites.asp Page ..311
Updating the featured.asp Page ..313
Updating the default.asp Page ..315

Summary ..316
Q&A ..316
Workshop ..317

Quiz ..317
Exercise ..317

WEEK 2 In Review 319

Bonus Project ..320
Creating a Transactional Customer Feedback Form320

WEEK 3 At A Glance 323

DAY 15 Securing Your Store 325

Registering Your Own Domain ..326
Domain Names and Marketing ..326
Registering Your Domain Name Yourself ..327

Making Your Server More Secure ..329
Use NT Server or Windows 2000 Server, not NT Workstation

or Windows 2000 Professional ..329
Make Sure That the Latest Service Packs and Hotfixes Are Applied

to Your System ..330
Change the Name and Password of Your System’s Administrator

Account ..331

x Sams Teach Yourself E-Commerce Programming with ASP in 21 Days

 00 0672318989 fm 3/30/00 8:21 AM Page x

Use NTFS ..332
Use a Firewall ..334
Keep Your Server Locked Up ..334
Keep Your Server Running ..335

Protecting Your Users’ Private Information with SSL ..335
Protecting Your Database ..337
Registering with the Better Business Bureau Reliability Program338
Establishing a Privacy Policy and Joining a Privacy Seal Program339
The Better Business Bureau’s Children’s Advertising Review Unit

Guidelines ..341
Summary ..342
Q&A ..343
Workshop ..343

Quiz ..343
Exercise ..343

DAY 16 Debugging Your E-Commerce Applications 345

Keeping Your Development and Production Systems Separate346
Creating a Second IP Address ..347
Creating a Second Web Site ..349
Deploying Your Application Using Visual InterDev350

Debugging Your Application Using Visual InterDev’s Integrated Debugger354
Getting Ready to Debug ..355
Debugging a Site ..357

Debugging Your Application on a Production Server ..361
Creating and Maintaining a Session Variable for Debugging362
Using the Session-level Debugging Variable ..364
Creating a Debug Library ..366
Recovering from and Capturing Errors ..366

Capturing Errors into a Log File ..369
Testing for Scalability ..372
Summary ..373
Q&A ..374
Workshop ..375

Quiz ..375
Exercise ..375

DAY 17 Administering Your Store Remotely with ASPs 377

The IIS Administration Pages ..378
Installing the Administration Pages ..378
Securing the Administration Pages ..379
Using the Administration Pages ..384

Installing and Administering the IIS FTP Service ..385
Uploading Files to Your Site Using FTP ..387

Contents xi

 00 0672318989 fm 3/30/00 8:21 AM Page xi

Advanced Web-Based Product Catalog Maintenance ..389
How the Posting Acceptor Makes it Easier for the User and

the Programmer ..391
Uploading Pictures from addProduct.asp and updateProduct.asp396
Moving Form Processing Logic from manageProducts.asp to the New
donePost.asp ..401

Integrating the Pages into the Administration Web405
Summary ..407
Q&A ..408
Workshop ..408

Quiz ..408

DAY 18 Using Email from Active Server Pages 409

The Basics of Internet Mail ..410
Configuring the SMTP Service ..411
The Collaboration Data Objects for NT Server (CDONTS)414
Sending Email from an ASP Page ..415

The CDONTS Constants ..417
Send Yourself Email on Errors ..419
Sending New Users Email ..421
Sending HTML Mail ..423

Sending Batches of Email ..428
Selecting Customers ..429
Composing the Message ..432
Sending the Messages ..435
Doing Email Marketing ..438

Summary ..438
Q&A ..438
Workshop ..439

Quiz ..439

DAY 19 Generating Store Reports 441

Reporting on Site Usage ..441
Site Usage Logs ..443
Analyzing Your Logs ..455
Other Ways to Analyze Logs ..464

Summary ..465
Q&A ..465
Workshop ..465

Quiz ..465

DAY 20 Working with Wallets 467

Physical Commerce Versus Electronic Commerce ..468
Electronic Wallets ..469

Client-Side Wallets ..469

xii Sams Teach Yourself E-Commerce Programming with ASP in 21 Days

 00 0672318989 fm 3/30/00 8:21 AM Page xii

Server-Side Wallets ..471
General Server-Side Wallets ..472

Wallet Standards ..475
Your Own Store Wallet ..476
Accepting Information from Wallets ..492
Summary ..492
Q&A ..493
Workshop ..493

Quiz ..493
Exercises ..493

DAY 21 Promoting Your Site and Managing Banner Advertising 495

Search Engines ..496
How Do They Work? ..496
What’s the Best Way to Get Listed? ..496

Web Rings ..508
Try It Out! ..508

Banner Ads ..510
Link Exchanges ..510

Paying for Banner Ads ..513
Participating in Reward Programs ..513
Other Ways to Increase Revenue ..514

Affiliate Programs ..514
Running Your Own Advertising ..514

Summary ..517
Q&A ..517
Workshop ..517

Quiz ..518
Exercises ..518

WEEK 3 In Review 519

Bonus Project ..520
Sending Customer Feedback Acknowledgement Emails520

Appendixes

APPENDIX A Quiz Answers 523

APPENDIX B Frequently Asked Questions About Active Server Pages 545

APPENDIX C SQL Reference 559

Index 571

Contents xiii

 00 0672318989 fm 3/30/00 8:21 AM Page xiii

About the Authors
STEPHEN WALTHER is the host of Superexpert (www.superexpert.com), the community of
computer experts. He actively moderates the Active Server Pages community at
Superexpert, where you can get the answers to all your Active Server Pages questions.

He was the past Chief Technical Officer of CityAuction (recently acquired by
Ticketmaster Online-CitySearch), where he developed the auction Web site used by both
Snap! and CitySearch. Previously, he was the Chief Technical Officer of Collegescape
(acquired by Peterson’s), where he built an online college application Web site used by
over 200 colleges, including Harvard University and the Massachusetts Institute of
Technology.

He received his Bachelor of Arts from the University of California at Berkeley. He was a
Ph.D. candidate in Linguistics and Philosophy at the Massachusetts Institute of
Technology when he became involved with the World Wide Web. He can be contacted in
the Active Server Pages forum at www.superexpert.com.

JONATHAN LEVINE is a San Francisco-based strategic technology consultant. He has been
designing and building innovative software for more than 15 years.

His current consulting engagements are as “virtual CTO” for several Bay Area Internet
startups. Previously, he was Vice President, Engineering, for ePhysician, where he archi-
tected and led implementation of an ASP-based application for medical professionals.
Previously, he was Director, Engineering at PointCast, where he founded and directed the
Program Management Group, and was responsible for client deployment, content devel-
opment, and quality assurance. He also founded and directed PointCast’s International
Engineering group, and was responsible for all technical aspects of PointCast networks
in Japan, Greater China, and seven vertical markets.

From 1991–1996, Jonathan was the fourth employee of Approach Software Corporation
(later acquired by Lotus Development Corporation). At Approach and Lotus, he designed
and implemented the user interface for the critically acclaimed first two releases of
Approach for Windows and provided technical and managerial direction in developing
innovative features such as drill-downs, Approach Assistants, and context-sensitive user
interfaces.

Prior to joining Approach, Jonathan held a variety of technical positions at Oracle,
Martin-Marietta Data Systems, IBM, and the SRI-David Sarnoff Research Center. He
holds three patents on the user interfaces that he helped design while at Lotus, and has
patents pending on various aspects of the technology he designed at ePhysician. He is a
co-author of the 1996 publication, Making Sense of Java.

 00 0672318989 fm 3/30/00 8:21 AM Page xiv

Dedication
This book is dedicated to my father, Jon Walther.

- Stephen Walther

For Susan
- Jonathan Levine

Acknowledgments
I’d like to thank Ruth Johnson, who provided so much help with this book that I decided
to marry her.

- Stephen Walther

Many thanks to Chris Webb and the staff at Macmillan for their help and patience, and to
everyone at Waterside Productions. Thanks to Philipe, Owen, and Giles at Xenote for
providing the resources that allowed me to write Days 16–21. Also, thanks to my family
for encouraging me to spend most of my waking hours on researching, programming,
and writing.

A special thanks to my wife, Susan Lin, who has little interest in programming, but who
spent hours proofreading hundreds of pages of my writing on programming in ASP.
Finally, a million thanks to all the folks who spend their spare time building Web-based
resources on ASP programming: you folks are awesome, and without your hard work the
research for this book would have been much, much more difficult. Of course, I remain
solely responsible for any errors or omissions within.

- Jonathan Levine

 00 0672318989 fm 3/30/00 8:21 AM Page xv

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As a Associate Publisher for Sams, I welcome your comments. You can fax, email, or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770

Email: adv_prog@mcp.com

Mail: Bradley L. Jones
Associate Publisher
Sams
201 West 103rd Street
Indianapolis, IN 46290 USA

 00 0672318989 fm 3/30/00 8:21 AM Page xvi

Introduction
This book teaches you everything you need to know to create a Web site that generates
money. You’ll learn how to build a commercial Web site using Microsoft’s Active Server
Pages technology; the same technology used to create many of the most successful com-
mercial Web sites on the Internet including Dell Online (http://www.dell.com), Eddie
Bauer (http://www.eddiebauer.com), Nasdaq (http://www.nasdaq.com), and Barnes
and Noble (http://www.bn.com).

Each chapter in this book is presented as a lesson. In each lesson, you’ll be presented
with code samples that you can use in your own Web projects (many of these code sam-
ples are included on the CD-ROM that accompanies this book). All the lessons end with
a quiz so that you can test your knowledge of the material covered in the lesson.

In the first week of lessons, you’ll learn how to place a store on the Internet and sell
products online. You’ll begin by learning how to build Active Server Pages to display
your catalog of products. Next, you’ll learn how to create a virtual shopping cart that
customers can use to select products from your store. Finally, you’ll learn how to secure-
ly perform credit card transactions over the Internet.

In the second week, you’ll learn how to create a subscription Web site. You’ll build a
user registration system to password protect sections of your Web site. This registration
system can be used to restrict certain sections of your Web site to paying customers.

In the final week, you’ll learn several important skills for maintaining and promoting
your commercial Web site. First, you’ll learn several valuable techniques for debugging
your Web site. You’ll also learn how to remotely administer your Web site over the
Internet. Last, you’ll learn how to promote your Web site and build customer traffic
through email marketing.

What Do I Need to Know to Use This Book?
The lessons in this book assume that you have a good understanding of HTML and
Visual Basic Scripting Edition (VBScript). If you are not familiar with VBScript, don’t
worry. VBScript is a subset of Microsoft Visual Basic. So, if you know Visual Basic, you
should be able to quickly understand the VBScript code samples in this book.

To get the most out of the lessons in this book, you should also be familiar with SQL.
You’ll need to use SQL when completing the lessons that discuss database access. If you
need to learn SQL, I recommend that you buy the book Sams Teach Yourself SQL in 21
Days (ISBN: 0-672-31674-9).

 01 0672318989 intro 3/30/00 8:20 AM Page 1

2 Sams Teach Yourself E-Commerce Programming with ASP in 21 Days

What Software Do I Need to Use This Book?
To complete the lessons in this book, you’ll need access to a computer with a Microsoft
Web server and a database. At the very minimum, you’ll need a computer that has
Windows 95 or Windows 98 installed with the Microsoft Personal Web Server. If you
don’t have the Microsoft Personal Web Server, you can download it from Microsoft at
the following Web address:

http://www.microsoft.com/windows/ie/pws/default.htm

To complete many of the advanced lessons in this book, you’ll need access to a computer
running Windows NT or Windows 2000 with Internet Information Server installed.
Internet Information Server is included as a component of both the Windows NT and
Windows 2000 operating systems. However, if you are using Windows NT, you should
download the latest version of Internet Information Server by downloading the Windows
NT Server 4.0 Option Pack at

http://www.microsoft.com/ntserver/nts/downloads/recommended/NT4OptPk/default.asp

Many of the lessons in this book assume that you have a database installed on your com-
puter. To complete the basic lessons, you can use Microsoft Access. However, I recom-
mend that you use Microsoft SQL Server 7.0 for a live commercial Web site.

For the database lessons, you should download the latest version of the Microsoft Data
Access Components (MDAC). You can download the MDAC at the Microsoft Universal
Data Access Web Site at

http://www.microsoft.com/data/

Finally, you should download the latest version of the Microsoft Scripting Engines. The
Microsoft Scripting Engines contain the latest versions of VBScript and JScript. You can
download the Microsoft Scripting Engines at the Microsoft Windows Script Technologies
Web site at

http://msdn.microsoft.com/scripting/

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regular English, and
also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented in monospace
type.

It will look like this to mimic the way text looks on your screen.

 01 0672318989 intro 3/30/00 8:20 AM Page 2

Placeholders for variables and expressions appear in monospace italic font. You should
replace the placeholder with the specific value it represents.

This arrow (➥) at the beginning of a line of code means that a single line of code is too
long to fit on the printed page. Continue typing all characters after the ➥ as though they
were part of the preceding line.

Introduction 3

A Note presents interesting pieces of information related to the surrounding
discussion.

Note

A Tip offers advice or teaches an easier way to do something.Tip

A Caution advises you about potential problems and helps you steer clear of
disaster.

Caution

The Input icon identifies code that you can type in yourself. It usually appears
next to a listing.

The Output icon highlights the output produced by running a program. It usually
appears after a listing.

The Analysis icon alerts you to the author’s line-by-line analysis of a program.

INPUT

ANALYSIS

OUTPUT

 01 0672318989 intro 3/30/00 8:20 AM Page 3

 01 0672318989 intro 3/30/00 8:20 AM Page 4

At A Glance
This week, you’ll begin building your online store. In the first
lesson, you’ll be introduced to E-Commerce and Active
Server Pages programming. You’ll learn about three different
models of E-Commerce. You’ll also be given an overview of
the Microsoft technologies for creating commercial Web sites.

The next three lessons, Days 2 through 4, provide you with a
crash course in Active Server Pages programming as it relates
to creating commercial Web sites. You’ll learn how to write
Active Server Pages scripts that retrieve customer informa-
tion. You’ll also learn how to track customer information by
using cookies and Session variables. Finally, you’ll learn how
to work with files in an Active Server Page.

On Day 5, you’ll begin building your online store. First,
you’ll learn how to create Active Server Pages to manage
your catalog of products. Next, on Day 6, you’ll create the
product pages for your store. Finally, in the lesson on Day 7,
you’ll learn some techniques for enabling customers to search
through your product catalog.

By the end of the week, you’ll be ready to place your catalog
of products on the Web.

WEEK 1 1

2

3

4

5

6

7

 02 0672318989 part 01 3/30/00 8:21 AM Page 5

 02 0672318989 part 01 3/30/00 8:21 AM Page 6

DAY 1

WEEK 1

Introduction to
E-Commerce

The explosive growth of Internet commerce has captured the public’s imagina-
tion. It’s not hard to understand why.

No small part of the public’s fascination with the Internet is caused by the vast
fortunes that it’s created. People are making money, and lots of it. According to a
recent study funded by Cisco Systems, the Internet economy is projected to reach
$507 billion in the year 2000 (see http://www.internetindicators.com).
E-Commerce is already generating more money than the telecommunications
and the airline industries.

eBay, a company started less than five years ago by a man trying to find a
more efficient method of selling his wife’s Pez dispensers, recently bought
Butterfield & Butterfield, a 135 year-old auction house. And Amazon, a compa-
ny that started a scant five years ago, is selling more than five times as many
books online than the long established bookseller Barnes and Noble.

The world is changing in other ways. Not so long ago creating Web sites,
especially commerce enabled Web sites, was a task best left to MIT graduate

 03 0672318989 ch01 3/29/00 4:29 PM Page 7

students. You had no choice but to wrestle with the impenetrable syntax of a language
like Perl or work with a low-level programming language like C++.

Fortunately, Microsoft has developed a technology that enables you to quickly create
commercial Web sites: Active Server Pages (ASP). Using Active Server Pages, you can
create Web sites of the same quality as Dell.com or BarnesandNoble.com. (Both sites
were created with Active Server Pages.)

In today’s lesson, you will be introduced to the two subjects of this book: E-Commerce
and Active Server Pages. We’ll discuss the following questions:

• What does it mean for a business to engage in E-Commerce?

• What are the Microsoft technologies for creating a commerce enabled Web site?

• What is an ASP page?

What Is E-Commerce?
E-Commerce refers to the process of buying or selling a product or service over an elec-
tronic network. The most popular medium in which E-Commerce is conducted is the
Internet.

E-Commerce encompasses three types of business transactions. First, a transaction can
occur between a business and consumer. When you think of E-Commerce, this type of
transaction is the first thing that springs to mind. A prime example of a business that
engages in business-to-consumer E-Commerce is Amazon. Amazon promotes itself as
the “place to find and discover anything you want to buy online” by selling books, CDs,
electronics, and videos to consumers.

Business-to-consumer E-Commerce can also include services. A subscription Web site
that doesn’t sell any tangible goods can also be engaged in E-Commerce. For example,
Match.com—the online dating service—sells subscriptions to their Web site to enable
customers to browse their listings for potential romantic partners.

A second general form of E-Commerce involves transactions between one business and
another. A business that engages in this type of E-Commerce is typically less visible to
consumers and, therefore, to the general public. A good example of a company that
engages in business-to-business E-Commerce is Cisco Systems. Cisco Systems creates
much of the physical infrastructure of the Internet that allows businesses to communicate.

Finally, a form of E-Commerce that has become very popular over the past couple of
years involves consumer-to-consumer transactions. The best-known example of a compa-
ny that engages in this type of E-Commerce is eBay. eBay enables its customers to auc-
tion items to other customers. (eBay collects a fee from every transaction.)

8 Day 1

 03 0672318989 ch01 3/29/00 4:29 PM Page 8

Introduction to E-Commerce 9

1

When you think of E-Commerce, you typically think of a customer selecting a product
from a Web site and paying for it online with a credit card. In other words, credit card
transactions would appear to be an essential part of E-Commerce. However, E-Commerce
might encompass only the activities leading up to the purchase and not the final purchase
itself.

For example, suppose that you have a store (I mean a real, physical store and not a virtu-
al store) that sells kitchen appliances such as stoves and refrigerators. You might decide it
makes sense to create a Web site that lists the appliances you sell at your store even if
you don’t offer a method for consumers to actually purchase your products online. The
only purpose of the Web site would be to entice customers to visit your existing store.
This is also a valid form of E-Commerce.

E-Commerce has its roots in Electronic Data Interchange (EDI). EDI is a struc-
tured method of transmitting information from one computer to another.
EDI was developed to enable businesses to automate the process of trans-
mitting business documents such as invoices and purchase orders. EDI can
also be used to transfer many other types of information. For example, col-
leges use EDI to transfer student transcripts, and health care providers use
EDI to transfer patient records.

Note

A good source of information on E-Commerce is the United States Govern-
ment Electronic Commerce Policy Web site at http://www.ecommerce.gov. It
has a number of interesting reports on E-Commerce paid for by your tax
dollars.

Note

Microsoft Technologies for E-Commerce
The lessons in this book focus on using Microsoft technologies for creating commerce
enabled Web sites. The lessons assume that you are using both a Microsoft Web server
and a Microsoft database.

Microsoft offers two Web servers: the Personal Web Server and Internet Information
Server. You’ll need to have one or the other of these Web servers installed on your com-
puter to complete the lessons. (Some of the advanced lessons require Internet
Information Server.)

You’ll also need access to a database to complete the lessons. The lessons assume that
you are using either Microsoft Access or Microsoft SQL Server. However, with minor

 03 0672318989 ch01 3/29/00 4:29 PM Page 9

modifications, most of the lessons should also work with other database servers such as
Oracle.

The following sections provide a brief overview of the differences between these pro-
grams and additional Microsoft tools for building commercial Web sites.

Microsoft Personal Web Server
The Microsoft Personal Web Server works with Windows 95, Windows 98, or Windows
NT Workstation. You can download the Personal Web Server (for free) at the following
Internet address:

http://www.microsoft.com/windows/ie/pws/default.htm

10 Day 1

For some mysterious reason, Microsoft includes the Personal Web Server as
part of the Windows NT Option Pack. This is confusing because the Personal
Web Server was designed to work with Windows 95 or Windows 98.

Note

The Personal Web Server was created for two purposes. You can use it to host a very low
traffic Web site (for example, to share documents on your company’s intranet). Alter-
natively, you can use the Personal Web Server to prototype a Web site before you transfer
the content of the site to Internet Information Server.

It should be emphasized that the Personal Web Server isn’t an appropriate Web server to
use for hosting a live site on the Internet. It cannot handle very many concurrent users.
However, unless specifically noted, you can use the Personal Web Server with all the
lessons discussed in this book.

Microsoft Internet Information Server
When you are ready to launch your Web site on the Internet, you’ll need to use Microsoft
Internet Information Server. Unlike the Personal Web Server, Internet Information Server
can support hundreds or even thousands of simultaneous users.

Some of the largest Web sites on the Internet use Internet Information Server. Not sur-
prisingly, Microsoft uses Internet Information Server for its own Web site at http://
www.microsoft.com. The Microsoft site is the fourth busiest site on the Internet. (It
receives about 5 million visitors a day.)

The Internet Information Server isn’t compatible with Windows 95 or Windows 98.
You’ll need to use it with Windows NT Server or Windows 2000 Server. It’s included as
part of both operating systems.

 03 0672318989 ch01 3/29/00 4:29 PM Page 10

Introduction to E-Commerce 11

1

Microsoft Access
To create a commercial Web site, you’ll need to use a database to store product and order
information. Unless noted otherwise, the lessons in this book assume that you will be
using Microsoft Access as your database. Microsoft Access is part of the Microsoft
Office family of products and can be purchased from almost any software store.

Microsoft Access is a desktop database and not a client/server database like SQL Server
(discussed in the next section). Because Microsoft Access is a desktop database, you
should use it only for prototyping your Web site or for creating a low traffic Web site. In
general, a Microsoft Access database cannot support more than about 30 concurrent
users.

After you create your Web site with Microsoft Access, you can upgrade to Microsoft
SQL Server. (Microsoft refers to this process as “upsizing.”) Microsoft has a tool, named
the Upsizing Tools, which enables you to convert a Microsoft Access database to a
Microsoft SQL Server database. (It converts tables and common queries.)

If you are using Microsoft Access 97, you can download the Upsizing Tools from
http://www.microsoft.com/accessdev/prodinfo/aut97dat.htm. When using
Microsoft Access 2000, there is no need to download anything. The Upsizing Tools are
included with Microsoft Access 2000.

Microsoft SQL Server
Unlike Microsoft Access, Microsoft SQL Server 7.0 can scale to support thousands of
concurrent users and terabyte sized databases. For all intents and purposes, SQL Server
can enable you to support an online store of any size. Some of the largest commercial
Web sites on the Internet are using SQL Server including Dell, Buy.com, Barnes and
Noble, and 1-800-flowers.com.

There are three versions of SQL Server 7.0: SQL Server Desktop, SQL Server Standard
Edition, and SQL Server Enterprise Edition. SQL Server Desktop will work with
Windows 95, Windows 98, and Windows NT Workstation. SQL Server Standard Edition
was designed to work with Windows NT Server or Windows 2000 Server. Finally, the
Enterprise Edition is an enhanced version of the standard edition that supports more
memory, more processors, clustering, and Online Analytical Processing (OLAP) services.

If your plans for your Web site are very ambitious, you can use Internet
Information Server with Windows 2000 Advanced Server. Windows 2000
Advanced Server includes support for server clustering, which enables you to
distribute your Web site over many machines.

Note

 03 0672318989 ch01 3/29/00 4:29 PM Page 11

Unless you need to create an extremely high volume commercial Web site, you should
use the standard edition of Microsoft SQL Server with the Windows NT Server operating
system. You can download or order an evaluation version of SQL Server from Microsoft
by visiting the following Internet address (the evaluation edition automatically stops
functioning after 120 days):

http://www.microsoft.com/sql/productinfo/evalcd.htm

To use Microsoft SQL Server on the Web, you will need to buy the correct licenses.
Microsoft requires you to buy the Internet Connector license if any person from the
Internet accesses SQL Server. You must buy an additional license for each processor on
each server that is running SQL Server.

I strongly recommend that you upgrade to SQL Server before publicly launching your
Web site on the Internet. The current version isn’t much more difficult to use than Micro-
soft Access. And, SQL Server is both more dependable and scalable than Microsoft
Access.

Microsoft Visual InterDev
Microsoft Visual InterDev is a development environment for building Web sites. At its
most basic level, it’s a very fancy text editor that allows you to create and modify Web
pages on a remote or local server. You can use Visual InterDev to write both Active
Server Pages and normal HTML pages.

Visual InterDev is tightly integrated with Microsoft SQL Server. You can use Visual
InterDev to design and modify database tables and create stored procedures. Visual
InterDev works with any ODBC or OLE DB compliant database.

You don’t need Visual InterDev to create an ASP page. You can create Active Server
Pages using any standard text editor. Notepad, the text editor included with all versions
of the Windows operating system, works perfectly well. However, Visual InterDev makes
it much easier to manage the pages of a large Web site. Visual InterDev also includes
several debugging tools.

12 Day 1

Microsoft has another product for creating Web sites: Microsoft FrontPage.
I wouldn’t recommend using Microsoft FrontPage to create Web sites that
contain Active Server Pages. Microsoft FrontPage has a tendency to modify
the source code of a page without asking. This means that it can often
garble an ASP script that you have just spent hours writing.

Note

 03 0672318989 ch01 3/29/00 4:29 PM Page 12

Introduction to E-Commerce 13

1
What Is an ASP Page?

The lessons in the days that follow describe how to create commercial Web sites using
Active Server Pages. But, you might ask, what exactly is an ASP page?

An ASP page is any file located on your Web server that has the extension .ASP. This
special extension distinguishes an ASP page from a normal HTML file that ends with the
extension .HTML or .HTM.

When a user visits a Web site and requests a normal HTML file, the Web server simply
retrieves the file from the computer’s hard drive or memory and sends the file to the
user’s browser. The browser interprets the HTML content of the file and the visitor sees
the Web page.

When someone requests a normal HTML page, the Web server doesn’t care about the
content of the file. The Web server’s role is to simply retrieve the appropriate file without
processing it. All the work of interpreting the content of the file is performed by the
user’s Web browser.

On the other hand, when someone requests an ASP page, the Web server takes a more
active role. Before the file is sent to the user’s Web browser, it is first processed by the
Web server. The Web server interprets and executes any scripts in an ASP page before
sending it to the user’s browser.

For example, the file in Listing 1.1 contains a very simple ASP page named
showtime.asp. This page displays the current time.

LISTING 1.1 Display Current Time

1 <HTML>
2 <HEAD><TITLE>Show Time</TITLE></HEAD>
3 <BODY>
4 At the tone, the time will be: <%=TIME()%>
5 </BODY>
6 </HTML>

If someone requests the showtime.asp file from a Web server, the Web server will recog-
nize the file as an ASP page because the name of the file ends with the extension .ASP.
Before sending the file to the user’s browser, the Web server will first process any scripts
in the file. In the case of the showtime.asp file, the text <%=TIME()%> in line 4 is
replaced with the current time.

The actual file sent to the Web browser is included in Listing 1.2. Notice that this file is a
normal HTML file. All the scripts are processed on the Web server before the file is sent

 03 0672318989 ch01 3/29/00 4:29 PM Page 13

to the browser. Because an ASP page is processed on the server rather than the browser,
an ASP page is compatible with all Web browsers.

LISTING 1.2 Content After Processing

1 <HTML>
2 <HEAD><TITLE>Show Time</TITLE></HEAD>
3 <BODY>
4 At the tone, the time will be: 4:55:36 AM
5 </BODY>
6 </HTML>

Active Server Pages Contain Scripts
Active Server Pages include server-side scripts. In the lessons in this book, we will be
using Microsoft Visual Basic Scripting Edition (VBScript) as the scripting language.
However, an ASP page can contain scripts written in other scripting languages such as
Microsoft JScript (Microsoft’s brand of JavaScript) or PerlScript.

14 Day 1

Microsoft bundles JScript with Active Server Pages. PerlScript isn’t produced
by Microsoft. To use PerlScript, you must first download it from
http://www.activestate.com.

Note

Scripting languages, such as VBScript, differ from full-fledged programming languages,
such as Visual Basic and Java, in the simplicity of their rules and syntax. For example,
VBScript doesn’t require you to declare variables with particular data types.

Furthermore, unlike Visual Basic or Java, you don’t need to compile an ASP page into a
separate file before you can execute it. When you change an ASP page, the page is auto-
matically recompiled the next time it is requested.

The advantage of using a scripting language to build Web pages is that it makes it easy to
modify a Web site even after it has been launched. If you discover a bug on your Web
site, you can quickly load the offending page into Notepad and fix the problem.

You shouldn’t conclude that because an ASP page uses a scripting language that Active
Server Pages are slow or don’t scale well. ASP scripts run in the same process as the
Web server, and they are multithreaded. This allows an ASP page to efficiently support
large numbers of concurrent users.

 03 0672318989 ch01 3/29/00 4:29 PM Page 14

Introduction to E-Commerce 15

1
Active Server Pages Contain Objects and Components
An ASP page would be severely limited if it could only contain scripts. You could dis-
play the current time and output interesting messages, but you would have no way of
retrieving information from users, storing data in a database, or creating files on the serv-
er. Fortunately, an ASP page can contain server-side components.

A component is something that typically has methods, properties, and collections. A
component’s methods determine the actions you can take with the object. A component’s
properties can be read or set to specify the state of the component. A component’s collec-
tions are sets of key and value pairs related to the component.

This book, Sams Teach Yourself E-Commerce Programming with ASP in 21 Days, is an
example of a component. The component has certain methods that determine what you
can do with it. For example, you can read the book, use it as a doorstop, or (please don’t
do this!) tear it into shreds. The book has certain properties. It weighs a certain amount
and has a certain number of pages. Finally, it has a collection of key and value pairs.
Each page number (the key) has a corresponding page of text (the value).

Active Server Pages includes two types of components: the built-in objects and the
installable components.

Here is a brief description of the six built-in Active Server Pages objects:

• Application Object—The Application object represents information that can be
shared among all users of an Active Server Pages Application.

• ObjectContext Object—The ObjectContext object is used with transactional
Active Server Pages.

• Request Object—The Request object represents all information sent from a brows-
er to a server including form variables and query strings.

• Response Object—The Response object represents all information sent from a
server to a browser including HTML content sent by an ASP page.

• Server Object—The Server object enables the use of various utility functions on
the server.

• Session Object—The Session object represents information about a particular
user session.

The new version of Active Server Pages included with Windows 2000
includes an additional built-in object named the ASPError object. The
ASPError object represents information about an error that has occurred in
an ASP page.

Note

 03 0672318989 ch01 3/29/00 4:29 PM Page 15

For example, Listing 1.3 demonstrates how you can use the Response object to output
the text “Hello World!” to the browser.

LISTING 1.3 Hello World!

1 <HTML>
2 <HEAD><TITLE>Hello World!</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write “Hello World!”
6 %>
7 </BODY>
8 </HTML>

In addition to the built-in objects, several installable components are bundled with Active
Server Pages. Here is a list of some of the more useful of these components:

• Ad Rotator Component—The Ad Rotator component is used to display banner
advertisements on the Web pages of a Web site. You can use this component to
specify how frequently different banner advertisements should be displayed.

• Browser Capabilities Component—The Browser Capabilities component can be
used to display different HTML content, according to the capabilities of different
browsers. For example, you can use this component to display Web pages with
frames only to frames-compliant browsers.

• Content Linking Component—The Content Linking component can be used to link
together several HTML pages so that they can be navigated easily. For example,
you can use this component to link together the pages of an online book.

• File Access Component—The File Access component allows you to work with your
computer’s file system. You can use this component to read and write text files.

Unlike the built-in Active Server Pages objects, you must create an instance of an instal-
lable component before you can use it in an ASP page. The ASP page in Listing 1.4 cre-
ates an instance of the Ad Rotator component and displays a banner advertisement.

LISTING 1.4 Using the Ad Rotator Component

1 <HTML>
2 <HEAD><TITLE>Ad Rotator Component</TITLE></HEAD>
3 <BODY>
4 <%
5 Set MyAd = Server.CreateObject(“MSWC.AdRotator”)
6 %>
7 <CENTER><%=MyAd.GetAdvertisement(“adrot.txt”)%></CENTER>
8 </BODY>
9 </HTML>

16 Day 1

 03 0672318989 ch01 3/29/00 4:29 PM Page 16

Introduction to E-Commerce 17

1

You aren’t limited to using only the components bundled with Active Server Pages.
There are hundreds of components created by third-party companies that you can include
in your scripts. You can use these components to accept file uploads, transfer files
between servers, or send and receive email. You can also create your own components by
using a language such as Visual Basic, C++, or Java.

What’s the difference between a component and an object? An object is
one instance of a component. The Active Server Pages built-in objects are
called objects rather than components because they have already been
implicitly created.

Note

To see an extensive list of third-party components, visit the software section
of asp superexpert at http://asp.superexpert.com/software.

Note

Active Server Pages and Database Access
A special set of objects are included with Active Server Pages that deserve to be dis-
cussed in a section of their own: the ActiveX Data Objects. The ActiveX Data Objects
enable you to access a database from an ASP page.

You can use the ActiveX Data Objects to insert, update, and delete rows in a database
table. You can also use these objects to retrieve a set of records from a database query,
and represent these records in an ASP page.

In the lessons in this book, you will learn how to use the ActiveX Data Objects to store
and retrieve data from both a Microsoft Access Database and a Microsoft SQL Server
Database. However, the ActiveX Data Objects can be used with any Open Database
Connectivity (ODBC) or any OLE DB compliant database. This includes Oracle, Sybase,
Informix, DB2, and Ingres databases.

Summary
In today’s lesson, you were introduced to the two main subjects of this book: E-
Commerce and Active Server Pages. In the first section, you learned about the phenome-
nal growth of E-Commerce. Each of the different forms of E-Commerce was briefly
discussed.

 03 0672318989 ch01 3/29/00 4:29 PM Page 17

In the second section, you were introduced to the Microsoft Technologies for creating
commercial Web sites. You learned about the Microsoft Personal Web Server and Internet
Information Server. You also learned about Microsoft Access and Microsoft SQL Server.

The final section focused on Active Server Pages. You learned how an ASP page differs
from a normal HTML file. You learned how Active Server Pages use scripts, objects,
components, and the ActiveX Data Objects for database access.

Q&A
Q What are the limitations of Active Server Pages? Can I use Active Server

Pages to develop any type of commercial Web site?

A As you discovered in today’s lesson, Active Server Pages has already been used to
develop some of the largest and most successful commercial Web sites on the
Internet. For example, Dell currently sells over $18 million worth of products
online a day. The Dell Web site was created with Internet Information Server and
Active Server Pages.

Active Server Pages is an extremely flexible technology. If it lacks any functionali-
ty, an ASP script can always be extended with custom components.

Q Which operating systems are compatible with Active Server Pages?

A Active Server Pages runs natively on Microsoft Windows NT Server 4.0, Microsoft
Windows NT Workstation 4.0 with Peer Web Services, and Windows 95/98 with
the Personal Web Server.

Using Chili!Soft’s Chili!ASP (see http://www.chilisoft.com), you also can use
Active Server Pages with SUN Solaris and IBM AIX. Chili!ASP enables Active
Server Pages to run on Apache servers, Netscape Enterprise and FastTrack servers,
the Lotus Domino Go Webserver, and O’Reilly Website Pro.

Microsoft created a version of the Personal Web Server and Active Server Pages
for the Macintosh. Sadly, however, they no longer support it.

Workshop
The Quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What are the three types of E-Commerce?

2. Can Microsoft Personal Web Server be used to create a commercial Web site that
supports thousands of visitors a day?

18 Day 1

 03 0672318989 ch01 3/29/00 4:29 PM Page 18

Introduction to E-Commerce 19

1
3. Can Microsoft Access be used in a commercial Web site that supports thousands of

visitors a day?

4. Do you need Visual InterDev to create Active Server Pages?

5. How does a Web server distinguish an ASP page from a normal HTML page?

6. Are Active Server Pages compatible with all Web browsers?

7. Can you create Active Server Page scripts using any other language than VBScript?

 03 0672318989 ch01 3/29/00 4:29 PM Page 19

 03 0672318989 ch01 3/29/00 4:29 PM Page 20

DAY 2

WEEK 1

Interacting with the
Customer

In today’s lesson, you’ll begin learning how to create an E-Commerce Web site
using Active Server Pages. Today’s lesson introduces you to two of the most
important Active Server Page objects: the Response and the Request objects.
You can use these objects to interact with the customers who visit your Web
site.

Today, you will learn

• How to use the Response object to send content to a Web browser

• How to use the Request object to work with HTML query strings

• How to use the Request object to retrieve information that customers
enter into HTML forms

• How to use the Request object to retrieve browser headers and server
variables

 04 0672318989 ch02 3/29/00 4:01 PM Page 21

Working with the Response Object
In yesterday’s lesson, you were introduced to Active Server Pages. You learned that an
ASP page is a normal HTML page that contains scripts. You can use these scripts to send
dynamic content to the browser.

What is dynamic content? A normal HTML page contains static content. Every time
an HTML page is requested, the content displayed by the page remains the same. An
ASP page, on the other hand, can contain content that changes whenever the page is
requested.

When operating a commercial Web site, there are many situations in which you’ll need
to send dynamic content to a customer. For example, if you enable customers to browse
the products in your store by category, then you’ll need to dynamically generate the list
of products for the appropriate category. After a customer places an order, you’ll need to
dynamically generate a receipt with the customer’s order information.

You can send dynamic content from an ASP page by using the Response object, a built-in
ASP object. It represents all the information sent from the Web server to a Web browser.

For example, the ASP page in Listing 2.1 displays the current date and time. Each time a
customer requests the ASP page in Listing 2.1, a different date and time is displayed.

LISTING 2.1 Displaying Dynamic Content

1 <HTML>
2 <HEAD><TITLE>Date and Time</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write NOW()
6 %>
7 </BODY>
8 </HTML>

You will notice that the majority of the ASP page in Listing 2.1 consists of a normal
HTML page. The dynamic content is generated in the body of the HTML page.

Lines 4–6 contain a very simple ASP script. The beginning and end of the script are
marked with the script delimiters <% and %>.

In line 5, the Write method of the Response object is used to output the current date and
time, which is displayed by using the VBScript NOW() function.

Typically, you use the Write method of the Response object to output the value of a
function, the value of a variable, or a string literal. For example, the ASP page in Listing
2.2 displays the text “Welcome to our store!” with the Response object.

22 Day 2

INPUT

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 22

Interacting with the Customer 23

2

LISTING 2.2 Welcome to Our Store

1 <HTML>
2 <HEAD><TITLE>Welcome</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write “Welcome to our store!”
6 %>
7 </BODY>
8 </HTML>

Outputting Long Strings
If you need to use the Response object to output really long strings, you can break the
string into multiple lines by using the underscore character. For example, the ASP page
in Listing 2.3 displays the first paragraph of the Declaration of Independence.

LISTING 2.3 Outputting a Long String

1 <HTML>
2 <HEAD><TITLE>Long String</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write “When in the Course of human events, “ &_
6 “it becomes necessary for one people to “ &_
7 “dissolve the political bands which have “ &_
8 “connected them with another, and to assume “ &_
9 “among the powers of the earth, the separate “ &_
10 “and equal station to which the Laws of “ &_
11 “Nature and of Nature’s God entitle them, “ &_
12 “a decent respect to the opinions of “ &_
13 “mankind requires that they should declare “ &_
14 “the causes which impel them to the separation. “
15 %>
16 </BODY>
17 </HTML>

In the ASP script contained in lines 4–15, the Write method is used to display a
single string that spans multiple lines. The character combination &_ is used to

indicate that the string is continued on the next line.

Displaying Special Characters
Certain characters will not be displayed correctly when outputted with the Write method
of the Response object. These characters include the greater than sign, >; the less than
sign, <; and quotation marks.

INPUT

INPUT

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 23

The problem results from the fact that these characters have a special meaning in HTML.
For example, the < and > characters are used to mark the beginning and end of an HTML
tag. When a browser comes across these characters in a page, it attempts to interpret
them as part of an HTML tag.

To get around this problem, you need to encode the characters before you display them.
Fortunately, this is very easy to do with Active Server Pages. You can use the
HTMLEncode() method of the Server object to HTML-encode the string before it is dis-
played.

For example, the ASP page in Listing 2.4 correctly encodes the string “We sell the
<<BEST!>> products!” before the string is displayed.

LISTING 2.4 HTML-Encoding a String

1 <HTML>
2 <HEAD><TITLE>Long String</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write Server.HTMLEncode(“We sell the <<BEST!>> products!”)
6 %>
7 </BODY>
8 </HTML>

You’ll discover that you’ll need to HTML-encode strings quite often when working with
HTML forms. Later in today’s lesson, you will learn how to use the HTMLEncode()
method with an HTML form (see the section titled “Using the Form Collection”).

Displaying Quotation Marks
The VBScript language uses quotation marks to mark the beginning and end of a string.
If the string itself contains quotation marks, then problems occur. VBScript will misinter-
pret a quotation mark contained in a string as marking the end of a string.

For example, the ASP page in Listing 2.5 will generate an error.

LISTING 2.5 Bad Use of Quotation Marks

1 <HTML>
2 <HEAD><TITLE>Bad Quotes</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write “He said, “This doesn’t work!” “
6 %>
7 </BODY>
8 </HTML>

24 Day 2

INPUT

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 24

Interacting with the Customer 25

2

The ASP page in Listing 2.5 will generate an error because of the quotation
marks included in the string on line 5. VBScript will assume that the second quo-

tation mark indicates the end of the string.

There are two ways around this problem with outputting quotation marks. First, you can
write two quotation marks in a row. VBScript will interpret two consecutive quotation
marks in a string as a single quotation mark. The ASP page in Listing 2.6 demonstrates
how to use this method:

LISTING 2.6 Good Use of Quotation Marks

1 <HTML>
2 <HEAD><TITLE>Good Quotes</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write “He said, “”This does work!”” “
6 %>
7 </BODY>
8 </HTML>

Line 5 passes the string “He said, “”This does work!”” “ to the Write
method of the Response object. When this string is outputted to the browser, the

correct number of quotation marks is displayed:

He said, “This does work!”

There is a second method of including quotation marks in a VBScript string. You can
represent a quotation mark by using the VBScript CHR() function. Listing 2.7 uses this
method to display quotation marks.

LISTING 2.7 Another Good Use of Quotation Marks

1 <HTML>
2 <HEAD><TITLE>Good Quotes</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write “He said, “ & CHR(34) & “This does work!” & CHR(34)
6 %>
7 </BODY>
8 </HTML>

Both methods of displaying quotation marks work perfectly well. The method you
choose is completely a matter of personal preference.

ANALYSIS

INPUT

ANALYSIS

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 25

Using the <%= and %> Output Delimiters
Instead of using the Write method of the Response object to send content to the browser,
you can use the <%= and %> output delimiters. For example, the ASP page in Listing 2.8
uses the output delimiters instead of the Write method to display the current time.

LISTING 2.8 Using the Output Delimiters

1 <HTML>
2 <HEAD><TITLE>Output Delimiters</TITLE></HEAD>
3 <BODY>
4 <%=TIME()%>
5 </BODY>
6 </HTML>

The current time is displayed in line 4. Line 4 uses <%= and %> to output the
value of the VBScript TIME() function to the browser.

It is important not to confuse the <%= and %> output delimiters with the <% and %> script
delimiters. The <%= and %> output delimiters are used to display content to the browser.
On the other hand, the <% and %> script delimiters are used to mark the beginning and
end of a script.

When should you use the <%= and %> output delimiters and when should you use the Write
method of the Response object? You can use these two methods of outputting content inter-
changeably. However, it is often more convenient to use the <%= and %> output delimiters
when displaying the values of multiple variables or functions within an ASP page.

For example, although you can write the ASP page in Listing 2.9 using the Write
method, the code is easier to read when the <%= and %> output delimiters are used.

LISTING 2.9 Displaying Multiple Values

1 <HTML>
2 <HEAD><TITLE>Output Delimiters</TITLE></HEAD>
3 <BODY>
4
The current date is: <%=DATE()%>
5
The current time is: <%=TIME()%>
6 </BODY>
7 </HTML>

Ending Script Execution with the Response Object
Up to this point, you have learned how to use a single method of the Response object.
You’ve learned how to use the Write method to send output to a customer’s Web

26 Day 2

INPUT

ANALYSIS

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 26

Interacting with the Customer 27

2

browser. In this section, you’ll learn about a second useful method of the Response
object: the End method. You can use the End method to stop the execution of a script.

For example, the script in Listing 2.10 displays two messages. However, the second mes-
sage is never seen because the End method of the Response object is called before the
second message is displayed.

LISTING 2.10 Ending Script Execution

1 <HTML>
2 <HEAD><TITLE>Output Delimiters</TITLE></HEAD>
3 <BODY>
4 <%
5 Response.Write “I am the first message!”
6 Response.End
7 Response.Write “I am the second message!”
9 %>
10 </BODY>
11 </HTML>

The first message is displayed in line 5. On line 6, the End method of the
Response object is called. When this method is called, processing of the page

comes to an immediate stop. Only the content produced in lines 1–5 is sent to the
browser.

Working with the Request Object
Whereas the Response object represents all content sent from the Web server to a Web
browser, the Request object represents all content sent from a Web browser to the Web
server. Whenever you need to retrieve information from a customer, you’ll need to use
the Request object.

The Request object has four very useful collections:

• QueryString collection—Represents query string variables

• Form collection—Represents HTML form fields

• ServerVariables collection—Represents browser headers and server variables

• Cookies collection—Represents browser cookies

In the following sections, you will learn how to use the first three of these collections. In
Day 3, “Using Application and Session Objects in E-Commerce Applications,” you’ll
learn how to use the Cookies collection.

INPUT

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 27

Using Query Strings
A query string is the portion of the URL that appears after a question mark. For example,
the following URL contains a query string:

http://search.yahoo.com/bin/search?p=Active+Server+Pages

In this example, the query string contains a variable named p that has the value “Active
Server Pages”. If you entered this string into the address bar of your Web browser, all
the listings from Yahoo! related to Active Server Pages would be returned.

Query strings are used to pass information to the server from a browser. Typically, you
do not enter a query string directly into the address bar of a browser. Instead, you create
a link in a page that contains the query string.

You can use query strings to enable customers to make choices. For example, using
query strings, you can enable customers to click on different product categories at your
store to view different types of products. The ASP page in Listing 2.11 enables cus-
tomers to choose between two product categories: red delicious apples and McIntosh
apples.

LISTING 2.11 Choosing Apples

1 <HTML>
2 <HEAD><TITLE>Apples</TITLE></HEAD>
3 <BODY>
4 Please choose a type of apple:
5 <p>Red Delicious
5 <p>McIntosh
6 </BODY>
7 </HTML>

The ASP page in Listing 2.11 contains two hypertext links to a page named
page2.asp. The first link passes a query string named apple that has the value

red. The second query string, also named apple, has the value mcintosh. By clicking on
one or another of the two links, the customer can choose the type of apples to view.

Within page2.asp, you can determine which link the customer clicked by accessing the
QueryString collection of the Request object. Listing 2.12 contains the page2.asp page.

LISTING 2.12 Retrieving a Query String

1 <HTML>
2 <HEAD><TITLE>Page 2</TITLE></HEAD>
3 <BODY>
4 <%

28 Day 2

INPUT

INPUT

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 28

Interacting with the Customer 29

2

5 apple = Request.QueryString(“apple”)
6 Response.Write “You have selected “ & apple & “ apples”
7 %>
8 </BODY>
9 </HTML>

In line 5, the QueryString collection of the Request object is used to retrieve the
query string variable named apple. The query string variable is assigned to a

local VBScript variable named apple. Next, in line 6, the value of the apple variable is
displayed.

Passing Multiple Query String Variables
You can pass multiple query string variables in a single query string. To pass multiple
variables, you separate each variable with the & character. For example, the ASP page in
Listing 2.13 passes two query string variables named fruit and type.

LISTING 2.13 Passing Multiple Query String Variables

1 <HTML>
2 <HEAD><TITLE>Fruit</TITLE></HEAD>
3 <BODY>
4 Please choose a type of fruit:
5 <p>Mandarin Orange
6 <p>Red Delicious Apple
7 <p>McIntosh Apple
8 </BODY>
9 </HTML>

The hypertext links in Listing 2.13 contain query strings that include two vari-
ables. Each query string contains both a variable named fruit and a variable

named type. When any of the three hypertext links are clicked, both query string vari-
ables are passed to the page2.asp page.

When multiple query string variables are passed to a page, you can retrieve any of the
variables by name from the QueryString collection. The Active Server Page in Listing
2.14 retrieves both the fruit and the type query string variables.

LISTING 2.14 Retrieving Multiple Query String Variables

1 <HTML>
2 <HEAD><TITLE>Get Fruit</TITLE></HEAD>
3 <BODY>
4 You selected:
5 <p>Fruit: <%=Request.QueryString(“fruit”)%>

ANALYSIS

INPUT

ANALYSIS

INPUT

continues

 04 0672318989 ch02 3/29/00 4:01 PM Page 29

6 <p>Type: <%=Request.QueryString(“type”)%>
7 </BODY>
8 </HTML>

Line 5 uses the <%= and %> output delimiters to display the value of the query
string variable named fruit. Line 6 displays the value of the query string vari-

able named type.

Passing Special Characters in Query Strings
You cannot include spaces or other special characters in the name or value of a query
string variable. For example, suppose that you wanted to pass the string “red delicious
apples” in a query string variable. You might be tempted to do this by using the ASP
page contained in Listing 2.15.

LISTING 2.15 Passing a Query String with Spaces

1 <HTML>
2 <HEAD><TITLE>Get Fruit</TITLE></HEAD>
3 <BODY>
4 Apples
5 </BODY>
6 </HTML>

Line 4 contains a hypertext link with a query string variable named fruit. If you click
on this link, however, the value of the query string will not be correctly passed to the
page2.asp. The value of the query string will be truncated at the first space.

Before you can pass a query string that contains spaces or special characters, you must
first URL-encode the query string. When a string is URL-encoded, any problematic char-
acters are replaced. For example, spaces are replaced with + signs.

You can URL-encode a query string by using the URLEncode() method of the Server
object. The Active Server Page in Listing 2.16 correctly passes the string “red
delicious apples” by URL-encoding the string before it is passed.

LISTING 2.16 URL-Encoding a Query String

1 <HTML>
2 <HEAD><TITLE>Get Fruit</TITLE></HEAD>
3 <BODY>
4 <%
5 theValue = “red delicious apples”
6 theValue = Server.URLEncode(theValue)
7 %>

30 Day 2

ANALYSIS

INPUT

INPUT

LISTING 2.14 continued

 04 0672318989 ch02 3/29/00 4:01 PM Page 30

Interacting with the Customer 31

2

8 <a href=”page2.asp?fruit=<%=theValue%>”>Apples
9 </BODY>
10 </HTML>

In Listing 2.16, the string “red delicious apples” is URL-encoded before it is
added to the query string. In line 5, the string “red delicious apples” is

assigned to a variable named theValue. Next, in line 6, the value of the variable is URL-
encoded with the URLEncode() method of the Server object. In line 8, the variable is
added to the query string.

Using the Form Collection
To enable a customer to register at your Web site, complete a marketing form, or enter a
credit card number, you must use an HTML form. To retrieve the information a customer
enters into an HTML form, you use the Form collection of the Request object.

For example, the page in Listing 2.17 contains a simple HTML form that asks the cus-
tomer to enter his first name.

LISTING 2.17 Simple HTML Form

1 <HTML>
2 <HEAD><TITLE>Get Fruit</TITLE></HEAD>
3 <BODY>
4 Please enter your first name:
5 <FORM method=”post” action=”page2.asp”>
6 <INPUT name=”firstname” type=”text”>
7 <INPUT type=”submit” value=”OK”>
8 </FORM>
9 </BODY>
10 </HTML>

Listing 2.17 contains a simple HTML form with one field named “firstname”.
Line 6 displays the single form field. Line 7 displays a submit button labeled “OK”.

When a customer enters his first name and clicks the button labeled OK, the form data is
submitted to a page named page2.asp. Within the page, you can retrieve the value of the
firstname form field by using the Form collection of the Request object. Listing 2.18
demonstrates how to use this collection.

LISTING 2.18 Retrieving a Form Field

1 <HTML>
2 <HEAD><TITLE>Get Fruit</TITLE></HEAD>

ANALYSIS

INPUT

ANALYSIS

INPUT

continues

 04 0672318989 ch02 3/29/00 4:01 PM Page 31

3 <BODY>
4 <%
5 firstname = Request.Form(“firstname”)
6 %>
7 Hi <%=firstname%>!,
8 Welcome to our store!
9 </BODY>
10 </HTML>

In line 5, the HTML form field “firstname” is retrieved from the Form collec-
tion of the Request object. The value of the form field is assigned to a local

VBScript variable named firstname. In line 7, the firstname variable is used to person-
alize the output of the ASP page.

You can use the Form collection of the Request object to retrieve the value of most types
of HTML form element. You can use the Form collection to retrieve the value of a text
field, text area, check box, radio button, pick list, or password field.

32 Day 2

ANALYSIS

You cannot use the Form collection to retrieve a file uploaded within an
HTML form using the <INPUT TYPE=”FILE”> tag. To accept file uploads, you
must use the BinaryRead() method of the Request object or buy a third-
party component. To see a list of file upload components, visit http://
asp.superexpert.com/software.

Note

For example, the page in Listing 2.19 contains an HTML form with four radio buttons.
Customers can provide feedback on your store by selecting one of the radio buttons.

LISTING 2.19 Rate Our Store

1 <HTML>
2 <HEAD><TITLE>Rate Our Store</TITLE></HEAD>
3 <BODY>
4 Please rate our store:
5 <FORM METHOD=”POST” ACTION=”page2.asp”>
6
<INPUT NAME=”rating” TYPE=”RADIO” VALUE=”1” CHECKED>
7 Great!
8
<INPUT NAME=”rating” TYPE=”RADIO” VALUE=”2”>
9 Not Bad!
10
<INPUT NAME=”rating” TYPE=”RADIO” VALUE=”3”>
11 Mediocre
12
<INPUT NAME=”rating” TYPE=”RADIO” VALUE=”4”>
13 Needs Improvement!
14
<INPUT TYPE=”SUBMIT” VALUE=”OK”>

INPUT

LISTING 2.18 continued

 04 0672318989 ch02 3/29/00 4:01 PM Page 32

Interacting with the Customer 33

2

15 </FORM>
16 </BODY>
17 </HTML>

The HTML form in Listing 2.19 submits the form data to a page named page2.asp. Within
page2.asp, you can determine which radio button was selected by a customer by using the
Form collection. Listing 2.20 demonstrates how you can retrieve the value of a radio button.

LISTING 2.20 Retrieving the Value of a Radio Button

1 <HTML>
2 <HEAD><TITLE>Get Rating</TITLE></HEAD>
3 <BODY>
4 Thanks for rating our store!
5 <p>
6 <%
7 rating = Request.Form(“rating”)
8 rating = cINT(rating)
9 IF rating < 3 THEN
10 Response.Write “Glad you like us!”
11 ELSE
12 Response.Write “We’ll try harder!”
13 END IF
14 %>
15 </BODY>
16 </HTML>

The ASP page in Listing 2.20 retrieves the value of the radio button the customer
selected. In line 7, the value of the selected radio button is grabbed from the

Form collection. Next, in line 8, the value is converted to an integer value.

Lines 9–13 conditionally display one of two messages. If the customer gives your store a
good rating, then the message “Glad you like us!” is displayed. Otherwise, the mes-
sage “We’ll try harder!” is displayed.

Checking for Empty Form Fields
Whenever you have an HTML form, you need to check whether the customer has actual-
ly entered data into all the required form fields. For example, if you have asked the cus-
tomer to enter a credit card number, you need to check whether the data was actually
entered.

You can check whether a form field contains data by comparing the value of the form
field to a zero length string. The page in Listing 2.21 contains an HTML form with fields
for the customer’s name, customer’s credit card number, and credit card expiration date.

INPUT

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 33

LISTING 2.21 Credit Card Form

1 <HTML>
2 <HEAD><TITLE>Credit Card Form</TITLE></HEAD>
3 <BODY>
4 Please enter the following information:
5 <FORM METHOD=”POST” ACTION=”page2.asp”>
6 <p>Your Name:
7
<INPUT name=”customer” SIZE=”30”>
8 <p>Your Credit Card Number:
9
<INPUT name=”ccnumber” size=”15”>
10 <p>Credit Card Expiration Date:
11
<INPUT name=”ccexpires” size=”15”>
12 <p><INPUT type=”submit” value=”OK”>
13 </FORM>
14 </BODY>
15 </HTML>

If the customer neglects to enter her name, her credit card number, or her credit card
expiration date, then you will lose an order. The ASP page in Listing 2.22 demonstrates
how you can check for empty form fields.

LISTING 2.22 Checking for Empty Form Fields

1 <%
2 SUB errorForm(theError)
3 %>
4 <HTML>
5 <HEAD><TITLE>Error</TITLE></HEAD>
6 <BODY>
7 <%=theError %>
8 <FORM method=”post” action=”page1.asp”>
9 <p><INPUT TYPE=”submit” value=”Return”>
10 </FORM>
11 </BODY>
12 </HTML>
13 <%
14 Response.End
15 END SUB
16 ‘ Retrieve Form Fields
17 customer = TRIM(Request.Form(“customer”))
18 ccnumber = TRIM(Request.Form(“ccnumber”))
19 ccexpires = TRIM(Request.Form(“ccexpires”))
20 ‘ Check For Required Fields
21 IF customer = “” THEN
22 errorForm “You did not enter your name!”
23 END IF
24 IF ccnumber = “” THEN
25 errorForm “You did not enter a credit card number!”

34 Day 2

INPUT

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 34

Interacting with the Customer 35

2

26 END IF
27 IF ccexpires = “” THEN
28 errorForm “You did not enter an expiration date!”
29 END IF
30 %>
31 <HTML>
32 <HEAD><TITLE>Thank You</TITLE></HEAD>
33 <BODY>
34 Thank you for entering your credit card information!
35 </BODY>
36 </HTML>

The ASP page in Listing 2.22 displays an error message if the customer does not
enter data in all the required form fields. In lines 17–19, all the form fields are

retrieved from the Form collection and assigned to local variables.

Notice that the VBScript TRIM() function is used when retrieving each of the form
fields. The TRIM() function removes any leading or trailing spaces from a string.
(Browsers have a tendency to add an extra space to each form field when it is submitted.)

Next, in lines 16–29, each variable is compared to a zero length string. If a variable does
not have any content, a subroutine named errorForm is called. An error message is
passed to the subroutine.

Contained in lines 2–15, the errorForm subroutine displays an HTML page that shows
the error message passed to it. It also contains a form that displays a button which links
back to page1.asp (the page in Listing 2.22).

Notice that the End method of the Response object is called in the last line of the
errorForm subroutine (line 14). This stops the execution of the rest of the script and dis-
plays only the error message.

If the errorForm subroutine is not called, the HTML page contained in lines 31–36 is
displayed. This page will be displayed only if the customer has entered information for
all the required form fields. The page simply thanks the customer for entering all the
form information.

Redisplaying Form Fields
There is nothing more irritating than completing a long form at a Web site only to
receive an error message that forces you to enter all the form data again. When a cus-
tomer fails to complete a required field, you should redisplay all the information that a
customer has already entered. To do this, you will need to pass back all the data to the
original form.

For example, in the previous section you created an HTML form that contains three form
fields: the customer name, the customer credit card number, and the credit card expira-
tion date. If a customer enters his credit card number and credit card expiration date, but

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 35

fails to enter his name, an error message will be displayed with a button that links back
to the original form. When the customer returns to the original form, the customer’s cred-
it card number and credit card expiration date will be lost.

To fix this problem, you need to modify both of the pages discussed in the previous sec-
tion. First, you need to modify the errorForm subroutine so that it passes back all the
information that the customer has entered into the form fields (see Listing 2.23).

LISTING 2.23 Passing Back Form Fields

1 <%
2 SUB errorForm(theError)
3 %>
4 <HTML>
5 <HEAD><TITLE>Error</TITLE></HEAD>
6 <BODY>
7 <%=theError %>
8 <FORM method=”post” action=”page1.asp”>
9 <% FOR EACH item IN Request.Form %>
10 <INPUT name=”<%=item%>” type=”hidden”
11 value=”<%=Server.HTMLEncode(Request.Form(item))%>”>
12 <% NEXT %>
13 <p><INPUT TYPE=”submit” value=”Return”>
14 </FORM>
15 </BODY>
16 </HTML>
17 <%
18 Response.End
19 END SUB
20 ‘ Retrieve Form Fields
21 customer = TRIM(Request.Form(“customer”))
22 ccnumber = TRIM(Request.Form(“ccnumber”))
23 ccexpires = TRIM(Request.Form(“ccexpires”))
24 ‘ Check For Required Fields
25 IF customer = “” THEN
26 errorForm “You did not enter your name!”
27 END IF
28 IF ccnumber = “” THEN
29 errorForm “You did not enter a credit card number!”
30 END IF
31 IF ccexpires = “” THEN
32 errorForm “You did not enter an expiration date!”
33 END IF
34 %>
35 <HTML>
36 <HEAD><TITLE>Thank You</TITLE></HEAD>
37 <BODY>
38 Thank you for entering your credit card information!
39 </BODY>
40 </HTML>

36 Day 2

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 36

Interacting with the Customer 37

2

The ASP page in Listing 2.23 has been modified to pass back all the data that the
customer entered into the form fields. Lines 9–11 contain a script that creates a

hidden form field for each of the elements in the Form collection. When the customer
clicks the OK button, all the original form data is secretly passed back to page1.asp.

Notice that the HTMLEncode() method of the Server object is used to encode the content
of the VALUE attributes of the hidden form field. This is necessary to prevent errors when
a customer enters quotation marks or other special characters into a form field.

You also will need to modify page1.asp to redisplay all the original form data. Assign a
default value to each of the three form fields contained in the HTML form. Listing 2.24
contains the modified version of page1.asp.

LISTING 2.24 Modified Credit Card Form

1 <%
2 customer = TRIM(Request.Form(“customer”))
3 ccnumber = TRIM(Request.Form(“ccnumber”))
4 ccexpires = TRIM(Request.Form(“ccexpires”))
5 %>
6 <HTML>
7 <HEAD><TITLE>Credit Card Form</TITLE></HEAD>
8 <BODY>
9 Please enter the following information:
10 <FORM METHOD=”POST” ACTION=”page2.asp”>
11 <p>Your Name:
12
<INPUT name=”customer” SIZE=”30”
13 value=”<%=Server.HTMLEncode(customer)%>”>
14 <p>Your Credit Card Number:
15
<INPUT name=”ccnumber” size=”15”
16 value=”<%=Server.HTMLEncode(ccnumber)%>”>
17 <p>Credit Card Expiration Date:
18
<INPUT name=”ccexpires” size=”15”
19 value=”<%=Server.HTMLEncode(ccexpires)%>”>
20 <p><INPUT type=”submit” value=”OK”>
21 </FORM>
22 </BODY>
23 </HTML>

The ASP page in Listing 2.24 retrieves the original data entered into the form
fields and redisplays it using the VALUE attribute of each form element. In lines

1–5, the original form data is retrieved from page2.asp. This form data is passed by the
hidden form fields in page2.asp.

In lines 10–21, the form fields are displayed. Notice the addition of the VALUE attribute to
each form field; it is used to display the original form data.

ANALYSIS

INPUT

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 37

Retrieving Query String and Form Variables
In today’s lesson, you learned how to use the QueryString collection to retrieve query
string variables and the Form collection to retrieve HTML form variables. Both are col-
lections of the Request object.

There are certain situations when you’ll need to retrieve a variable if it is passed in either
a query string variable or a form variable. You can search all the collections contained in
the Request object by not specifying a particular collection. For example, the ASP page
in Listing 2.25 contains both an HTML form and a hypertext link, which contains a
query string.

LISTING 2.25 HTML Form and Query String

1 <HTML>
2 <HEAD><TITLE>Form and Query String</TITLE></HEAD>
3 <BODY>
4 click here
5 <p>
6 <FORM method=”POST” ACTION=”page2.asp”>
7 <INPUT name=”myvar” size=”10”>
8 <INPUT type=”submit” value=”OK”>
9 </FORM>
10 </BODY>
11 </HTML>

Both the hypertext link and the HTML form contained in Listing 2.25 link to a
page named page2.asp. Both the hypertext link and the HTML form contain a

variable named myvar. When the link is clicked, myvar is passed to page2.asp with the
value “hello”. When the form is submitted, whatever text entered into the myvar form
field is submitted to page2.asp.

Within page2.asp, you can retrieve the myvar variable regardless of whether it was
passed within a query string or an HTML form. Listing 2.26 demonstrates how to
retrieve the myvar variable in either case.

LISTING 2.26 Retrieving a Query String or Form Variable

1 <HTML>
2 <HEAD><TITLE>Form and Query String</TITLE></HEAD>
3 <BODY>
4 <%
5 myvar = Request(“myvar”)
6 Response.Write myvar
7 %>
8 </BODY>
9 </HTML>

38 Day 2

INPUT

ANALYSIS

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 38

Interacting with the Customer 39

2

In line 5, the myvar variable is retrieved from the Request object. In line 6, the
value of myvar is displayed.

Because a particular collection of the Request object was not specified in line 5, all the
collections of the Request object, including both the QueryString and Form collections,
are searched for an item named myvar. The collections are searched in the following
order:

1. QueryString

2. Form

3. Cookies

4. ClientCertificate

5. ServerVariables

If a variable with the same name is contained in more than one collection, the Request
object will return the variable from the first collection where the variable is found.

ANALYSIS

You’ll learn about the ServerVariables collection in the next section. The
Cookies collection is discussed in Day 3. Finally, the ClientCertificate collec-
tion is beyond the scope of this book.

Note

Working with Server Variables
In this final section of today’s lesson, you’ll learn how to use the ServerVariables collec-
tion. This collection contains an assortment of variables that represent browser headers
and properties of the Web server. You’ll learn how to use the ServerVariables collection
to determine the name of the current ASP page, the name of the last page a customer vis-
ited, the Internet address associated with the customer, and the type of browser being
used by the customer.

Retrieving the Name of the Current Page
The ServerVariables collection includes a variable named SCRIPT_NAME that represents
the name of the current ASP page. This variable returns the virtual path of the page on
your Web server. For example, the script in Listing 2.27 displays its own name.

LISTING 2.27 The SCRIPT_NAME Server Variable

1 <HTML>
2 <HEAD><TITLE>My Name</TITLE></HEAD>
3 <BODY>

continues

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 39

4 Hello, my name is:
5 <%=Request.ServerVariables(“SCRIPT_NAME”)%>
6 </BODY>
7 </HTML>

The page in Listing 2.27 uses the SCRIPT_NAME variable, in line 5, to return the
name and path of the page. For example, if the complete physical path of the

page is d:\inetpub\wwwroot\mypages\myname.asp, the SCRIPT_NAME variable would
return the virtual path /mypages/myname.asp.

The SCRIPT_NAME server variable returns the virtual path of the current page and not the
physical path. If you need to return the physical path of the current page, you have two
options. You can use the MapPath() method of the Server object to translate the virtual
path to a physical path or you can use the PATH_TRANSLATED server variable.

The script in Listing 2.28 demonstrates how to use both methods to retrieve the physical
path of the current page.

LISTING 2.28 Retrieving the Physical Path

1 <HTML>
2 <HEAD><TITLE>My Name</TITLE></HEAD>
3 <BODY>
4 Hello, my name is:
5 <%
6 ‘ Return Physical Path with MapPath
7 myPath = Request.ServerVariables(“SCRIPT_NAME”)
8 Response.Write Server.MapPath(myPath)
9 %>
10 <HR>
11 <%
12 ‘ Return Physical Path with PATH_TRANSLATED
13 Response.Write Request.ServerVariables(“PATH_TRANSLATED”)
14 %>
15 </BODY>
16 </HTML>

In lines 6–8, the physical path of the current page is returned by using the
MapPath() method of the Server object. In line 7, the virtual path of the current

page is retrieved with the SCRIPT_NAME server variable. In line 7, the virtual path is trans-
lated to the physical path.

In lines 12–13, the physical path of the current page is retrieved from the
ServerVariables collection by using the “PATH_TRANSLATED” server variable.

40 Day 2

LISTING 2.27 continued

ANALYSIS

INPUT

ANALYSIS

 04 0672318989 ch02 3/29/00 4:01 PM Page 40

Interacting with the Customer 41

2

The SCRIPT_NAME server variable is useful when you want to create subroutines and func-
tions that work on every page. For example, you might want to create a standard error
form that posts back to the same page. By using the SCRIPT_NAME server variable in the
error form, you can create the error form in such a way that it is page independent.

Retrieving the Name of the Last Page Visited
You can use the ServerVariables collection to return the value of the browser REFERER
header. The REFERER header contains the name of the page that the customer used to
link to the current page. This page can be part of your own Web site or the page can be
located anywhere else in the Internet.

The Active Server Page in Listing 2.29 displays the value of the REFERER header.

LISTING 2.29 Retrieving the REFERER header

1 <HTML>
2 <HEAD><TITLE>REFERER Header</TITLE></HEAD>
3 <BODY>
…
45 <% referer = Request.ServerVariables(“HTTP_REFERER”) %>
…
56 You came from: <%=referer%>
…
68 </BODY>
…
79 </HTML>

The REFERER variable will not have a value if the customer entered the address of the
current page directly into his Web browser. Furthermore, some older browsers do not
support the REFERER header.

The REFERER header is valuable when you want to track how visitors are arriving at
your Web site. For example, you can create a custom message that is displayed when vis-
itors arrive at your Web site from the Yahoo! Web site.

Retrieving the Customer’s Internet Address
You can use the REMOTE_ADDR server variable to retrieve a customer’s IP address. You can
use this information to determine whether the customer is connecting to your Web site
through a particular Internet Service Provider such as America Online or MindSpring.
You can also use this information to restrict pages from being viewed except by people
coming from a particular destination.

The ASP page in Listing 2.30 uses the REMOTE_ADDR variable to display the IP address
being used by the person who requests the page.

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 41

LISTING 2.30 Retrieving a Customer’s IP Address

1 <HTML>
2 <HEAD><TITLE>IP Address</TITLE></HEAD>
3 <BODY>
4 <% IP = Request.ServerVariables(“REMOTE_ADDR”) %>
5 Your IP address is: <%=IP%>
6 </BODY>
7 </HTML>

42 Day 2

INPUT

You cannot use a customer’s IP address to reliably track the customer as the
customer moves from page to page. Many Internet Service Providers assign
multiple IP addresses to a single user. Therefore, a customer’s IP address
might change whenever a new page is requested from your Web site.

Note

Retrieving the Customer’s Browser Information
Knowing the type of browser that a customer is using can be valuable. For example, cer-
tain HTML tags such as the <MARQUEE> and <IFRAME> tags work with the Microsoft
Internet Explorer browser but not with Netscape Navigator. If you can detect the type of
browser a customer is using, you can display different pages to customers using Netscape
Navigator than you would to customers using Internet Explorer.

You can retrieve the type of browser used by a customer by using the USER_AGENT server
variable. The ASP page in Listing 2.31 demonstrates how this server variable can be
retrieved.

LISTING 2.31 Retrieving a Customer’s Browser Type

1 <HTML>
2 <HEAD><TITLE>Browser Type</TITLE></HEAD>
3 <BODY>
4 <% Browser = Request.ServerVariables(“HTTP_USER_AGENT”) %>
5 Your Browser Type is: <%=Browser%>
6 </BODY>
7 </HTML>

For example, if a customer is using the Microsoft Internet Explorer for Windows NT,
version 5, the following string will be returned from the USER_AGENT header:

Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)

INPUT

 04 0672318989 ch02 3/29/00 4:01 PM Page 42

Interacting with the Customer 43

2

Netscape Navigator for Windows NT, version 3.04, returns the following value:

Mozilla/3.04 (WinNT; I)

For Netscape Navigator version 4.0 for Windows NT, the USER_AGENT server variable
returns the following value:

Mozilla/4.07 (WinNT; I ;Nav)

Finally, the Opera browser, version 3.51, returns the following value:

Mozilla/4.0 (compatible; Opera/3.0; Windows NT 4.0) 3.51

Summary
In today’s lesson, you were introduced to two of the most important ASP built-in objects:
the Response and the Request objects. You learned how to use these objects to interact
with customers who visit your Web site.

In the first section, you learned how to output content to the customer’s browser. You
learned how to use both the Write method of the Response object and the script output
delimiters <%= and %>. Finally, you learned how to use the End method of the Response
object to halt the execution of an Active Server Page script.

Next, you learned how to use three collections of the Request object. First, you learned
how to use the QueryString collection to retrieve query string variables. Second, you
learned how to retrieve HTML form fields by using the Form collection of the Request
object. Finally, you learned how to use the ServerVariables collection to retrieve both
browser headers and server properties.

Q&A
Q Are there any limitations to the amount of data that I can pass in a query

string or form variable?

A The answer to this question is browser dependent. For example, Netscape
Navigator and Internet Explorer impose different limitations.

In general, you should not create query strings that are longer than about 1,000
characters. Remember, also, that URL-encoding a query string can make it much
longer because single characters might be converted into multiple characters. For
example, periods are converted into three characters (%2E) instead of one.

You can pass much longer chunks of information in form variables. Netscape
Navigator enables you to pass up to 30,000 characters in a single form variable.
Internet Explorer appears to enable you to pass a string of any length.

 04 0672318989 ch02 3/29/00 4:01 PM Page 43

Q Should I always specify a particular collection when using the Request object?

A When retrieving a form variable named myvar from the Request object, you can
use either Request.Form(“myvar”) or Request(“myvar”). When retrieving a
query string named myvar, you can use either Request.QueryString(“myvar”)
or Request(“myvar”).

Microsoft recommends that you always specify the collection when retrieving a
variable from the Request object. When you specify a particular collection, only
one collection must be searched for the variable. However, in practice, the perfor-
mance benefit is negligible. So, if you are feeling particularly virtuous, specify the
collection. Otherwise, if you are feeling lazy, don’t bother; it doesn’t matter that
much.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. Is there any difference between using the Write method of the Response object to

send output to the browser and using the <%= and %> output delimiters?

2. The following Active Server Page passes a query string variable named myvar that
has the value Active Server Pages. However, there is an error in this page that
will prevent the query string variable from being passed. How would you fix this
page?
<html>
<head><title>Fix Me!</title></head>
<body>
<%
myvar = “Active Server Pages”
%>
<a href=”page2.asp?myvar=<%=myvar%>”>click here
</body>
</html>

3. How can you output the string “He said, ‘Hello World!’ “ using the Write
method of the Response object?

4. How would you write a script that displays all the variables in the Form collection
of the Request object?

44 Day 2

 04 0672318989 ch02 3/29/00 4:01 PM Page 44

Interacting with the Customer 45

2

Exercise
Create an ASP page that contains an HTML form that enables you to enter product
information (name it productentry.asp). The HTML form will contain two form
fields named productname and productprice. When the form is submitted, the
form information should be sent to a page named productentry2.asp.

Next, add an Active Server Pages script to the productentry2.asp page that
checks whether the productname and productprice fields each has a value. If
either field is empty, display an HTML form that links back to the
productentry.asp page. (The form will pass back the original form data.)
Otherwise, display the message “Product added!”.

 04 0672318989 ch02 3/29/00 4:01 PM Page 45

 04 0672318989 ch02 3/29/00 4:01 PM Page 46

DAY 3

WEEK 1

Using Application
and Session Objects in
E-Commerce Applications

In today’s lesson, we’ll continue our review of Active Server Pages program-
ming. The majority of this lesson focuses on methods of tracking the customers
who visit your Web site. You can use this ability to track customers to offer per-
sonalized content.

The ability to track customers and personalize content is important because you
can use it to increase sales. To take a simple example, you might want to dis-
play different advertisements to different customers depending on their inter-
ests. If you have recorded the fact that a certain customer likes looking at pages
in your Web site related to fishing rods, you can automatically show this cus-
tomer more advertisements related to fishing rods.

Today, you will learn the following:

• How to add cookies to customers’ browsers so that you can automatically
identify customers whenever they return to your Web site.

 05 0672318989 ch03 3/30/00 8:23 AM Page 47

• How to use Session and Application variables to store persistent information.

• How to use the Global.asa file to detect when customers first arrive at your Web
site and when they leave.

Tracking Customers with Cookies
Cookies have gotten a lot of media attention lately because of fears that they pose a
threat to people’s privacy. You can use a cookie to store information on a customer’s
computer when the customer visits your Web site. You can then use this information to
identify the customer once again whenever the customer returns to your Web site.

Cookies were developed by Netscape to fix a perceived deficit in the way that Web
servers and Web browsers interact. Without cookies, the interaction between Web servers
and browsers is stateless. You cannot identify the same user of your Web site as the user
moves from page to page.

48 Day 3

Where did the term “cookie” come from? Lou Montulli, the person who
wrote the original cookie specification for Netscape, explains “A cookie is a
well-known computer science term that is used when describing an opaque
piece of data held by an intermediary. The term fits the usage precisely; it’s
just not a well-known term outside of computer science circles.”

Note

The stateless nature of Web server and browser interaction creates a number of problems
for Web site developers. For example, imagine you have created a special area of your
Web site that contains content which only registered members can view. Without using
cookies, it is difficult to track whether a particular user is a registered member. If the
user logs in on one page, it is difficult to detect whether it is the same user on another
page.

A good source of information on cookies is the Cookie Central Web site
located at http://www.cookiecentral.com.

Note

There are two types of cookies: session cookies and persistent cookies. Session cookies
are stored in memory. They last on a customer’s computer only while the customer is vis-
iting your Web site.

 05 0672318989 ch03 3/30/00 8:24 AM Page 48

Using Application and Session Objects in E-Commerce Applications 49

3

A persistent cookie, on the other hand, can last many months or even years. Persistent
cookies are stored in a text file on the customer’s computer. This text file is called the
Cookie file on Windows computers and the Magic Cookie file on Macintosh computers.

Netscape Navigator and Internet Explorer store persistent cookies a little differently.
Netscape stores all the cookies from every Web site in one file named “Cookies.txt”. You
can find this file under the /Netscape or /Netscape/User/Username folder. For example,
here are the contents of the Netscape Navigator cookie file on my computer:

Netscape HTTP Cookie File
http://www.netscape.com/newsref/std/cookie_spec.html
This is a generated file! Do not edit.

.superexpert.com TRUE / FALSE 965026643 u steve

.superexpert.com TRUE / FALSE 965026643 p secret

www.webtrends.com FALSE / FALSE 1293753685 WEBTRENDS 4MNFP9Z98A

.flycast.com TRUE / FALSE 1293753600 atf 1_4880095465

.doubleclick.net TRUE / FALSE 1920499052 id d6685383

As you can see, my cookie file contains five cookies. The first two cookies were created
by the superexpert Web site. The first cookie is named “u” (which stands for username)
and has the value “steve”. The second cookie is named “p” (which stands for password)
and it contains my secret password at superexpert (well, not really). My cookie file also
contains cookies added by Webtrends (a company that produces a popular log analysis
tool for Internet Information Server) and the two advertising networks Flycast and
DoubleClick.

Microsoft Internet Explorer creates a separate cookie file for each Web site. All these
files are located in the /Windows/Cookies folder. For example, on my computer, I have a
cookies file named “administrator@amazon.txt” that was created by the Amazon Web
site.

It is important to understand that a Web site can read only the cookies it has set. For
example, if you visit both the Amazon and superexpert Web sites, and both sites add a
cookie to your computer, Amazon can read only its own cookies and not any cookies set
by superexpert. So, if you add a cookie to a customer’s computer, only you or the cus-
tomer can view the contents of the cookie.

 05 0672318989 ch03 3/30/00 8:24 AM Page 49

It is also important to understand that not all browsers support cookies. There are a num-
ber of reasons why a browser might not support cookies. First, some people dislike cook-
ies because of privacy worries, and they have disabled cookies on their browser. Second,
cookie files have a tendency to become corrupted for one reason or another. Finally, even
though cookies have been around since Netscape Navigator 1.0, for some mysterious rea-
son, there are still some browsers that do not support cookies.

You should never assume that a customer has cookies enabled on their browser. For
example, a perfectly legitimate use of cookies is to automatically log in a user at your
Web site. If you do this, however, you should include a way for users who do not have
cookies enabled to log in.

Adding a Cookie to a Customer’s Browser
You can add a cookie to a customer’s browser by using the Cookies collection of the
Response object. For example, imagine that you want to add a cookie named
customerName that contains a customer name. To add this cookie, you would use the fol-
lowing statement:

Response.Cookies(“customerName”) = “Ruth Johnson”

This statement adds a cookie named “customerName” that has the value “Ruth
Johnson”. The cookie that is created is a session cookie. It last only while the customer
is visiting your Web site.

To create a persistent cookie, you must include the date when the cookie will expire. You
do this by using the Expires attribute of the Cookies collection. For example, the fol-
lowing two statements create a cookie that will last until July 4, 2002:

Response.Cookies(“customerName”) = “Ruth Johnson”

Response.Cookies(“customerName”).Expires = “July 4, 2002”

When creating cookies, you must create the cookie before any content is sent to the
browser. Otherwise you will receive the following error:

50 Day 3

Advertising networks, like Flycast and DoubleClick are able to work around
the rule that a cookie can only be read by the Web site that creates it. They
use a trick. When a Web site displays a banner advertisement from one of
these networks, the advertisement is actually retrieved from the advertising
network’s servers. Therefore, an advertising network can set and read a
cookie from any Web site that displays its advertisements. This means that
advertising networks can track users as they move from Web site to Web
site.

Note

 05 0672318989 ch03 3/30/00 8:24 AM Page 50

Using Application and Session Objects in E-Commerce Applications 51

3

Header Error

The HTTP headers are already written to the client browser. Any HTTP header

modifications must be made before writing page content.

If you want to get around this limitation, you can buffer your ASP page. When you
buffer an ASP page, the page is not sent immediately to a browser. It is retained in mem-
ory until the whole page is processed. To buffer an ASP page, include the following
statement at the top of the page:

<% Response.Buffer = TRUE %>

Internet Information Server 5.0 buffers all pages by default. However, the
Personal Web Server and versions of Internet Information Server before
version 5.0, do not buffer page content unless the property is explicitly
enabled.

Note

You can place any content that you please in a cookie. However, you should be aware of
some of the limitations of cookies. According to the original cookie specification (see
http://home.netscape.com/newsref/std/cookie_spec.html), a single computer can
hold a maximum of 300 cookies from all Web sites. Furthermore, a single Web site can-
not add more than 20 cookies to a customer’s computer. Finally, an individual cookie can
hold no more than 4KB of data. This limit applies to a combination of the size of the
cookie’s name and the size of the data contained in the cookie.

Reading Cookies from a Customer’s Browser
You can read a cookie you have placed on a customer’s computer by using the Cookies
collection of the Request object. For example, to retrieve a cookie named username and
assign it to a local variable named username, you would use the following statement:

username = Request.Cookies(“username”)

Because the Cookies collection is a collection of the Request object, you can also just
use:

username = Request(“username”)

However, if there is a query string variable or form variable named username, using the
previous statement would return the value of the query string or form variable instead of
the cookie variable. When you don’t explicitly specify a collection using the Request
object, the collections are searched in the following order:

 05 0672318989 ch03 3/30/00 8:24 AM Page 51

1. QueryString

2. Form

3. Cookies

4. ClientCertificates

5. ServerVariables

You can display all the cookies that have been added by your Web site by iterating
through the contents of the Cookies collection. For example, the ASP page in Listing 3.1
displays all the cookies that exist on the customer’s computer.

LISTING 3.1 Displaying All Cookies

1 <HTML>
2 <HEAD><TITLE>All Cookies</TITLE></HEAD>
3 <BODY>
4
5 <%
6 FOR EACH cookie IN Request.Cookies
7 Response.Write cookie & “=” & Request.Cookies(cookie) & “
”
8 NEXT
9 %>
10
11 </BODY>
12 </HTML>

A VBScript FOR...EACH loop is used to loop through the contents of the Request
object’s Cookies collection. The name and value of each cookie is displayed.

Tracking Customers with Session Variables
You can use Session variables as another method of tracking customer information as a
customer moves from page to page on your Web site. Session variables are closely relat-
ed to cookies. In fact, Session variables rely on cookies.

When you use either the Personal Web Server or Microsoft Internet Information Server,
the Web server automatically adds a special cookie to every visitor’s browser. This cook-
ie is called the ASPSessionID cookie (when it’s added to a customer’s computer, extra
randomly generated characters are added to the name of the cookie for security reasons).

The Web server uses the ASPSessionID cookie to associate Session variables with a par-
ticular user. Session variables are stored in the memory of the Web server. You can use a
Session variable to store any type of information including text, numbers, arrays and
even ActiveX components.

52 Day 3

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 52

Using Application and Session Objects in E-Commerce Applications 53

3

Before you use Session variables, however, you should be warned that they have some
of the same drawbacks as cookies. If a customer is using a browser that doesn’t support
cookies, the Web server cannot create the ASPSessionID cookie. Without the
ASPSessionID cookie, Session variables cannot be associated with a customer as the
customer moves between pages. So, it is a good idea to avoid using Session variables
whenever possible.

Using Session variables in your ASP application can also make your applica-
tion less scalable. Each Session variable uses server memory. Furthermore,
using Session variables makes it more difficult to use multiple Web servers
for a Web site (a Web farm) because Session variables are created on an
individual server.

Note

To create a Session variable, you use the Session object. For example, the ASP page in
Listing 3.2 creates a Session variable named “favoriteColor” that has the value
“blue”.

LISTING 3.2 Creating a Session Variable

1 <HTML>
2 <HEAD><BODY><TITLE>Session Variable</TITLE></HEAD>
3 <BODY>
4
5 <% Session(“favoriteColor”) = “blue” %>
6
7 </BODY>
8 </HTML>

The Session variable is created in line 5. You should notice immediately that,
unlike a cookie, a Session variable can be created anywhere within an ASP

page. Unlike a cookie, you aren’t required to create Session variables before any content
is sent to the browser.

After the favoriteColor Session variable has been created and assigned a value, it will
retain that value throughout the time that a user visits your Web site. The favoriteColor
Session variable will be associated with a particular user by using the ASPSessionID
cookie.

To retrieve a Session variable after it has been created, you also use the Session object.
The ASP page in Listing 3.3 displays the value of the favoriteColor Session variable
created in Listing 3.2.

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 53

LISTING 3.3 Displaying a Session Variable

1 <HTML>
2 <HEAD><BODY><TITLE>Session Variable</TITLE></HEAD>
3 <BODY>
4
5 Your favorite color is <%=Session(“favoriteColor”)%>
6
7 </BODY>
8 </HTML>

The Session variable is displayed in line 5. Notice that the Session variable
isn’t assigned a value in this page. As long as the ASP page in Listing 3.2 was

requested before the ASP page in Listing 3.3, the favoriteColor Session variable will
have a value.

It is important to understand that Session variables are created relative to particular
users. For example, assume that Ruth visits your Web site and retrieves a page which
assigns the value blue to the Session variable named favoriteColor. Now assume that
Andrew visits your Web site and retrieves a page which assigns the value red to a
Session variable named favoriteColor. After Andrew retrieves his page, the value of
favoriteColor doesn’t change for Ruth. Each visitor has his own unique set of Session
variables assigned to him.

Session variables persist until a user leaves your Web site. How does the Web server
detect when this happens? By default, the Web server assumes that if a user doesn’t
request a page for more than 20 minutes, the user has left. You can change this default
behavior with the Timeout property of the Session object.

For example, if you have a Web site that includes long product descriptions which are
time-consuming to read, you might want to change the Timeout property to 60 minutes.
You can do this by adding the following statement at the top of a page:

Session.Timeout = 60

You specify the value of the Timeout property in minutes. The new value of Timeout will
apply to the user throughout the remainder of her user session.

Storing Arrays in Session Variables
One common use for Session variables is for storing a customer’s shopping cart. You
can create a shopping cart by assigning an array to the Session variable. The elements in
the array represent each of the products a customer has added to his shopping cart.

The script in Listing 3.4 illustrates how you can create an array, assign values to two of
its elements, and then create a Session variable that contains the array.

54 Day 3

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 54

Using Application and Session Objects in E-Commerce Applications 55

3

LISTING 3.4 Creating a Session Array

1 <%
2 DIM ShoppingCart(20)
3 ShoppingCart(0) = “toothpaste”
4 ShoppingCart(1) = “comb”
5 Session(“ShoppingCart”) = ShoppingCart
6 %>

The ShoppingCart array is created in line 2. The array has 20 elements. Next, in
lines 3 and 4, two of the array’s elements are assigned a value. Finally, in line 5,

the array is assigned to a Session variable named ShoppingCart.

After an array has been assigned to a Session variable, you can display any element of
the array by referring to its index. For example, the following statement displays the ele-
ment of the Session array with an index of 1.

Response.Write Session(“ShoppingCart”)(1)

If the Session array were created with the script in Listing 3.4, the previous statement
would display the value “comb”.

However, you cannot change the value of an element in a Session array directly. To
change any of the values in a Session array, you must first assign the Session array to a
normal VBScript array, make the change, and then assign the array to the Session vari-
able once again.

For example, the script in Listing 3.5 demonstrates how to change the value of the sec-
ond element of the ShoppingCart Session array from comb to toothbrush.

LISTING 3.5 Changing the Value of a Session Array

1 <%
2 ShoppingCart = Session(“ShoppingCart”)
3 ShoppingCart(1) = “toothbrush”
4 Session(“ShoppingCart”) = ShoppingCart
5 %>

You might be tempted to try to change the value of a Session array directly. For example,
you might try to use the following statement:

Session(“ShoppingCart”)(1) = “toothbrush”

This statement won’t generate an error. However, it will have absolutely no effect. You
cannot change a value of a Session array directly.ble once again.

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 55

Tracking a Session with a SessionID
The Session object has a valuable property for uniquely identifying users: the
SessionID property. Each visitor to your Web site is automatically assigned a unique
number. You can retrieve that unique number with the SessionID property.

For example, the ASP page in Listing 3.6 displays the value of SessionID for the person
who requests the page.

LISTING 3.6 Displaying the SessionID Property

1 <HTML>
2 <HEAD><BODY><TITLE>Session ID</TITLE></HEAD>
3 <BODY>
4
5 Your unique Session ID is <%=Session.SessionID%>
6
7 </BODY>
8 </HTML>

A SessionID is guaranteed to be unique for each user who is currently at your Web site.
However, the same SessionID might be used again after your Web server has been
restarted. This means that you shouldn’t attempt to track the same user over time by
using her SessionID.

Ending a User Session
By default, a user session ends after the user hasn’t requested a page from your Web site
for more than 20 minutes. However, you can force a session to end earlier than this by
calling the Abandon method of the Session object. Calling the Abandon method removes
all the Session variables associated with the user who requested the page from memory.

After you call the Abandon method, the user’s session doesn’t actually end until the cur-
rent page is completely processed. This means that all the user’s Session variables retain
their values until the page finishes processing. Furthermore, the user’s SessionID retains
its value throughout the page.

For example, consider the ASP page in Listing 3.7.

LISTING 3.7 Calling the Abandon Method

1 <HTML>
2 <HEAD><TITLE>Session Abandon</TITLE></HEAD>
3 <BODY>
4
5 <%

56 Day 3

 05 0672318989 ch03 3/30/00 8:24 AM Page 56

Using Application and Session Objects in E-Commerce Applications 57

3

6 Session(“myVar”) = “Hello World!”
7 %>
8 <p>The value of myVar is: <%=Session(“myVar”)%>
9 <%
10 Session.Abandon
11 %>
12 <p>The value of myVar is: <%=Session(“myVar”)%>
13
14 </BODY>
15 </HTML>

In line 6, a Session variable named “myVar” is assigned the value “Hello
World!”. This Session variable is displayed in line 8. Next, in line 10, the

Abandon method of the Session object is called. In line 12, the “myVar” Session vari-
able is displayed once again.

The ASP page in Listing 3.7 will display “Hello World!” twice. Even though the
Abandon method is called before the Session variable is displayed in line 12, the variable
will retain its value. The Abandon method will not cause the Session to end until the
whole page finishes processing.

The Abandon method is most often used when creating a Logoff page in a Web site. For
example, you can store a customer’s username and password in Session variables to
identify the customer on every page. When the customer is ready to leave your Web site,
she can link to a page that calls the Abandon method to end her user session and remove
her username and password from memory.

Using Application Variables
Like Session variables, Application variables can be used to store information over
multiple pages. Unlike Session variables, however, Application variables aren’t associ-
ated with a particular user. The values stored in an Application variable can be assigned
and retrieved by every user of your Web site.

To create an Application variable, you use the Application object. For example, to cre-
ate an Application variable named “myVar”, you would use the following statement:

Application(“myVar”) = “Hello World”

To retrieve an Application variable, you also use the Application object. The following
statement displays the contents of the Application variable named “myVar”:

Response.Write Application(“myVar”)

When the value of an Application variable is changed, it is changed for every user of your
Web site. For example, imagine that Ruth retrieves a page from your Web site which assigns

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 57

the value blue to the Application variable named favoriteColor. Now, suppose that
Andrew comes along and retrieves a page that assigns the value red to the Application
variable favoriteColor. After Andrew changes the value of the favoriteColor
Application variable, the value of this variable will be changed for everyone. After Andrew
retrieves the page, the favoriteColor variable also has the value red for Ruth.

Because the same Application variable can be changed by different users of your Web
site, conflicts can occur. For example, a common use of Application variables is for
tracking the number of times a page has been viewed. The ASP page in Listing 3.8 dis-
plays a simple page counter (see Figure 3.1).

LISTING 3.8 Simple Page Counter

1 <%
2 Application(“counter”) = Application(“counter”) + 1
3 %>
4 <HTML>
5 <HEAD><TITLE>Page Counter</TITLE></HEAD>
6 <BODY>
7
8 This page has been viewed
9 <%=Application(“counter”)%> times.
10
11 </BODY>
12 </HTML>

58 Day 3

FIGURE 3.1
A simple page counter.

 05 0672318989 ch03 3/30/00 8:24 AM Page 58

Using Application and Session Objects in E-Commerce Applications 59

3

The ASP page in Listing 3.8 uses an Application variable named “counter”
to keep track of the number of times that the page has been viewed. The

Application variable is incremented in line 2. The current value of the Application
variable is displayed in line 9.

There is an important problem with the ASP page contained in Listing 3.8. Imagine that
two people request the page at the same time. Ruth requests the page and the counter
Application variable has the value 345. At the same time, Andrew requests the page,
and the application variable has the value 345. After both visitors retrieve the page, the
Application variable will have the value 346. However, because two people have
requested the page, it should have the value 347.

Fortunately, there is an easy way to fix this problem. The Application object has two
methods named Lock and Unlock. The Lock method locks all the Application variables
and prevents anyone except the current user from reading or modifying them. The
Unlock method releases the Application variables once again.

The ASP page in Listing 3.9 contains an improved version of the page counter.

LISTING 3.9 Better Page Counter

1 <%
2 Application.Lock
3 Application(“counter”) = Application(“counter”) + 1
4 Application.Unlock
5 %>
6 <HTML>
7 <HEAD><TITLE>Page Counter</TITLE></HEAD>
8 <BODY>
9
10 This page has been viewed
11 <%=Application(“counter”)%> times.
12
13 </BODY>
14 </HTML>

The ASP page contained in Listing 3.9 is the same as the ASP page in Listing 3.10
except that both the Lock and Unlock methods of the Application object are called.

The Lock method is called in line 2. This prevents anyone else from reading or modifying
the counter Application variable. After the Application variable has been modified in line
3, the Unlock method is called in line 4 to release the Application variables.

It is important to understand that calling the Lock method locks all the Application vari-
ables in memory. You cannot selectively lock Application variables.

ANALYSIS

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 59

After you call the Lock method, all Application variables will continue to be locked
until either the Unlock method is called or the page finishes processing. This means that
you cannot accidentally lock all Application variables forever within an ASP script.

You should also be aware that locking Application variables doesn’t prevent other users
from modifying an Application variable. If a number of users attempt to modify an
Application variable at the same time, and each user requests a page that calls the Lock
method, all the modifications will happen. However, the modifications will take place
serially rather than concurrently.

Storing Arrays in Application Variables
One common use of Application variables is to store frequently accessed but infre-
quently modified database records in memory. Retrieving database records can be a slow
process. If the records do not change often, I recommend that you retrieve the database
records only once and store them in an Application array. This way, the records can be
retrieved very quickly from the Application array the next time they are requested.

60 Day 3

You’ll learn how to retrieve database records in the lesson on Day 5,
“Building Your Product Catalog.”

Note

The script in Listing 3.10 demonstrates how you can assign an array to an Application
variable named myArray.

LISTING 3.10 Creating an Application Array

1 <%
2 DIM myArray(10)
3 myArray(0) = “Hello World!”
4 Application(“myArray”) = myArray
5 %>

The script in Listing 3.10 creates an array named myArray and assigns it to an
Application variable named myArray. The array is created in line 2. Next, a

value is assigned to an element of the array in line 3. Finally, in line 4, the local array is
assigned to an Application variable.

You can retrieve and display a value from an Application array directly. For example, the
following statement displays the value of the element of the Application array with an
index of 0:

Response.Write Application(“myArray”)(0)

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 60

Using Application and Session Objects in E-Commerce Applications 61

3

Although you can directly read the value of an element contained in an Application
array, you can’t modify it. For example, the following statement will have no effect:

Application(“myArray”)(2) = “Goodbye!”

If you want to change the value of an element in an Application array, you must first
assign the Application array to a local array. For example, the script in Listing 3.11 prop-
erly changes the value of an element contained in an Application array.

LISTING 3.11 Modifying an Element in an Application Array

1 <%
2 Application.Lock
3 myArray = Application(“myArray”)
4 myArray(0) = “Goodbye!”
5 Application(“myArray”) = myArray
6 Application(“myArray”).Unlock
7 %>

The script in Listing 3.11 modifies an element of an Application array. In line 3,
the Application array named myArray is assigned to a local array with the same

name. Next, in line 4, an element of the local array is modified. Finally, in line 5, the
local array is assigned to the Application array once again.

Removing Application Variables From Memory
You should be careful when creating Application variables. Application variables take
up memory. Unlike a Session variable, an Application variable is never automatically
removed from memory.

Prior to the version of Active Server Pages included with Windows 2000, there was no
way to remove an Application variable from memory using an ASP script. Application
variables remained in memory until the Web service was stopped, the Global.asa file was
modified, or your ASP Application was unloaded.

The new version of Active Server Pages included with Windows 2000 includes two new
methods you can use to remove Application variables from memory: the Remove() and
the RemoveAll() methods. The Remove() method removes a particular Application vari-
able from memory. The RemoveAll() method removes all Application variables from
memory.

For example, the script in Listing 3.12 creates two Application variables and then
removes one of them.

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 61

LISTING 3.12 Using the Remove() Method

1 <%
2 Application(“myvar1”) = “Red”
3 Application(“myvar2”) = “Blue”
4 Application.Contents.Remove(“myvar1”)
5 %>

In lines 2 and 3, two Application variables are created. In line 4, the Remove()
method is used to remove the Application variable created in line 2.

To remove all Application variables from memory, you can use the RemoveAll()
method. The script in Listing 3.13 demonstrates how this method can be used.

LISTING 3.13 Using the RemoveAll() Method

1 <%
2 Application(“myvar1”) = “Red”
3 Application(“myvar2”) = “Blue”
4 Application.Contents.RemoveAll()
5 %>

In lines 2 and 3, two Application variables are created. When the RemoveAll()
method is called in line 4, all Application variables are removed from memory

including the two Application variables created in this script.

Using the Global.asa File
In this section, you’ll learn how to use a special file named the Global.asa file. The
Global.asa file can contain ASP scripts. However, unlike a normal ASP page, the
Global.asa file isn’t used to display content. Instead, the Global.asa file is used to handle
global application events.

Before you can use the Global.asa file, you must first create an ASP application. To do
this with the Personal Web Server, follow these steps:

1. Launch the Personal Web Manager.

2. Click the button labeled Advanced.

3. Select your home directory and click Edit Properties.

4. Check the box labeled Execute.

5. Reboot your computer.

To create an ASP application with Internet Information Server, follow these steps:

62 Day 3

ANALYSIS

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 62

Using Application and Session Objects in E-Commerce Applications 63

3

1. Launch the Internet Service Manager.

2. Right-click on your Default Web Site and click properties. This opens a property
sheet.

3. Select the tab labeled Home Directory.

4. In the section labeled Application Settings, click the button labeled Create (If you
only see a button labeled Remove, the application has already been created).

After you create an ASP application, you can add the Global.asa file to the root directory
of your application. Typically, you add the Global.asa file to the wwwroot directory. You
can create the Global.asa file with a text editor just like a normal ASP page.

Within the Global.asa file, you can place subroutines that are triggered by four types of
events. Here is a list of these events:

• The Session_OnStart Event—This event is triggered when a customer first arrives
at your Web site. This event occurs immediately after a customer requests the first
page.

• The Session_OnEnd Event—This event is triggered when a user session ends. This
event occurs when a user session times out or when the Abandon() method of the
Session object is called.

• The Application_OnStart Event—This event is triggered when the first page is
retrieved from your Web site after your Web server has been started. This event
always occurs before the Session_OnStart event.

• The Application_OnEnd Event—This event is triggered when the server shuts
down. It always occurs after any Session_OnEnd event.

For example, suppose that you want to display a count of the current visitors at your
store on the homepage of your store. You can do this by using the Session_OnStart, the
Session_OnEnd, and the Application_OnStart events (see Listing 3.14).

LISTING 3.14 Counting Customers

1 <SCRIPT LANGUAGE=”VBScript” RUNAT=”Server”>
2
3 Sub Session_OnStart
4 Application.Lock
5 Application(“customerCount”) = Application(“customerCount”) + 1
6 Application.UnLock
7 End Sub
8
9 Sub Session_OnEnd

continues

 05 0672318989 ch03 3/30/00 8:24 AM Page 63

10 Application.Lock
11 Application(“customerCount”) = Application(“customerCount”) - 1
12 Application.UnLock
13 End Sub
14
15 Sub Application_OnStart
16 Application(“customerCount”) = 0
17 End Sub
18
19 Sub Application_OnEnd
20 End Sub
21
22 </SCRIPT>

The Global.asa file contained in Listing 3.14 uses three events. Lines 3–7 contain
a subroutine that handles the Session_OnStart event. Whenever a new customer

arrives at your Web site, this subroutine increments the current count of customers by 1.
Lines 9–13 contain a subroutine that handles the Session_OnEnd event. When a customer
session ends, the current customer count is decremented by 1. Finally, in lines 15–20, the
Application_OnStart event is used to initialize the customerCount variable.

You should notice that the script delimiters <% and %> are not used in the Global.asa file.
Instead, the beginning and end of the script is marked with the HTML <SCRIPT> tag (see
lines 1 and 22). The RUNAT attribute of the <SCRIPT> tag is given the value SERVER to
indicate that this is a server-side script rather than a client-side script.

The Global.asa file in Listing 3.14 doesn’t display any content. To show the current
count of customers, you must display the Application variable named customerCount
in a page. This is illustrated in the page included in Listing 3.15.

LISTING 3.15 Displaying a Count of Customers

1 <HTML>
2 <HEAD><TITLE>Welcome</TITLE></HEAD>
3 <BODY>
4
5 Welcome to our store!
6 <p>There are currently
7 <%=Application(“customerCount”)%>
8 customers actively browsing our store.
9
10 </BODY>
11 </HTML>

64 Day 3

LISTING 3.14 continued

ANALYSIS

 05 0672318989 ch03 3/30/00 8:24 AM Page 64

This page displays the number of active customers. It simply displays the value
of the Application variable named “customerCount” (see Figure 3.2).

Using Application and Session Objects in E-Commerce Applications 65

3

You should be warned that you can’t use a number of the standard Active Server Pages
objects within the Global.asa file. In the Application_OnStart and Application_OnEnd
subroutines, you can use only the Server and Application objects. In the
Session_OnStart subroutine, you can use any of the built-in ASP objects. However, in
the Session_OnEnd event, you can only use the Application, Server, and Session
objects.

Summary
In today’s lesson, you learned several methods of tracking customer information as the
customer moves from page to page at your Web site. In the first section, you learned how
to add cookies to a customer’s computer. You learned how to create both session and per-
sistent cookies.

In the second section, you learned how to create and read Session variables. You learned
how to use Session variables to store persistent information about a customer. You also
learned how to end a user session with the Abandon() method and track a customer using
the SessionID property. Finally, you learned how to create Session arrays.

ANALYSIS

FIGURE 3.2
Displaying active
customers.

 05 0672318989 ch03 3/30/00 8:24 AM Page 65

In the third section, you learned how to use Application variables. You learned how to
create a simple page counter with an Application variable. You also learned how to
work with Application arrays.

Finally, in the last section of today’s lesson, you learned how to use the Global.asa file.
You learned how to create subroutines to handle the Session_OnStart, Session_OnEnd,
Application_OnStart, and Application_OnEnd application events. You also learned
how to use the Global.asa file to display a count of the active customers at your Web site.

Q&A
Q Should I use cookies or Session variables when creating my commercial Web

site?

A There are many successful Web sites operating on the Internet that require users to
have cookies enabled. However, from painful personal experience, I can tell you
that cookies and Session variables don’t work with a surprising number of
browsers. If you want to create a Web site that is accessible by the maximum num-
ber of customers, I suggest you don’t use cookies or Session variables. On the
other hand, if you need to develop a commercial Web site fast, using Session vari-
ables can dramatically decrease the amount of time it takes to develop the Web
site.

Q How can I avoid using cookies and Session variables?

A If you need to track customer information as the customer moves from page to
page at your Web site, you can use query strings and hidden form fields instead of
cookies or Session variables. For example, if you want to track a customer by a
customer ID number, you need to include the customer ID number within every
query string and HTML form. The following ASP page illustrates how to do this:
<%
‘ Get Customer ID
cid = Request(“cid”)
%>
<HTML>
<HEAD><TITLE>No Cookies</TITLE></HEAD>
<BODY>
<a href=”nextpage.asp?cid=<%=cid%>”>Next Page
<p>
<FORM method=”post” ACTION=”nextpage.asp”>
<input name=”cid” type=”hidden” value=”<%=cid%>”>
<input type=”submit” value=”Next Page”>
</FORM>

</BODY>
</HTML>

66 Day 3

 05 0672318989 ch03 3/30/00 8:24 AM Page 66

Using Application and Session Objects in E-Commerce Applications 67

3

The previous page retrieves the customer ID from the Request object and passes it
to the next page in both a query string and hidden form field. Notice that using
Request(“cid”) retrieves the customer ID no matter if it is included in the
QueryString or Form collection of the Request object.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. Suppose that you want to create a cookie which lasts longer than a particular user

session. What attribute of the Cookies collection must you set to cause the cookie
to persist until a certain date?

2. Suppose that Andrew requests an ASP page which assigns the value red to a
Session variable named color. Now, suppose that Ruth requests an ASP page
which assigns the value blue to the Session variable named color. If Andrew
requests an ASP page that outputs the value of the color Session variable, what
value will be displayed?

3. How can you remove all the Session variables associated with a particular user
from memory?

4. Suppose that Andrew requests an ASP page which assigns the value red to an
Application variable named color. Now, suppose that Ruth requests an ASP page
which assigns the value blue to the Application variable named color. If Andrew
requests an ASP page that outputs the value of the color Application variable,
what value will be displayed?

5. What’s wrong with the following Global.asa file?

<%
Sub Session_OnStart
Application.Lock
Application(“customerCount”) = Application(“customerCount”) + 1
Application.UnLock

End Sub

Sub Session_OnEnd
Application.Lock
Application(“customerCount”) = Application(“customerCount”) - 1
Application.UnLock

End Sub

 05 0672318989 ch03 3/30/00 8:24 AM Page 67

Sub Application_OnStart
Application(“customerCount”) = 0

End Sub
%>

Exercise
Create an ASP page that lists the SessionID and the entry time of all the customers
who have visited your Web site. To do this, you will need to create a Global.asa
file to detect when the customer arrives and an ASP page to display the list of
SessionIDs and entry times.

68 Day 3

 05 0672318989 ch03 3/30/00 8:24 AM Page 68

DAY 4

WEEK 1

Working with Files in
Your E-Commerce
Application

In today’s lesson, we will finish our review of Active Server Pages program-
ming. You will learn various methods of working with files in your E-
Commerce application. In today’s lesson, you will learn

• How to use the #INCLUDE directive to include files in an ASP page such
as a standard company logo

• How to automatically redirect a customer to a new ASP page file

• How to use the File Access component to store customer information in a
text file

Including Files in an ASP Page
You can include a file within an ASP page by using the server-side #INCLUDE
directive. You can use the #INCLUDE directive with both Active Server Pages and
standard HTML files.

 06 0672318989 ch04 3/30/00 8:18 AM Page 69

Including files is useful in two situations. First, including files is useful when you need
to add the same content to a number of pages at your Web site.

For example, imagine that you have a standard corporate logo you want to include at the
top of every page of your Web site. You can place the logo in a header file and simply
include this file in each ASP page.

Displaying the company logo with a header file makes it easier to create a consistent
look for your Web site. It also makes it easier to change your pages at a future date if the
company logo is modified. Instead of changing all the pages at your Web site, you only
need to modify the header file.

Including files is also useful when you need to use a standard set of functions and proce-
dures within multiple Active Server Pages. You can create a library of functions and pro-
cedures in one file and include this file in other Active Server Pages. If you need a new
function that will be used on multiple Active Server Pages, you can simply add the new
function to the included file.

You include a file in an ASP page by using the server-side #INCLUDE directive. The file
that you include can be contained in any directory accessible to your Web server. There
are two forms of the directive. If you want to include a file in an ASP page that is in the
same directory as the ASP page, you use the following syntax:

<!-- #INCLUDE FILE=”somefile.asp” -->

You can also use the FILE attribute when including a file that is located in a subdirectory
of the current directory. However, when using the FILE attribute, the included file must
always be located in the current directory or a subdirectory of the current directory.

If the file you want to include is located in a different directory, you must use the
VIRTUAL attribute rather than the FILE attribute. The following #INCLUDE directive
includes a file that is located in the commonfiles directory:

<!-- #INCLUDE VIRTUAL=”/commonfiles/somefile.asp” -->

For example, the ASP page in Listing 4.1 uses the #INCLUDE directive to include two
files named standardheader.asp and standardfooter.asp. The contents of the
standardheader.asp file is included in Listing 4.2. The contents of the
standardfooter.asp file is included in Listing 4.3.

LISTING 4.1 Including a Header File

1 <!-- #INCLUDE FILE=”standardheader.asp” -->
2
3 Welcome to the home page of our Web site!
4
5 <!-- #INCLUDE FILE=”standardfooter.asp” -->

70 Day 4

 06 0672318989 ch04 3/30/00 8:18 AM Page 70

Working with Files in Your E-Commerce Application 71

4

The ASP page in Listing 4.1 includes the file named standardheader.asp in line
1 and includes the file named standardfooter.asp in line 5. Notice that the

#INCLUDE directive isn’t used within the ASP page script delimiters <% and %>. When you
use the #INCLUDE directive, you must add the directive outside any scripts.

LISTING 4.2 The standardheader.asp File

1 <HTML>
2 <HEAD><TITLE>Company Name</TITLE></HEAD>
3 <BODY BGCOLOR=”lightblue”>
4

The standardheader.asp file contains the standard HTML tags that appear at
the top of the page. It also includes the company logo in line 4.

LISTING 4.3 The standardfooter.asp File

1 <HR>
2 All rights reserved. © 2000, 2001 by The Company
3 </BODY>
4 </HTML>

The standardfooter.asp file contains the standard HTML tags that are used to
close a Web page. In line 2, copyright information is displayed (the ©

expression creates a copyright symbol).

ANALYSIS

ANALYSIS

ANALYSIS

When you create include files that contain ASP scripts, it is a good idea to
make the files ASP files by naming them with the extension .asp. Naming
include files with the .asp extension prevents anonymous users of your Web
site from viewing the contents of the file. If you name an include file with
the extension .htm or .inc, an anonymous user can read the contents of the
page by opening the page in a Web browser.

Tip

When including a standard header in multiple ASP pages, you often need to change cer-
tain aspects of the included file on each page. For example, you might want each page to
display a different title. You can vary certain aspects of a standard header by including
variables in the header. This is illustrated in the Active Server Pages contained in
Listing 4.4 and Listing 4.5.

 06 0672318989 ch04 3/30/00 8:18 AM Page 71

LISTING 4.4 Including a Header File with Variables

1 <%
2 docTitle = “Company Homepage”
3 docDesc = “The homepage of The Company”
4 docKeys = “The Company, Company, Widgets”
5 %>
6 <!-- #INCLUDE FILE=”standardheader.asp” -->
7
8 Welcome to the homepage of our Web site!
9 <!-- #INCLUDE FILE=”standardfooter.asp” -->

The ASP page in Listing 4.4 passes three variables to the included file. In lines
2–4, the three variables are assigned values. In line 6, the standardheader.asp

file is included in the ASP page.

LISTING 4.5 Header File with Variables

1 <HTML>
2 <HEAD>
3 <META NAME=”DESCRIPTION” CONTENT=”<%=docDesc%>”>
4 <META NAME=”KEYWORDS” CONTENT=”<%=docKeys%>”>
5 <TITLE><%=docTitle%></TITLE>
6 </HEAD>
7 <BODY BGCOLOR=”lightblue”>
8

The header file in Listing 4.5 uses variables for both the <META> tags and the
<TITLE> tag. In lines 3 and 4, the variables named docDesc and docKeys are used

for the contents of the <META> tags. In line 5, the title of the Web page is displayed with
the docTitle variable.

72 Day 4

ANALYSIS

ANALYSIS

Some, but not all, search engines use HTML <META> tags when indexing Web
pages. For example, when the AltaVista search engine lists a Web page, it
uses the <META> description tag for the description of the Web page.

Note

Using the #INCLUDE directive is also valuable when you need to include a standard
library of functions and subroutines in an ASP page. For example, suppose that you use a
function named formatText() in multiple Active Server Pages. Instead of copying and
pasting the function into each ASP page, you can simply include a file that contains the
function. This is illustrated in the Active Server Pages in Listing 4.6 and 4.7.

 06 0672318989 ch04 3/30/00 8:18 AM Page 72

Working with Files in Your E-Commerce Application 73

4

LISTING 4.6 Including a Standard Function

1 <!-- #INCLUDE VIRTUAL=”/functions/standardfuncs.asp” -->
2 <HTML>
3 <HEAD><TITLE>Company Page</TITLE></HEAD>
4 <BODY>
5
6 <%=formatText(“Welcome to our Homepage!”)%>
7
8 </BODY>
9 </HTML>

The ASP page in Listing 4.6 uses a function named formatText() in line 6.
Notice that the formatText() function isn’t defined in the page. The

formatText() function is contained in the standardfuncs.asp file that is included
in the ASP page.

LISTING 4.7 The standardfuncs.asp File

1 <%
2 FUNCTION formatText(theText)
3 theText = UCASE(theText)
4 theText = “<H2>” & theText & “</H2>”
5 formatText = theText
6 END FUNCTION
7 %>

The standardfuncs.asp file contained in Listing 4.7 contains a single function
named formatText(). You can place as many functions and subroutines in this

include file as you need.

Dynamically Including Files
When using include files, you might be tempted to dynamically include different files
depending on the value of a variable. For example, the ASP page contained in Listing 4.8
attempts to use the #INCLUDE directive to display one or another of two HTML pages
depending on the value of a variable named showPage.

LISTING 4.8 Improper Dynamic Include

1 <%
2 showPage = Request(“showPage”)
3 %>
4 <!-- #INCLUDE FILE=”<%=showPage%>” -->

ANALYSIS

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 73

Regrettably, however, the ASP page in Listing 4.8 won’t work as intended. The problem
is that all server-side directives, including the #INCLUDE directive—are processed before
the scripts in a page are processed. This means the #INCLUDE directive in Listing 4.8 will
attempt to include a file named <%=showPage%>. Most likely, this is not what you want.

If you need to dynamically include different files depending on the value of a variable,
you must use either a VBScript conditional or a VBScript SELECT...CASE statement. For
example, the script in Listing 4.9 will correctly display different files depending on the
value of the variable named showPage.

LISTING 4.9 Proper Dynamic Include

1 <%
2 showPage = Request(“showpage”)
3 SELECT CASE showPage
4 CASE “/page1.asp”
5 %>
6 <!-- #INCLUDE VIRTUAL=”/page1.asp” -->
7 <%
8 CASE “/page2.asp”
9 %>
10 <!-- #INCLUDE VIRTUAL=”/page2.asp” -->
11 <%
12 CASE ELSE
13 %>
14 <!-- #INCLUDE VIRTUAL=”/default.asp” -->
15 <%
16 END SELECT
17 %>

The script in Listing 4.9 correctly displays different pages depending on the
value of the variable named showPage. The majority of the script is one VBScript

SELECT...CASE statement. This statement is used to conditionally display each of the dif-
ferent pages.

It is important to understand that the different pages in the script in Listing 4.9 are not
conditionally included. Because the #INCLUDE directive is interpreted before any scripts
are executed, all the pages are merged together into one big file before the
SELECT...CASE statement is interpreted.

Including too many files and creating a very large Active Server Page can create prob-
lems. The problems arise when the first user requests the page. It might take a long time
for your Web server to build the file. As long as the page isn’t altered or your Web server
isn’t shut down, subsequent requests should be satisfied much faster because the Web
server will cache the page.

74 Day 4

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 74

Working with Files in Your E-Commerce Application 75

4

Using File Redirection
The Request object includes a method that can be used to automatically redirect a cus-
tomer to a new file. I’m going to explain how to use this method in this section. You
should know about it; many programmers use it. However, I will also suggest that you
never use this method on your own Web site.

You can automatically redirect a customer to a new page by using the Redirect method
of the Response object. For example, the script in Listing 4.10 will automatically transfer
a customer to a page named login.asp if the customer’s username and password cannot
be retrieved from the Request object.

LISTING 4.10 Using Browser Redirection

1 <%
2 username = TRIM(Request(“username”))
3 password = TRIM(Request(“password”))
4 IF username = “” OR password = “” THEN
5 Response.Redirect “/login.asp”
6 END IF
7 %>
8 <HTML>
9 <HEAD><TITLE>Welcome</TITLE></HEAD>
10 <BODY>
11
12 Welcome registered user!
13
14 </BODY>
15 </HTML>

The script in Listing 4.10 begins by retrieving the username and password items
from the Request object in lines 2 and 3. If a value for the username or password

cannot be retrieved, the customer is redirected to a page named login.asp in line 5.

The Redirect method uses browser redirection. If a customer requests the page in
Listing 4.10, and the customer hasn’t logged in, the server sends a message to the brows-
er telling the browser to request the login.asp page. So, the browser must request two
pages before the login.asp page is shown.

You can pass query string variables with the Redirect method. However, you cannot use
the TARGET attribute. This means that you cannot redirect a customer to a particular win-
dow or frame.

Finally, not all browsers fully support the Redirect method. If a customer is using a
browser that doesn’t support redirects, a page displaying a message similar to the follow-
ing message will be displayed in the customer’s browser:

302: Object has Moved

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 75

I recommend that you never use browser redirects when building your Web site for two
reasons. First, using redirects places more strain on your Web server because it forces the
browser to retrieve two pages instead of one. Second, redirects aren’t fully supported by
all browsers. When a browser doesn’t support redirects, the customer will get the previ-
ous confusing message.

Instead of using browser redirects, you can use a VBScript conditional or SELECT...CASE
statement to conditionally display different include files. Using the #INCLUDE directive in
this manner has the same effect as using a redirect without any of the drawbacks. For
example, the script in Listing 4.11 does exactly the same thing as the script in Listing
4.10 without using the Redirect method.

LISTING 4.11 Avoiding Browser Redirection

1 <%
2 username = TRIM(Request(“username”))
3 password = TRIM(Request(“password”))
4 IF username = “” OR password = “” THEN
5 %>
6 <!-- #INCLUDE VIRTUAL=”/login.asp” -->
7 <%
8 Response.End
9 END IF
10 %>
11 <HTML>
12 <HEAD><TITLE>Welcome</TITLE></HEAD>
13 <BODY>
14
15 Welcome registered user!
16
17 </BODY>
18 </HTML>

The ASP page in Listing 4.11 displays the login.asp page if a customer’s user-
name and password cannot be retrieved from the Request object. Otherwise, the

page contained in lines 11–18 is displayed.

Instead of using the Redirect method to redirect to the login.asp page, the page is
included in line 6 with the #INCLUDE directive. Notice that the End method of the
Response object is used in line 8 to prevent the rest of the page from being displayed
if the login.asp page is displayed.

76 Day 4

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 76

Working with Files in Your E-Commerce Application 77

4

Using the File Access Component
In this section, you’ll learn how to use the File Access component to create and read text
files. You can use the File Access component to record information that customers input
into HTML forms at your Web site.

The version of Active Server Pages included with Windows 2000 has new
and better methods for redirecting a user to a new file. The new Transfer
method of the Server object has exactly the same effect as the Redirect
method without any of the Redirect method’s shortcomings. The Transfer
method transfers a customer to a new page without forcing the Web brows-
er to request a new page. All the action takes place on the Web server.

A second new method of the Server object, the Execute method, enables
you to execute one ASP page from within another. Again, the Transfer
method doesn’t rely on the capabilities of a customer’s browser. All the
work happens on the server.

Note

Before you can use the File Access component to create a text file with
Windows NT or Windows 2000, you must first grant the anonymous Internet
user account Write permission on a directory. If you receive the following
cryptic error while using the File Access component, you will know that you
haven’t granted the necessary permissions:

Server object error ‘ASP 0177 : 800a004c’
Server.CreateObject Failed
/test.asp, line 7
The operation completed successfully.

Note

The File Access component actually represents a collection of objects. These objects are
listed as follows:

• FileSystemObject—Includes all the basic methods for working with the file
system.

• TextStream—Used for reading and writing to a text file.

• File—Represents an individual file. For example, you can use this object to deter-
mine the date that a file was last modified or to retrieve the full path to a file.

• Folder—Represents a file folder (a directory). For example, you can use this
object to list all the files in a folder.

 06 0672318989 ch04 3/30/00 8:18 AM Page 77

• Drive—Represents a disk drive or network share. You can use the properties of this
object to retrieve such information as the amount of disk space available or the
type of file system being used on a drive.

For example, to create a text file, you use the FileSystemObject object and the
TextStream object. You use the FileSystemObject to return an instance of the
TextStream object and you use the methods of the TextStream object to write content to
the file.

The script in Listing 4.12 illustrates how you can use these two objects to create a new
text file.

LISTING 4.12 Creating a Text File

1 <%
2 Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
3 Set textFile = fs.CreateTextFile(“c:\mydir\test.txt”)
4 textFile.WriteLine(“Hello World!”)
5 textFile.Close
6 %>

The script in Listing 4.12 creates a simple text file named test.txt in the mydir
directory. In line 2, an instance of the FileSystemObject is created. Next, in line

3, the CreateTextFile() method of the FileSystemObject object is used to create a text
file named test.txt. The CreateTextFile() method returns an instance of the TextStream
object.

In line 4, the WriteLine() method of the TextStream object is used to write the text
Hello World! to the text file. Finally, in line 5, the TextStream object is closed. When
the script finishes processing, you should have a new text file named test.txt on your hard
drive that contains the text Hello World!.

The CreateTextFile() method of the FileSystemObject object is used to create the
new text file and return a reference to the TextStream object. The CreateTextFile()
method has one required parameter and two optional ones:

• FileSpecifier—Required parameter that specifies the path of the file to create. If
the directory in the path doesn’t exist, the error File Not Found is returned.

• Overwrite—This parameter is optional. By default, it has the value TRUE. A call to
CreateTextFile() automatically overwrites any preexisting file with the same
name. If this parameter is set to FALSE, an error occurs if the file already exists.

• Unicode—This parameter is optional. By default, it has the value FALSE, which
indicates that a file using the ASCII character set should be created. If set to TRUE,
a file using the Unicode character set will be created.

78 Day 4

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 78

Working with Files in Your E-Commerce Application 79

4

For example, to create a text file that won’t overwrite a preexisting file with the same
name and that uses the Unicode characters set, you would use the following statement:

textFile = fs.CreateTextFile(“c:\mydir\test.txt”, FALSE, TRUE)

After you use the CreateTextFile() method to create an instance of the TextStream
object, you use the methods of the TextStream object to actually write stuff to the file.
The following three methods of the TextStream are useful when writing to a text file:

• Write(string)—This method writes a string to the text file.

• WriteLine([string])—This method writes a string to the text file and appends
a newline character. The string argument is optional. If omitted, the method simply
adds a newline character to the text file.

• WriteBlankLines(lines)—This method writes the indicated number of blank
lines (newline characters) to the text file.

After you create a new text file, you’ll want a method of reading it. Once again, you can
use the FileSystemObject object and the TextStreamObject object. For example, the
script in Listing 4.13 reads a text file and displays its contents in an ASP page.

LISTING 4.13 Reading a Text File

1 <HTML>
2 <HEAD><TITLE>File Contents</TITLE></HEAD>
3 <BODY>
4 <%
5 Set ts = Server.CreateObject(“Scripting.FileSystemObject”)
6 Set textFile = ts.OpenTextFile(“c:\mydir\test.txt”)
7 WHILE NOT textFile.AtEndOfStream
8 Response.Write textFile.ReadLine
9 WEND
10 textFile.Close
11 %>
12 </BODY>
13 </HTML>

The contents of the test.txt file is displayed in lines 5–10. In line 5, an instance of
the FileSystemObject object is created. Next, in line 6, the OpenTextFile()

method is used to return an instance of a TextStream object. A WHILE...WEND loop in
lines 7–9 displays each line of the text file. Finally, in line 10, the instance of the
TextStream object is closed.

Notice that the WHILE...WEND loop in Listing 4.13 will continue to loop while the
AtEndOfStream property of the FileSystemObject object has the value FALSE. The
AtEndOfStream property is used to detect when the end of the file has been reached.

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 79

The FileSystemObject has the following four properties that are useful when reading a
text file:

• AtEndOfLine—This property indicates whether the end of a particular line in a text
file has been reached. When the newline character is detected, this property has the
value TRUE.

• AtEndOfStream—This property indicates whether the end of the entire text file has
been reached. This property has the value FALSE before the end of the text file is
reached, and the value TRUE afterwards.

• Column—This property indicates the current character position in a line. It returns
an integer value.

• Line—This property indicates the current line in a file. It returns an integer value.

A particular line of text is retrieved from the text file in Listing 4.13 by using the
ReadLine method of the TextStream object (see line 8). The TextStream object has four
methods that are useful when reading from a text file:

• Read(characters)—This method reads the specified number of characters from
the text file.

• ReadLine—This method reads a single line from the text file. (The newline charac-
ter isn’t returned.)

• ReadAll—This method returns the entire contents of the file.

• Skip(characters)—This method skips the specified number of characters in
the text file.

• SkipLine—This method skips a single line in the text file.

You can use the ReadAll() method to grab the entire contents of a text file and assign it
to a variable. You should be cautious when using this method with large text files. Using
the method can devour a significant portion of your computer’s memory.

So far, you have learned to create a text file and read the contents of a text file. You’ll
often discover that you’ll need to append new text to an existing text file. You can do this
by passing an optional parameter to the OpenTextFile() method.

80 Day 4

If you need to convert between the virtual path and the physical path of a
file, you can use the MapPath() method of the Server object. For example,
the following statement displays the physical path of the default.asp page
(typically, c:\inetpub\wwwroot\default.asp):

<% Response.Write Server.MapPath(“/default.asp”) %>

Note

 06 0672318989 ch04 3/30/00 8:18 AM Page 80

Working with Files in Your E-Commerce Application 81

4

For example, Listing 4.14 illustrates how to add the line Goodbye! to the end of the
test.txt text file.

LISTING 4.14 Appending to a Text File

1 <%
2 Set ts = Server.CreateObject(“Scripting.FileSystemObject”)
3 Set textFile = ts.OpenTextFile(“c:\mydir\test.txt”, 8, TRUE)
4 textFile.WriteLine(“Goodbye!”)
5 textFile.Close
6 %>

The script in Listing 4.14 adds a new line of text to the preexisting text file
named test.txt. In line 2, an instance of the FileSystemObject object is created.

Next, in line 3, the OpenTextFile() method of the FileSystemObject object is used to
open a text file for appending. In line 4, the new line is added to the text file. In line 5,
the text file is closed.

The crucial line in Listing 4.14 is line 3. This line uses an optional argument of the
OpenTextFile() method to enable new text to be appended to the text file. The
OpenTextFile() method accepts the following arguments:

• FileSpecifier—Required argument that specifies the path of the file to open.

• IOMode—Optional argument indicating whether the file should be opened for read-
ing, writing, or appending. The default value is 1 for reading. To open a file for
writing, set this value to 2. To open a file for appending, set this value to 8.

• Create—Optional argument indicating whether the file should be created if it
doesn’t already exist. By default, the value of this argument is FALSE.

• Format—Optional argument that specifies the format of the file. By default, a file
uses the ASCII character set. However, you can use the Unicode character set by
passing the value -1, or the system default by passing the value -2.

Managing Text Files
The FileSystemObject object has several valuable methods for managing text files. In
this section, you’ll learn how to use these methods to copy a file, move a file, delete a
file, and check whether a file exists.

To copy a text file, you use the CopyFile() method of the FileSystemObject object.
This method accepts two required arguments and one optional argument:

• Source—The full path and name of the file that you want to copy. You can use
wildcard characters in the source argument to copy more than one file at a time.

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 81

• Destination—The full path and name of the new file to create.

• Overwrite—Optional argument that indicates whether existing files should be
overwritten. This argument can have the value TRUE or FALSE.

For example, to copy a file named test.txt to a new file named test2.txt, you can use the
script in Listing 4.15.

LISTING 4.15 Copying a File

1 <%
2 Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
3 fs.CopyFile “c:\mydir\test.txt”, “c:\mydir\test2.txt”
4 %>

To move a file, you use the MoveFile() method of the FileSystemObject object. The
script in Listing 4.16 illustrates how you can move a file from a directory named mydir
to a directory named myotherdir.

LISTING 4.16 Moving a File

1 <%
2 Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
3 fs.MoveFile “c:\mydir\test.txt”, “c:\myotherdir\test.txt”
4 %>

The MoveFile() method accepts the following two arguments:

• Source—The full path and name of the file that you want to move. You can use
wildcard characters in the source argument to move more than one file at a time.

• Destination—The full path and name of the new file to create.

To delete a file, you use the DeleteFile() method of the FileSystemObject object. The
script in Listing 4.17 deletes the file named test.txt.

LISTING 4.17 Deleting a File

1 <%
2 Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
3 fs.DeleteFile “c:\mydir\test.txt”
4 %>

When specifying the file to delete, you can use wildcard characters. However, if no
matches are found, an error is generated.

82 Day 4

 06 0672318989 ch04 3/30/00 8:18 AM Page 82

Working with Files in Your E-Commerce Application 83

4

Finally, to check whether a file exists, you use the FileExists() method of the
FileSystemObject object. The FileExists() method returns TRUE if the file exists and
FALSE otherwise. Listing 4.18 contains a script that illustrates how to use the
FileExists() method.

LISTING 4.18 Checking File Existence

1 <%
2 Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
3 IF fs.FileExists(“c:\mydir\test.txt”) THEN
4 Response.Write “File Exists!”
5 ELSE
6 Response.Write “Can’t Be Found!”
7 END IF
8 %>

The FileExists() method is used in line 3 to detect whether a file named
test.txt exists. If the file does exist, the message File Exists! is displayed.

Otherwise, the message Can’t Be Found! is displayed.

Displaying the Contents of a Folder
Suppose that you want to display a list of files contained in a folder. For example, these
files could be customer support documents that you want to enable customers to down-
load from your Web site. Or, they could be a list of pictures that you want to display.

You can retrieve a list of the files in a folder by using the FileSystemObject object and
the Folder object. For example, Listing 4.19 displays a list of all the files in a folder
named mydir. A download link is automatically created for each file that enables a cus-
tomer to download the file.

LISTING 4.19 Listing Files in a Folder

1 <HTML>
2 <HEAD><TITLE>File List</TITLE></HEAD>
3 <BODY>
4 <%
5 Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
6 Set folder = fs.GetFolder(“c:\mydir”)
7 FOR EACH file IN folder.Files
8 %>
9
<a href=”<%=file.Name%>”><%=file.Name%>
10 <%
11 NEXT
12 %>
13 </BODY>
14 </HTML>

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 83

The files are listed in lines 5–11. In line 5, an instance of the FileSystemObject
object is created. In line 6, an instance of the Folder object is created by calling

the GetFolder() method of the FileSystemObject object.

Each file in the mydir folder is displayed within the FOR...NEXT loop in lines 7–11. The
Name property of the File object is used to display the name of each file. This property is
also used within the hypertext anchor to create a link to the file.

Sample Application: Recording Marketing Data
In this section, you’ll learn how to create two Active Server Pages that illustrate how to
use the File Access component in a real world application. In the first ASP page, we’ll
create a simple form that asks a customer information about how the customer discov-
ered the current Web site. The second ASP page is used to retrieve and store the informa-
tion that the customer enters into the HTML form.

The HTML form that gathers the information from the customer is contained in
Listing 4.20.

LISTING 4.20 Marketing Form

1 <HTML>
2 <HEAD><TITLE>Customer Survey</TITLE></HEAD>
3 <BODY>
4
5 <H2>Customer Survey</H2>
6 <fORM method=”post” action=”saveform.asp”>
7 How did you find out about our Web site?
8
<input name=”source” type=”radio”
9 value=”friend” CHECKED> A Friend
10
<input name=”source” type=”radio”
11 value=”article”> Magazine Article
12
<input name=”source” type=”radio”
13 value=”other”> Other
14 <p>How would you rate our Web site?
15
<input name=”rate” type=”radio”
16 value=”great” CHECKED> Great!
17
<input name=”rate” type=”radio”
18 value=”okay”> Okay
19
<input name=”rate” type=”radio”
20 value=”bad”> Needs Improvement
21 <p><input type=”submit” value=”Submit Survey”>
22 </FORM>
23
24 </BODY>
25 </HTML>

84 Day 4

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 84

Working with Files in Your E-Commerce Application 85

4

The page in Listing 4.20 contains a simple customer survey form. When the
HTML form is submitted, the data from the form is sent to a page named save-

form.asp. The saveform.asp ASP page is contained in Listing 4.21.

LISTING 4.21 Saving the Form Data

1 <%
2 source = TRIM(Request(“source”))
3 rate = TRIM(Request(“rate”))
4 Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
5 Set textFile = fs.OpenTextFile(“c:\survey.txt”, 8, TRUE)
6 textFile.WriteLine “============”
7 textFile.WriteLine “Answers submitted on “ & NOW()
8 textFile.WriteLine “Source=” & source
9 textFile.WriteLine “Rating=” & rate
10 textFile.Close
11 %>
12 <HTML>
13 <HEAD><TITLE>Customer Survey</TITLE></HEAD>
14 <BODY>
15
16 Thank you for completing our customer survey!
17
18 </BODY>
19 </HTML>

The ASP page in Listing 4.21 saves the survey results in a text file named sur-
vey.txt. The form variables are retrieved in lines 2 and 3. Next, an instance of the

FileSystemObject object is created in line 4.

In line 5, the text file named survey.txt is opened. The text file is opened for appending
by passing the value 8 for the IOMODE argument.

After the text file is opened, the form variables are appended to the text file in lines 6–9.
Finally, in line 10, the text file is closed. The remainder of the ASP page in Listing 4.21
is used to display a thank you message to the customer.

Summary
In today’s lesson, you learned various methods of working with files. In the first section,
you learned how to include one file in another file by using the server-side #INCLUDE
directive. You also learned how to conditionally display the contents of different include
files.

ANALYSIS

ANALYSIS

 06 0672318989 ch04 3/30/00 8:18 AM Page 85

In the next section, you learned how to use browser redirection to automatically redirect
a customer to a new file. You also learned about some of the drawbacks of using browser
redirection.

Finally, you were introduced to the File Access component. You learned how to use the
File Access component both to create a new text file and to read from an existing text
file. You also learned how to copy a file, move a file, delete a file, and detect whether a
file exists. Lastly, you learned how to create a customer survey form and save the survey
data with the File Access component.

Q&A
Q You recommend avoiding the Redirect method of the Response object and

using #INCLUDE files instead. Is it really such a bad idea to use browser redirec-
tion?

A Using browser redirection entails the same types of risks as using cookies or
Session variables. Like cookies and Session variables, browser redirection
depends on the properties of a customer’s browser. If you want your Web site to be
accessible to the broadest possible audience, you shouldn’t use browser redirection.

Q When saving customer data, is it better to save the information to a text file or
a database table?

A In today’s lesson, you learned how to use the File Access component to save cus-
tomer information to a text file. In tomorrow’s lesson, you’ll learn how to work
with a database table in an ASP page. In general, you should store information in a
database table instead of a text file.

Saving information in a database table has many advantages. One of the most
important advantages is that a database provides you with more flexible methods of
retrieving data. For example, when retrieving data from a database table, you can
write database queries that select only the data that meet a certain criteria.
Furthermore, using a database to store customer information is a more scalable
solution than using a text file. Unlike a text file, a database is designed to be
accessed by multiple users at a time.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

86 Day 4

 06 0672318989 ch04 3/30/00 8:18 AM Page 86

Working with Files in Your E-Commerce Application 87

4

Quiz
1. What’s the difference, if any, between using the FILE attribute of the #INCLUDE

directive and the VIRTUAL attribute of the #INCLUDE directive?

2. There is a problem with the following script. How can the script be rewritten so
that it works as intended?
<%
answer = Request(“answer”)
IF answer = “yes” THEN
displayPage = “page1.asp”

ELSE
displayPage = “page2.asp”

END IF
%>
<!-- #INCLUDE VIRTUAL=”<%=displayPage%>” -->

3. How would you rewrite the following script so that it does not use the Redirect
method?
<%
username = TRIM(Request(“username”))
IF username = “” THEN
Response.Redirect “/login.asp”

END IF
%>

4. What method of the FileSystemObject object do you use to detect whether a file
exists?

Exercise
Create an ASP page that displays its own source code. Use the FileSystem and
TextStream objects in the page.

 06 0672318989 ch04 3/30/00 8:18 AM Page 87

 06 0672318989 ch04 3/30/00 8:18 AM Page 88

DAY 5

WEEK 1

Building Your Product
Catalog

In today’s lesson, you will begin building your online store. You’ll learn how to
create and manage your store’s inventory of products using ASP scripts. You’ll
also learn several valuable techniques for working with databases. Today, you
will learn the following:

• How to create a database for your store

• How to create the Products table to contain your product information

• How to connect to a database within an ASP page

• How to use ASP scripts to add new products

• How to use ASP scripts to update existing product information

Creating the Store Database
The first step in creating your online store is to create a database to hold all the
information about your products. In this book, we will be using Microsoft
Access for our database. However, the ASP scripts in the following chapters

 07 0672318989 ch05 3/29/00 4:02 PM Page 89

should also work with other databases with little or no modification. For example, with
minor modifications, you can use the same scripts with a Microsoft SQL Server or
Oracle database.

90 Day 5

Microsoft Access is an appropriate database to use for prototyping a Web
site or running a low traffic Web site. However, if you expect heavy traffic at
your online store, you should seriously consider upgrading to Microsoft SQL
Server.

You can easily upgrade an Access database to a SQL Server database by
using the Microsoft Upsizing Tools. These Upsizing Tools are included with
Microsoft Access 2000. If you are using Microsoft Access 97, you can down-
load the Upsizing Tools from http://www.microsoft.com/accessdev/
prodinfo/aut97dat.htm.

Caution

Follow these steps to create a new Microsoft Access database:

1. Launch Microsoft Access by selecting Start, Programs, Microsoft Access.

2. From the initial dialog box, choose the option to create a new database using a
blank Access database (see Figure 5.1).

FIGURE 5.1
Creating a new
database.

3. Within the File New Database dialog box, name your new database storeDB and
save the new database to your hard drive. (Remember where you save it.)

After you have completed these three steps, you should have a new file on your hard
drive named storeDB.mdb. You will use this database to store information about your
products, your users, and your orders.

 07 0672318989 ch05 3/29/00 4:02 PM Page 90

Building Your Product Catalog 91

5

Creating the Products Table
In the previous section, you created a new Access database. However, a database, all by
itself, isn’t particularly useful. Before you can begin storing information in a database,
you must add one or more database tables to it.

A database table is structured like a spreadsheet or ledger. It contains one or more rows
divided into one or more columns. Each column has a name, and it is used to store a par-
ticular type of information. Each row in a database table represents a distinct record.

We’ll be storing our product information for our store in a database table named
Products. This table will have the following eight columns:

product_id This column contains a unique number for each product
in the table.

product_name This column contains the name of the product. For
example, Holiday Gift Basket.

product_price This column contains the product’s current price. For
example, $28.52.

product_picture This column contains the path to the picture of the
product.

product_category This column contains the category of the product. For
example, if you were creating an online bookstore, this
column might contain values such as Science Fiction
or Mystery.

product_briefdesc This column contains a short description of the product.
For example, This holiday gift basket contains
three delicious cakes for the holiday season.

product_fulldesc This column contains a full description of the product.
This might be a full page of information.

product_status This column contains information about the current sta-
tus of the product. For example, it might indicate that
the product should not be displayed currently.

If you don’t own Microsoft Access, don’t worry. You can copy the storeDB
file from the CD that accompanies this book to your computer’s hard drive.
This database already contains the Products table discussed in the next
section.

Note

 07 0672318989 ch05 3/29/00 4:02 PM Page 91

To create the Products table, follow these steps:

1. If Microsoft Access isn’t currently open, launch it by selecting Start, Programs,
Microsoft Access. Select the option to open an existing file and select the database
named storeDB.

2. After you open the storeDB database, double-click the item labeled Create table in
Design view. The window in Figure 5.2 should appear.

92 Day 5

FIGURE 5.2
Creating a table in
Design view.

3. Enter the information from Table 5.1 into the Design view table grid. (You can
safely ignore the Description field.)

TABLE 5.1 The Products Database Table

Field Name Data Type

product_id AutoNumber

product_name Text

product_price Currency

product_picture Text

product_category Text

product_briefdesc Memo

product_fulldesc Memo

product_status Number

 07 0672318989 ch05 3/29/00 4:02 PM Page 92

Building Your Product Catalog 93

5

4. Make the product_id column into the table’s primary key by selecting the column
within the grid and clicking the icon of the key.

5. Save the new table by clicking Save (the disk icon) and entering the name
Products.

After you complete these steps, you will have created a table named Products. Each row
in this table will represent an individual product of your online store. In the remainder of
this chapter, you will learn how to use ASP scripts to connect to the database and update
the information in the Products table.

Connecting to a Database
In this section, you will learn how to open a connection to a database within an ASP
script. Before you can open a database connection, however, you need to provide the
ASP page with information about the physical location of the database. In other words,
you need to provide the script with a method for finding the database on your hard drive.
One way to do this is with a Data Source Name (DSN).

A couple of different types of DSNs can be created. If you create a File DSN, the data-
base connection information is stored in a file. If you create a System DSN, the database
connection information is stored within your computer’s registry.

There is no particular reason to use one type of DSN rather than another. Both File and
System DSNs work perfectly well, but we’ll create a System DSN.

To create a System DSN, follow these steps:

1. Open the Control Panel by selecting Start, Settings, Control Panel.

2. Click on the ODBC Data Sources applet.

3. Select the tab labeled System DSN and click Add.

4. Select the Microsoft Access driver and click Finish.

5. In the ODBC Microsoft Access Setup dialog box, click the button labeled Select
and navigate through your hard drive to the database named storeDB (the database
that you created in the earlier section “Creating the Store Database”). Click OK.

6. Enter accessDSN for the Data Source Name and click OK (see Figure 5.3).

7. Click OK to close the ODBC Data Sources applet.

 07 0672318989 ch05 3/29/00 4:02 PM Page 93

After you complete these steps, you will have created a new System DSN named
accessDSN. You only need to create one DSN for each database that you use in your
scripts. After you create the DSN, all your scripts can use the same DSN to connect with
the database. However, if you ever move your database, you will need to update the DSN
by using the ODBC Data Sources applet.

94 Day 5

FIGURE 5.3
Creating a DSN.

The process for creating a DSN for an SQL Server database or Oracle data-
base is very similar to the process of creating a DSN for an Access database.
For example, to create a DSN for an SQL Server database, choose the SQL
Server driver in step 4. You will also need to provide the name of a valid SQL
Server login and password.

Note

Now that you have created a DSN, you can use it to open a database connection. To cre-
ate a connection, you must use one of the ActiveX Data Objects (ADO). The ADO is a
collection of objects that allows you to work with databases within your ASP scripts.
They are ActiveX objects that you can use in the same way as you would use any other
ASP component such as the File Access Component.

A database connection is represented in an ASP page by the ADO Connection object.
Listing 5.1 demonstrates how to use the Connection object with the DSN that we just
created to open a database connection.

LISTING 5.1 Connecting to a Database

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4 %>

INPUT

 07 0672318989 ch05 3/29/00 4:02 PM Page 94

Building Your Product Catalog 95

5

This script opens a connection to the storeDB Microsoft Access database by
using a DSN named accessDSN. In line 2, an instance of the Connection object is

created. In line 3, the database connection is opened by calling the Open method of the
Connection object.

Opening a database connection is very much like opening a phone connection. After the
connection is open, messages can be passed back and forth between the ASP script and
the database. For example, you can pass a message from the script to the database to tell
the database to insert a certain record or update a particular bit of information. In the
next two sections, you will learn how to pass these messages.

Adding Products to the Products Table
Databases speak their own language. To get a database to do something, you must send a
message to the database in its language. Microsoft Access, like most modern databases,
uses a language called the Structured Query Language (SQL).

For example, to add a new record to a database table from an ASP page, you must first
open a connection to the database, and then send the database a string that tells it to
insert a new record. To insert a new record into a database, use the SQL INSERT INTO
statement.

The script in Listing 5.2 inserts a new record into the Products table.

LISTING 5.2 Inserting a New Record

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4
5 sqlString = “INSERT INTO Products (product_name, product_price) “ &_
6 “values (‘Gift Basket’, 34.54)”
7 Con.Execute sqlString
8 Con.Close
9 %>

This script inserts a new product into the Products table. Lines 2 and 3 are used
to open a connection to the database. In line 5, a string that contains the SQL

INSERT INTO statement is assigned to a variable named sqlString. The SQL statement
is executed in line 7. Finally, in line 8, the database connection is closed.

The basic syntax of the SQL INSERT INTO statement is very simple:

INSERT INTO table_name (column_list) VALUES (value_list)

ANALYSIS

INPUT

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 95

You indicate the table in which you want the new record inserted with table_name. You
list one or more columns from the table with column_list, and you provide the values
you want assigned to each of these columns with value_list. The columns and the val-
ues must be listed in the same order in a comma-separated list.

When inserting string or date and time values, you must enclose the value in a pair of
single quotes. When inserting numeric values, you do not include the quotes.

If you execute the script in Listing 5.2, you can prove to yourself that the new product
was added to the Products table within Microsoft Access. Launch Microsoft Access,
open the storeDB database, and double-click on the Products table. You should see the
screen in Figure 5.4.

96 Day 5

FIGURE 5.4
Updated Products
table.

Because the sqlString variable has a string as its value, you can create the string
dynamically. The script in Listing 5.3 does exactly the same thing as the previous script.
However, the string is created by using the values of variables for the column values.

LISTING 5.3 Inserting a New Record Using Variables

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4
5 productName = “Gift Basket”

INPUT

 07 0672318989 ch05 3/29/00 4:02 PM Page 96

Building Your Product Catalog 97

5

6 productPrice = 34.54
7 sqlString = “INSERT INTO Products (product_name, product_price) “ &_
8 “values (‘“ & productName & “‘, “ & productPrice & “)”
9 Con.Execute sqlString
10 Con.Close
11 %>

This script, like the previous script, inserts a new product into the Products table.
However, two variables named productName and productPrice are assigned to

the two new values that will be inserted into the database. In lines 5 and 6, the
productName and productPrice variables are assigned a value. In line 7, the sqlString
variable is assigned a string that is built from the productName and productPrice vari-
ables. Finally, in line 9, the sqlString is executed, and a new product is added to the
database.

You might have noticed that whenever a value is assigned to the product_name column,
the value is surrounded by single quotes. However, when a value is assigned to the
product_price column, no quotes are used. Microsoft Access uses the single quote char-
acter in the same way as VBScript or HTML uses double quotes. They are used to indi-
cate the start and end of a string. Because product_name is a text column, you must use
single quotes when assigning a value to the column.

Creating the AddProducts Form
In this section, you’ll learn how to create a form that you can use to easily add multiple
products to your online store. We’ll create the following two pages:

• addProduct.asp—This page will contain an HTML form that enables you to enter
the product information.

• manageProducts.asp—When you submit the form contained in addProduct.asp,
this page will actually add the new product information to the database.

The addProduct.asp page includes a normal HTML form with fields that correspond to
columns of the Products table. The addProduct.asp page is contained in Listing 5.4.
(The page is also included on the CD that accompanies this book.) Figure 5.5 shows
what the form looks like.

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 97

LISTING 5.4 The addProduct.asp Page

1 <html>
2 <head><title>Add Product </title></head>
3 <body bgcolor=”gray”>
4
5 <form method=”post” action=”manageproducts.asp”>
6
7 <center>
8 <table width=”600” border=1 bgcolor=”lightyellow”
9 cellpadding=”4” cellspacing=”0”>
10 <tr>
11 <td colspan=”2” bgcolor=”yellow”>
12
13 Add Product
14
15 </td>
16 </tr>
17 <tr>
18 <td>
19 Product Name:
20 </td>
21 <td>
22 <input name=”productName”
23 size=”50” maxlength=”50”>
24 </td>
25 </tr>
26 <tr>
27 <td>

98 Day 5

FIGURE 5.5
The addProduct form.

INPUT

 07 0672318989 ch05 3/29/00 4:02 PM Page 98

Building Your Product Catalog 99

5

28 Product Price:
29 </td>
30 <td>
31 <input name=”productPrice” size=”10”>
32 </td>
33 </tr>
34 <tr>
35 <td>
36 Product Picture:
37 </td>
38 <td>
39 <input name=”productPicture”
40 size=”50” maxlength=”50”>
41 </td>
42 </tr>
43 <tr>
44 <td>
45 Product Category:
46 </td>
47 <td>
48 <input name=”productCategory”
49 size=”50” maxlength=”50”>
50 </td>
51 </tr>
52 <tr>
53 <td>
54 Product Brief Desc:
55 </td>
56 <td>
57 <textarea name=”productBriefDesc”
58 cols=”50” rows=”2” wrap=”virtual”></textarea>
59 </td>
60 </tr>
61 <tr>
62 <td>
63 Product Full Desc:
64 </td>
65 <td>
66 <textarea name=”productFullDesc”
67 cols=”50” rows=”10” wrap=”virtual”></textarea>
68 </td>
69 </tr>
70 <tr>
71 <td>
72 Product Status:
73 </td>
74 <td>
75 <select name=”productStatus”>
76 <option value=”0”>INACTIVE
77 <option value=”1”>ACTIVE

continues

 07 0672318989 ch05 3/29/00 4:02 PM Page 99

78 </select>
79 </td>
80 </tr>
81 <tr>
82 <td colspan=2 align=”right”>
83 <input type=”submit” value=”Add Product”>
84 </td>
85 </tr>
86 </table>
87 </center>
88
89 <input name=”addProduct” type=”1”
90 value=”1”>
91 </form>
92
93 </body>
94 </html>

Listing 5.4 doesn’t contain any ASP scripts. Its sole purpose is to gather the product
information through an HTML form. The product information isn’t added to the database
until the form is submitted, and the second page—manageproducts.asp—is requested.

You should notice that line 89 creates a hidden form variable named addProduct. When
the form is submitted, this hidden form variable is posted with the rest of the form infor-
mation. The manageproducts.asp page uses this hidden form variable to know whether a
new product should be added.

All the real work happens in the manageproducts.asp page. The manageproducts.asp
page grabs all the form fields submitted in addProduct.asp, builds a SQL string, and
executes the SQL string that results in a new product being added to the database. The
manageproducts.asp page is contained in Listing 5.5. (It’s also included on the CD that
accompanies this book.)

LISTING 5.5 The manageproducts.asp Page

1 <%
2 ‘ Get the Form Variables
3 addProduct = TRIM(Request(“addProduct”))
4
5 productName = TRIM(Request(“productName”))
6 productPrice = TRIM(Request(“productPrice”))
7 productPicture = TRIM(Request(“productPicture”))
8 productCategory = TRIM(Request(“productCategory”))
9 productBriefDesc = TRIM(Request(“productBriefDesc”))

100 Day 5

LISTING 5.4 continued

INPUT

 07 0672318989 ch05 3/29/00 4:02 PM Page 100

Building Your Product Catalog 101

5

10 productFullDesc = TRIM(Request(“productFullDesc”))
11 productStatus = TRIM(Request(“productStatus”))
12
13 ‘ Assign Default Values
14 IF productName = “” THEN
15 productName = “?????”
16 END IF
17 IF productPrice = “” THEN
18 productPrice = 0
19 END IF
20 IF productPicture = “” THEN
21 productPicture = “?????”
22 END IF
23 IF productCategory = “” THEN
24 productCategory = “?????”
25 END IF
26 IF productBriefDesc = “” THEN
27 productBriefDesc = “?????”
28 END IF
29 IF productFullDesc = “” THEN
30 productFullDesc = “?????”
31 END IF
32
33 ‘ Open the Database Connection
34 Set Con = Server.CreateObject(“ADODB.Connection”)
35 Con.Open “accessDSN”
36 %>
37 <html>
38 <head><title>Manage Products</title></head>
39 <body bgcolor=”gray”>
40 <%
41 ‘ Add New Product
42 IF addProduct <> “” THEN
43
44 sqlString = “INSERT INTO Products “ &_
45 “(product_name, product_price, product_picture, “ &_
46 “product_category, product_briefdesc, product_fulldesc, “ &_
47 “product_status) VALUES (“ &_
48 “ ‘“ & productName & “‘, “ &_
49 cCUR(productPrice) & “, “ &_
50 “ ‘“ & productPicture & “‘, “ &_
51 “ ‘“ & productCategory & “‘, “ &_
52 “ ‘“ & productBriefDesc & “‘, “ &_
53 “ ‘“ & productFullDesc & “‘, “ &_
54 productStatus & “)”
55
56 Con.Execute sqlString
57 %>
58 <center>
59 <table width=”600” cellpadding=”4”

continues

 07 0672318989 ch05 3/29/00 4:02 PM Page 101

60 cellspacing=”0” bgcolor=”lightyellow”>
61 <tr>
62 <td>
63 <%=productName%> was added to the database
64 </td>
65 </tr>
66 </table>
67 </center>
68 <p>
69 <%
70 END IF
71 %>
72 Add Product
72 </body>
73 </html>

Lines 2–11 are used to retrieve the form variables submitted from the
addProduct.asp page. Notice that the VBScript TRIM() function is used to

remove any leading and trailing spaces.

Lines 13–31 assigns a default value to each of the variables. If a variable doesn’t have a
value, it is assigned the value ?????.

Lines 33–35 opens a database connection. The database connection is opened using the
accessDSN DSN.

The new product is actually added to the Products table in lines 41–56. First, a very long
SQL string is created by building it up out of the product information submitted in the
HTML form. Next, in line 56, the SQL string is executed and the new record is added.

Lines 58–67 display a message that the new product was successfully added. See Figure
5.6 to see what the page looks like after adding a new product named Holiday Gift
Basket.

A Problem with Databases and Quotation Marks
In the previous section, you learned how to add a new record to a database table. The
manageproducts.asp page adds new records to the Products table. However, as it stands,
the page has an important problem. This problem results from the use of single quotation
marks.

Microsoft Access uses a single quotation mark to mark the beginning and end of a string.
If the string itself contains a single quotation mark, however, problems will result when
you attempt to add the value to the database.

102 Day 5

LISTING 5.5 continued

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 102

Building Your Product Catalog 103

5

For example, suppose that you wanted to add a new product entitled Gregory’s
Chocolate Gift Basket to the Products table. This product name includes a single quo-
tation mark—the apostrophe in Gregory’s. If you attempted to execute the following
SQL INSERT INTO statement, an error would result:

INSERT INTO Products (product_name)
VALUES (‘Gregory’s Chocolate Gift Basket’)

Microsoft Access will see the first quotation mark, the one immediately before the G in
Gregory, and correctly interpret the quotation mark as indicating the beginning of a text
string. However, Microsoft Access will interpret the next quotation mark, the single quo-
tation mark that occurs in Gregory’s, and interpret it as marking the end of the string.
This would be the wrong interpretation. The end of the string is correctly marked by the
single quote that occurs after the word Basket.

To fix this problem, you must make every single quotation mark into two quotation
marks. Microsoft Access treats two quotation marks in a row as a single quotation mark
when they occur in a text string. For example, the following INSERT INTO statement will
correctly insert Gregory’s Chocolate Gift Basket into the Products table:

INSERT INTO Products (product_name)
VALUES (‘Gregory’’s Chocolate Gift Basket’)

Whenever you add a new record or update a record that contains a quotation mark, you
must double them up. The easiest way to do this is to create a VBScript function that
does this automatically. Listing 5.6 contains a function named fixQuotes() that doubles
all the single quotation marks in a string.

FIGURE 5.6
Results of adding a
new product.

 07 0672318989 ch05 3/29/00 4:02 PM Page 103

LISTING 5.6 The fixQuotes() Function

1 FUNCTION fixQuotes(theString)
2 fixQuotes = REPLACE(theString, “‘“, “‘’”)
3 END FUNCTION

The fixQuotes() function uses the VBScript REPLACE() function to replace
every single quotation mark (‘) with two single quotation marks (‘’).

To fix the manageproducts.asp page so that it can correctly handle single quotation
marks submitted in the addProduct.asp page, you need to use the fixQuotes() func-
tion. You can add the function to the top of the manageproducts.asp page. Then, you
will need to modify lines 44–54 to use the function. Here is what the modified lines
look like:

44 sqlString = “INSERT INTO Products “ &_
45 “(product_name, product_price, product_picture, “ &_
46 “product_category, product_briefdesc, product_fulldesc, “ &_
47 “product_status) VALUES (“ &_
48 “ ‘“ & fixQuotes(productName) & “‘, “ &_
49 productPrice & “, “ &_
50 “ ‘“ & fixQuotes(productPicture) & “‘, “ &_
51 “ ‘“ & fixQuotes(productCategory) & “‘, “ &_
52 “ ‘“ & fixQuotes(productBriefDesc) & “‘, “ &_
53 “ ‘“ & fixQuotes(productFullDesc) & “‘, “ &_
54 productStatus & “)”

The fixQuotes() function is used here to double any quotation marks that might occur
in the product information variables. To see the final version of the manageproducts.asp
page, you can open the page from the CD that accompanies this book.

Updating Product Information in the
Products Table

If any of your product information changes, you’ll need a way to update this information
in the Products table. You can update a database record by using the SQL UPDATE state-
ment. Here’s the syntax for this statement:

UPDATE table_name SET column_name = expression
WHERE column_name = expression

The UPDATE statement updates a table row by setting one or more of its columns to a new
value. It updates only those rows in which a certain column has a certain value.

104 Day 5

INPUT

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 104

Building Your Product Catalog 105

5

For example, suppose that you want to change the price of the Holiday Gift Basket.
You want to raise the price from $34.54 to $45.00. To do this, you can use the following
SQL UPDATE statement:

UPDATE Products SET product_price = 45.00
WHERE product_name = ‘Holiday Gift Basket’

This statement changes the price of the Holiday Gift Basket to $45.00 by updating the
product_price column. The statement updates only those products that have the name
Holiday Gift Basket.

You can use the SQL UPDATE statement within an ASP script in the same way as you can
use the SQL INSERT INTO statement. To update a record, open a connection to the data-
base, build a SQL string, and execute it. Listing 5.7 demonstrates how to change the
price of the Holiday Gift Basket to $45.00 within an ASP page.

LISTING 5.7 Update a Table Row

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4
5 sqlString = “UPDATE Products “ &_
6 “SET product_price = 45.00 “ &_
7 “WHERE product_name = ‘Holiday Gift Basket’ “
8
9 Con.Execute sqlString
10 %>

Lines 2 and 3 open a database connection. A SQL string is created in lines 5–7.
Finally, the SQL string is executed in line 9.

Instead of using a product name to identify the row to be updated, you can use the prod-
uct ID. The Products table contains a column named product_id that uniquely identifies
each product with a number. For example, if the value of the product_id column for the
Holiday Gift Basket is 17, you could update the price of the Holiday Gift Basket
with the following statement:

UPDATE Products SET product_price = 45.00
WHERE product_id = 17

The advantage of using the product_id column instead of the product_name column to
update a record is you know that every product has a distinct product_id. Two products,
on the other hand, might have the same name.

INPUT

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 105

Displaying the List of Products to Update
In this section, you will learn how to create a form that you can use to update the records
in the Products table. We will modify the manageproducts.asp page to enable you to
select a product to update. We’ll also create a new page named updateProduct.asp that
will enable you to modify the information for a particular product.

In order to update a product, you need a method of selecting a product to update. We’ll
provide a method for selecting an existing product by modifying the
manageproducts.asp page so that it will list the current set of products in the database.

To retrieve a set of records from a database table, you must use the ADO Recordset
object. In Day 6, “Displaying Your Products,” you will learn how to use this object in
detail. For the purpose of the current discussion, however, you only need to know that
the Recordset object can be used to represent a set of records that result from a database
query.

To retrieve and display the list of product names from the Products table, you can use the
script in Listing 5.8.

LISTING 5.8 Retrieve Product Names

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4
5 sqlString = “SELECT product_name FROM Products”
6 SET RS = Con.Execute(sqlString)
7 WHILE NOT RS.EOF
8 %>
9 <%=RS(“product_name”)%> <p>
10 <%
11 RS.MoveNext
12 WEND
13 %>

This script opens a connection to the storeDB database in lines 2 and 3. Next, an
SQL string is created that selects the name of each product from the Products

table. In line 6, an instance of the ADO Recordset object is created and opened by exe-
cuting the SQL string. When the Recordset is opened, it contains all the product names.
Finally, in lines 7—12, a VBScript WHILE...WEND loop is used to loop through the
Recordset, displaying all the product names.

106 Day 5

INPUT

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 106

Building Your Product Catalog 107

5

We want the list of product names to work as links. When you click on a product name,
you should be brought to the updateProduct.asp page with the correct product selected.
For example, if you click on Holiday Gift Basket, you should be brought to a form
that displays all the current information for the Holiday Gift Basket product.

We can make the list of product names act as hypertext links by using the HTML <A>
tag. Listing 5.9 retrieves the list of product names from the Products table and displays
each name as a hypertext link to the updateProduct.asp page.

LISTING 5.9 Retrieve Product Names as Links

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4
5 sqlString = “SELECT product_name FROM Products”
6 SET RS = Con.Execute(sqlString)
7 WHILE NOT RS.EOF
8 %>
9
10 <%=RS(“product_name”)%>
11
12 <%
13 RS.MoveNext
14 WEND
15 %>

This script is exactly the same as the previous one, except each product name is
displayed as a hypertext link. The links are displayed in lines 9–11.

Finally, we want the correct product selected when you link to the updateProduct.asp
page. For example, if you click on the Holiday Gift Basket, you should see the current
information for the Holiday Gift Basket and not the information for some other prod-
uct. To do this, we need to pass the product ID to the updateProduct.asp page, so the
right product will be selected.

We can pass the product ID to the updateProduct.asp page by using a query string vari-
able. We’ll use a variable named pid that has the product ID as its value. Listing 5.10
demonstrates how this query string variable can be added to each of the hypertext links.

INPUT

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 107

LISTING 5.10 Display Links with Product IDs

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4
5 sqlString = “SELECT product_id, product_name FROM Products”
6 SET RS = Con.Execute(sqlString)
7 WHILE NOT RS.EOF
8 %>
9 <a href=”updateProduct.asp?pid=<%=RS(“product_id”)%>”>
10 <%=RS(“product_name”)%>
11
12 <%
13 RS.MoveNext
14 WEND
15 %>

This script displays the names of each product in the database as a hypertext link.
Each link has a query string variable named pid that passes the product ID to the

updateProduct.asp page. The query string variable is added to the hyperlinks in line 9.

After the script in Listing 5.10 has been added to the manageproducts.asp page, the
page displays all the existing products in the Products table (see Figure 5.7). To see the
final version of the manageproducts.asp page, open the manageproducts.asp page from
the CD that accompanies this book.

108 Day 5

INPUT

ANALYSIS

FIGURE 5.7
Final version of
manageproducts.asp.

 07 0672318989 ch05 3/29/00 4:02 PM Page 108

Building Your Product Catalog 109

5

Creating the updateProduct Form
The updateProduct.asp page enables you to update the information for a particular
product. When you click on the name of a particular product on the manageproduct.asp
page, you are brought to this page (see Figure 5.8).

FIGURE 5.8
The
updateProduct.asp

page.

The updateProduct.asp page is similar to the addProduct.asp. It has an HTML form
containing fields that correspond to the columns in the Products table. Unlike the
addProduct.asp page, however, the form fields are automatically filled with the existing
product information.

The updateProduct.asp page is contained in Listing 5.11. (It’s also included on the CD
that accompanies this book.)

LISTING 5.11 The updateProduct.asp Page

1 <%
2 ‘ Get the Product ID
3 productID = Request(“pid”)
4
5 ‘ Open the Database Connection
6 Set Con = Server.CreateObject(“ADODB.Connection”)
7 Con.Open “accessDSN”
8
9 ‘ Open the Recordset

INPUT

continues

 07 0672318989 ch05 3/29/00 4:02 PM Page 109

10 Set RS = Server.CreateObject(“ADODB.Recordset”)
11 RS.ActiveConnection = Con
12 RS.CursorType = 3
13 RS.Open “SELECT * FROM Products WHERE product_id=” & productID
14 IF NOT RS.EOF THEN
15 productName = RS(“product_name”)
16 productPrice = RS(“product_price”)
17 productPicture = RS(“product_picture”)
18 productCategory = RS(“product_category”)
19 productBriefDesc = RS(“product_briefDesc”)
20 productFullDesc = RS(“product_fullDesc”)
21 productStatus = RS(“product_status”)
22 END IF
23 ‘ Close the Recordset
24 RS.Close
25
26 FUNCTION SELECTED(firstVal, secondVal)
27 IF cSTR(firstVal) = cSTR(secondVAL) THEN
28 SELECTED = “ SELECTED “
29 END IF
30 END FUNCTION
31
32 %>
33 <html>
34 <head><title>Update Product </title></head>
35 <body bgcolor=”gray”>
36
37 <form method=”post” action=”manageproducts.asp”>
38
39 <center>
40 <table width=”600” border=1 bgcolor=”lightyellow”
41 cellpadding=”4” cellspacing=”0”>
42 <tr>
43 <td colspan=”2” bgcolor=”yellow”>
44
45 Update Product
46
47 </td>
48 </tr>
49 <tr>
50 <td>
51 Product Name:
52 </td>
53 <td>
54 <input name=”productName”
55 size=”50” maxlength=”50”
56 value=”<%=Server.HTMLEncode(productName)%>”>
57 </td>
58 </tr>

110 Day 5

LISTING 5.11 continued

 07 0672318989 ch05 3/29/00 4:02 PM Page 110

Building Your Product Catalog 111

5

59 <tr>
60 <td>
61 Product Price:
62 </td>
63 <td>
64 <input name=”productPrice” size=”10”
65 value=”<%=productPrice%>”>
66 </td>
67 </tr>
68 <tr>
69 <td>
70 Product Picture:
71 </td>
72 <td>
73 <input name=”productPicture”
74 size=”50” maxlength=”50”
75 value=”<%=Server.HTMLEncode(productPicture)%>”>
76 </td>
77 </tr>
78 <tr>
79 <td>
80 Product Category:
81 </td>
82 <td>
83 <input name=”productCategory”
84 size=”50” maxlength=”50”
85 value=”<%=Server.HTMLEncode(productCategory)%>”>
86 </td>
87 </tr>
88 <tr>
89 <td>
90 Product Brief Desc:
91 </td>
92 <td>
93 <textarea name=”productBriefDesc”
94 cols=”50” rows=”2”
95 wrap=”virtual”><%=Server.HTMLEncode(productBriefDesc)%>
96 </textarea>
97 </td>
98 </tr>
99 <tr>
100 <td>
101 Product Full Desc:
102 </td>
103 <td>
104 <textarea name=”productFullDesc”
105 cols=”50” rows=”10”
106 wrap=”virtual”><%=Server.HTMLEncode(productFullDesc)%>
107 </textarea>
108 </td>

continues

 07 0672318989 ch05 3/29/00 4:02 PM Page 111

109 </tr>
110 <tr>
111 <td>
112 Product Status:
113 </td>
114 <td>
115 <select name=”productStatus”>
116 <option value=”0” <%=SELECTED(“0”, productStatus)%>>INACTIVE
117 <option value=”1” <%=SELECTED(“1”, productStatus)%>>ACTIVE
118 </select>
119 </td>
120 </tr>
121 <tr>
122 <td colspan=2 align=”right”>
123 <input type=”submit” value=”Update Product”>
124 </td>
125 </tr>
126 </table>
127 </center>
128
129 <input name=”productID” type=”hidden” value=”<%=productID%>”>
130 <input name=”updateProduct” type=”hidden” value=”1”>
131 </form>
132
133 </body>
134 </html>

The product ID is grabbed from the query string variable in line 3. The script
uses the product ID to show the information for the correct product in the form.

In lines 6 and 7, a connection to the storeDB database is opened. In lines 10–24, the
product information is retrieved from the Products table and assigned to local variables.

The majority of Listing 5.11, lines 37–131, is used to display the HTML form. Each of the
text form fields is given a default value by using the VALUE attribute of the <INPUT> tag.

A Problem with HTML Forms and Quotation Marks
In Listing 5.11, the text input fields are given default values by using the VALUE attribute
of the <INPUT> tag. Each product variable is displayed as the value of this attribute. You
should notice that each variable is HTML encoded with the HTMLEncode method of the
Server object before being displayed. Why is this necessary?

HTML uses quotation marks (“) to mark the beginning and end of a string. If one of the
product variables itself includes a quotation mark, it will not be properly displayed. For

112 Day 5

LISTING 5.11 continued

ANALYSIS

 07 0672318989 ch05 3/29/00 4:02 PM Page 112

Building Your Product Catalog 113

5

example, if the brief description of a product were Our customers are saying, “This
is a great gift!”, the quotation marks that surround “This is a great gift!”
would prematurely mark the end of the string.

The HTMLEncode method of the Server object automatically replaces each quotation mark
with the special HTML code ". The special " character correctly displays a
quotation mark within an HTML document.

Updating a Database Record
The final step in creating our updateProduct.asp form is to modify the
manageproducts.asp page so that it will update the information for a product in the
database.

When the updateProduct.asp page is submitted, the information is sent to the
manageproducts.asp page. We need to add an additional section to this page to
change the product information. Listing 5.12 contains the final version of the
manageproducts.asp page. (The manageproducts.asp is also included on the CD
that accompanies this book.)

LISTING 5.12 Final Version of the manageproducts.asp Page

<%
1 FUNCTION fixQuotes(theString)
2 fixQuotes = REPLACE(theString, “‘“, “‘’”)
3 END FUNCTION
4
5 ‘ Get the Form Variables
6 addProduct = TRIM(Request(“addProduct”))
7 updateProduct = TRIM(Request(“updateProduct”))
8
9 productID = TRIM(Request(“productID”))
10 productName = TRIM(Request(“productName”))
11 productPrice = TRIM(Request(“productPrice”))
12 productPicture = TRIM(Request(“productPicture”))
13 productCategory = TRIM(Request(“productCategory”))
14 productBriefDesc = TRIM(Request(“productBriefDesc”))
15 productFullDesc = TRIM(Request(“productFullDesc”))
16 productStatus = TRIM(Request(“productStatus”))
17
18 ‘ Assign Default Values
19 IF productName = “” THEN
20 productName = “?????”
21 END IF
22 IF productPrice = “” THEN

INPUT

continues

 07 0672318989 ch05 3/29/00 4:02 PM Page 113

23 productPrice = 0
24 END IF
25 IF productPicture = “” THEN
26 productPicture = “?????”
27 END IF
28 IF productCategory = “” THEN
29 productCategory = “?????”
30 END IF
31 IF productBriefDesc = “” THEN
32 productBriefDesc = “?????”
33 END IF
34 IF productFullDesc = “” THEN
35 productFullDesc = “?????”
36 END IF
37
38 ‘ Open the Database Connection
39 Set Con = Server.CreateObject(“ADODB.Connection”)
40 Con.Open “accessDSN”
41 %>
42 <html>
43 <head><title>Manage Products</title></head>
44 <body bgcolor=”gray”>
45 <%
46 ‘ Add New Product
47 IF addProduct <> “” THEN
48
49 sqlString = “INSERT INTO Products “ &_
50 “(product_name, product_price, product_picture, “ &_
51 “product_category, product_briefdesc, product_fulldesc, “ &_
52 “product_status) VALUES (“ &_
53 “ ‘“ & productName & “‘, “ &_
54 cCUR(productPrice) & “, “ &_
55 “ ‘“ & productPicture & “‘, “ &_
56 “ ‘“ & productCategory & “‘, “ &_
57 “ ‘“ & productBriefDesc & “‘, “ &_
58 “ ‘“ & productFullDesc & “‘, “ &_
59 productStatus & “)”
60
61 Con.Execute sqlString
62
63 %>
64 <center>
65 <table width=”600” cellpadding=”4”
66 cellspacing=”0” bgcolor=”lightyellow”>
67 <tr>
68 <td>
69 <%=productName%> was added to the database
70 </td>
71 </tr>

114 Day 5

LISTING 5.12 continued

 07 0672318989 ch05 3/29/00 4:02 PM Page 114

Building Your Product Catalog 115

5

72 </table>
73 </center>
74 <p>
75 <%
76 END IF
77
78 ‘ Update Product
79 IF updateProduct <> “” THEN
80
81 sqlString = “UPDATE Products SET “ &_
82 “product_name=’ “ & fixQuotes(productName) & “‘,” &_
83 “product_price=” & productPrice & “,” &_
84 “product_picture=’” & fixQuotes(productPicture) & “‘,” &_
85 “product_category=’” & fixQuotes(productCategory) & “‘,” &_
86 “product_briefdesc=’” & fixQuotes(productBriefDesc) & “‘,” &_
87 “product_fulldesc=’” & fixQuotes(productFullDesc) & “‘,” &_
88 “product_status=” & productStatus & “ WHERE “ &_
89 “product_id=” & productID
90
91 Con.Execute sqlString
92
93 %>
94 <center>
95 <table width=”600” cellpadding=”4”
96 cellspacing=”0” bgcolor=”lightyellow”>
97 <tr>
98 <td>
99 <%=productName%> was updated in the database
100 </td>
101 </tr>
102 </table>
103 </center>
104 <p>
105 <%
106 END IF
107 %>
108
109 <center>
110 <table width=”600” border=1 bgcolor=”lightyellow”
111 cellpadding=”4” cellspacing=”0”>
112 <tr>
113 <td colspan=”2” bgcolor=”yellow”>
114
115 Manage Products
116
117 </td>
118 </tr>
119 <tr>
120 <td align=”center”>
121

continues

 07 0672318989 ch05 3/29/00 4:02 PM Page 115

122 <table border=”1” size=”400” cellpadding=”3”
123 cellspacing=0 bgcolor=”white”>
124 <%
125 sqlString = “SELECT product_id, product_name FROM Products “ &_
126 “ORDER BY product_name”
127 SET RS = Con.Execute(sqlString)
128 WHILE NOT RS.EOF
129 %>
130 <tr>
131 <td>
132 <a href=”updateproduct.asp?pid=<%=RS(“product_id”)%>”>
133 <%=RS(“product_name”)%>
134 </td>
135 </tr>
136 <%
137 RS.MoveNext
138 WEND
139 %>
140 </table>
141 </td>
142 </tr>
143 <tr>
144 <td>
145 Add Product
146 </td>
147 </tr>
148 </table>
149 </center>
150
151 </body>
152 </html>

Lines 78—107 contain the section of code that updates a product’s information
in the database. The SQL UPDATE string is built in lines 81—89. Notice that the

fixQuotes() function is used when building the SQL string to replace single quotes with
double quotes. Next, the SQL string is executed in line 91.

116 Day 5

LISTING 5.12 continued

ANALYSIS

Notice that when you update product information, you need to use both
the HTMLEncode() method, to fix potential problems with double quotes in
HTML strings, and the fixQuotes() function, to handle potential problems
with single quotes in the SQL UPDATE string. Using the HTMLEncode() method
and the fixQuotes() function in sequence doesn’t create a problem. When
the HTML form is submitted, the special " character is automatically
translated back into a normal quotation mark (“).

Note

 07 0672318989 ch05 3/29/00 4:02 PM Page 116

Building Your Product Catalog 117

5

After the product has been updated, a message appears confirming the product update.
This message is displayed in lines 94–104. When a product is updated, the page in
Figure 5.9 is displayed.

FIGURE 5.9
Results of updating
a product.

Summary
In this chapter, you were introduced to the methods of working with a Microsoft Access
database in your ASP scripts. First, you learned how to create a new Microsoft Access
database and open a connection to it using the ADO Connection object and a System
DSN. Next, you learned how to add products to your online store with Active Server
Pages by using the SQL INSERT INTO statement to add new rows to a database table.
Finally, you created Active Server Pages that enable you to update existing product infor-
mation by using the SQL UPDATE statement. In the course of this chapter, you also
learned how to handle problems presented by both single and double quotation marks.

Q&A
Q When attempting to connect to a Microsoft Access Database within an ASP

page, I receive the error “Data source name not found and no default driver
specified.” What could cause this error?

A You’ll receive this error when your DSN isn’t configured correctly. First, open the
ODBC Data Sources applet from your computer’s Control Panel to check whether

 07 0672318989 ch05 3/29/00 4:02 PM Page 117

you have created a DSN. Next, make sure that you have spelled the name of your
DSN correctly within your ASP script.

Q Is there any limit to the number of products that I can list at my online store?

A A Microsoft Access database table can contain billions of rows. In theory, at least,
you can add billions of products to the Products table. However, it would quickly
become difficult to manage this number of products using the
manageproducts.asp page discussed in this chapter.

Q Why is Microsoft Access an inappropriate database to use for a Web site with
heavy traffic?

A Microsoft Access is a desktop database and not a client-server database. This
means that it cannot handle a large number of concurrent users. If you expect to
have more than 30 people simultaneously connecting to your database, you should
seriously consider upgrading to Microsoft SQL Server.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. If you move your Microsoft Access database, what do you need to do to allow your

ASP scripts to find the database at its new location?

2. What’s wrong with the following SQL INSERT INTO statement?

INSERT INTO Products (product_name) VALUES (Holiday Gift Basket)

3. Why do single quotation marks cause problems when inserting or updating records
in a database?

4. Why do quotation marks cause problems when displaying a variable with the
VALUE attribute of an HTML form?

Exercises
How can you add additional product information to your online store? For exam-
ple, suppose that you want to add a field named product_sku to track a product’s
sku. How would you modify the database table and Active Server Pages discussed
in this chapter to include the new field?

118 Day 5

 07 0672318989 ch05 3/29/00 4:02 PM Page 118

DAY 6

WEEK 1

Displaying Your Products
In today’s lesson, you will learn how to display the products in your online
store. You will learn how to create the customer interface to your list of prod-
ucts. Today, you will learn the following:

• How to retrieve database records with the Recordset object

• How to create Active Server Pages to display your list of products

• How to enable your customers to browse multiple pages of product list-
ings

• How to optimize your Active Server Pages to display a list of products
more efficiently

Using Recordsets
In yesterday’s lesson, you were introduced to the Recordset object. The
Recordset object represents a set of records retrieved from a database. In this
section, you will learn how to use the Recordset object in more detail.

Whenever you use a Recordset to display database records within an ASP
page, you must follow these steps:

 08 0672318989 ch06 3/30/00 8:26 AM Page 119

1. Open a database connection with the Connection object.

2. Open a Recordset by using the SQL SELECT statement.

3. Display the records in the Recordset by looping through the Recordset.

For example, suppose that you want to display the names of all the products from the
Products database table. You can display the names of all the products using the ASP
script in Listing 6.1.

LISTING 6.1 Display Product Names

1 <%
2 ‘ Open Database Connection
3 Set Con = Server.CreateObject(“ADODB.Connection”)
4 Con.Open “accessDSN”
5 ‘ Open Recordset
6 Set RS = Server.CreateObject(“ADODB.Recordset”)
7 RS.ActiveConnection = Con
8 RS.Open “SELECT * FROM Products”
9 ‘ Loop through Recordset
10 WHILE NOT RS.EOF
11 Response.Write RS(“product_name”)
12 RS.MoveNext
13 WEND
14 %>

Lines 2 and 3 are used to open the connection to the database. The connection is
opened using the System DSN named accessDSN that you created in yesterday’s

lesson.

The records are retrieved from the Products table in lines 6–9. In line 6, an instance of
the Recordset object is created. In line 7, the Recordset is associated with the open con-
nection to the database. In line 8, a set of records is retrieved from the database by using
the SQL SELECT statement.

The records are displayed in lines 10–13. A VBScript WHILE...WEND loop is used to
move to each record in the Recordset and display it. Within the WHILE...WEND loop, the
MoveNext method of the Recordset object is used to move to the next record in the
Recordset. The loop continues until the EOF property of the Recordset object has the
value TRUE.

EOF stands for End of File. One way to think of a Recordset is by using the analogy of
a text file. Each row in a Recordset is like a separate row in a text file. When you open a
Recordset, you begin at the first row in the text file. Whenever you call the MoveNext
method, you are moved to the next line. When you reach the end of the Recordset (the
end of the file), the EOF property is TRUE.

120 Day 6

ANALYSIS

 08 0672318989 ch06 3/30/00 8:26 AM Page 120

Displaying Your Products 121

6

In Listing 6.1, the name of each product is outputted by using RS(product_name). If
you wanted to show other columns from the Recordset, you could replace product_name
with the name of the column that you want to display. For example, to display the prod-
uct price, use RS(product_price).

You’ll discover that you will use scripts like the one in Listing 6.1 over and over again in
your Active Server Pages when working with databases. Whenever you need to display a
set of records from a database, you will use a similar script.

Using the SQL SELECT Statement
You open a Recordset by using the SQL SELECT statement. The SQL SELECT statement is
like most SQL statements. Although the complete syntax of the SELECT statement is quite
complicated, the basic version is easy to understand. To select all the columns and all the
rows from a table, use the following statement:

SELECT * FROM table_name

The asterisk (*) is used as a wildcard character to indicate that all the columns in a table
should be retrieved. Typically, however, retrieving all the columns from a table with the
SELECT statement is a bad idea. You shouldn’t burden the database server by retrieving
data that you don’t really need. If you plan to show only certain columns from a table,
you should limit the columns retrieved by listing the columns in the SELECT statement
like this:

SELECT column1, column2, ... FROM table_name

For example, to select only the product_name and product_price columns from the
Products table, use the following SELECT statement:

SELECT product_name, product_price FROM Products

You can also use the SQL SELECT statement to retrieve only certain rows in a database
table. You do this by extending the SELECT statement with the WHERE clause. For example,
if you want to select only those rows from the Products table in which the product_
category column has the value Chocolates, you would use the following statement:

SELECT product_name FROM Products
WHERE product_category = “Chocolates”

The WHERE clause is very flexible. You can use Boolean and mathematical expressions
within a WHERE clause to retrieve records that meet very precise conditions. For example,
the following SQL statement retrieves only those products that have a price between
$20.00 and $30.00:

SELECT product_name FROM Products
WHERE product_price > 20.00 AND product_price < 30.00

 08 0672318989 ch06 3/30/00 8:26 AM Page 121

You can extend the SELECT statement even further by using the ORDER BY clause. An
ORDER BY clause allows you to retrieve the records from a database table in a certain
order. For example, the following statement retrieves the products from the Chocolates
category in alphabetical order by the product name:

SELECT product_name FROM Products
WHERE product_category = “Chocolates”
ORDER BY product_name

You must use the ORDER BY clause if you want records returned from a database table in
a certain order. By default, records are retrieved in no particular order.

Finally, you can use the SELECT statement to retrieve only distinct records in a table. For
example, if you wanted to list all the distinct categories in the Products table, you could
use the following SQL statement:

SELECT DISTINCT product_category
FROM Products

Imagine that the Products table contained 50 products in the Chocolates category and 34
products in the Hard Candy category. If you use the previous statement to select the dis-
tinct product categories, only two records would be returned: Chocolate and Hard Candy.

Recordset Cursor Types
When you open a Recordset, the Recordset is opened with a particular cursor type. You
can open a Recordset with any of the following four types of cursors: forward-only, stat-
ic, keyset, and dynamic.

The cursor type of a Recordset determines the methods and properties that the Recordset
will support. By default, when a Recordset is opened, it is opened with a forward-only
cursor. However, a forward-only cursor is the most limited type of cursor.

For example, using the RecordCount property of the Recordset object, you can deter-
mine the number of records contained in a Recordset. This property is not available when
opening a Recordset with a forward-only cursor. To use the RecordCount property, you
must open the cursor with a richer cursor type.

The script in Listing 6.2 demonstrates how you can open a Recordset with a static cursor
and display a count of records.

LISTING 6.2 Using a Static Cursor

1 <!-- #INCLUDE VIRTUAL=”adovbs.inc” -->
2 <%
3 ‘ Open Database Connection

122 Day 6

 08 0672318989 ch06 3/30/00 8:26 AM Page 122

Displaying Your Products 123

6

4 Set Con = Server.CreateObject(“ADODB.Connection”)
5 Con.Open “accessDSN”
6 ‘ Open Recordset with Static Cursor
7 Set RS = Server.CreateObject(“ADODB.Recordset”)
8 RS.CursorType = adOpenStatic
9 RS.ActiveConnection = Con
10 RS.Open “SELECT * FROM Products”
11 ‘ Display Count of Products
12 Response.Write “Number of products: “
13 Response.Write RS.RecordCount
14 %>

Line 1 uses the #INCLUDE directive to include the ADOVBS.inc file. This file
contains a list of constants for the ActiveX Data Objects, including constants for

the different cursor types. Without the ADOVBS.inc file, the constant adOpenStatic
could not be used in line 8.

ANALYSIS

The ADOVBS.inc file was installed on your hard drive when you installed
Active Server Pages. The easiest way to find the file is to select Start, Find,
Files or Folders and do a search for “ADOVBS.inc”.

Note

The Recordset is created and opened in lines 6–10. In line 8, the CursorType property of
the Recordset is assigned a Static cursor. Notice that the cursor type is set before the
Recordset is opened.

In lines 11–13, the number of products contained in the Products table is outputted. The
RecordCount property is used to return a count of products.

If the Recordset had been opened with the default forward-only cursor, the RecordCount
property would not have returned the correct result. It would have returned the value –1,
indicating that the cursor doesn’t support the property.

The RecordCount property is only one example of the properties and methods that
require a non forward-only cursor type. Later in today’s lesson in “Paging Through a
Recordset”, you will come across several other Recordset properties that depend on
using a richer cursor type.

Displaying Products
In this section, you will learn how to create the customer interface to your online store.
You will learn how to create the pages that enable your customers to browse your list of
products.

 08 0672318989 ch06 3/30/00 8:26 AM Page 123

Four files need to be created:

CatList.asp This file contains a script that displays each
of the product categories. Customers can click
on a particular product category to view a list
of products in that category.

ProductList.asp This file contains a script that lists all the
products in a particular category.

Default.asp This file is the main ASP page for your online
store. This page displays the list of products.
It uses both Navbar.asp and
ProductList.asp.

Product.asp This file displays the details for a particular
product. When a customer clicks on the name
of a product within the Default.asp page, the
details of the product are shown in this page.

Figure 6.1 shows what the finished version of your online store will look like. You can
also view the online store by visiting http://www.superexpert.com/candystore.

124 Day 6

FIGURE 6.1
The online store.

 08 0672318989 ch06 3/30/00 8:26 AM Page 124

Displaying Your Products 125

6

Selecting Product Categories
When you added the products to your online store, you entered a category for each of
your products. When customers browse your store, they can select a particular product
category and view only those products in that category.

Listing 6.3 contains the script that will display the list of categories.

LISTING 6.3 CatList.asp—Displaying Categories

1 <%
2 Set catRS = Server.CreateObject(“ADODB.Recordset”)
3 catRS.ActiveConnection = Con
4 sqlString = “SELECT DISTINCT product_category FROM Products “
5 sqlString = sqlString & “WHERE product_status=1 “
6 sqlString = sqlString & “ORDER BY product_category”
7 catRS.Open sqlString
8 %>
9 <% If cat = “Home” THEN %>
10 Home
11
12 <% ELSE %>
13 Home
14
15 <% END IF %>
16 <% WHILE NOT catRS.EOF %>
17 <% IF catRS(“product_category”) = cat THEN %>
18
19 <%=catRS(“product_category”)%>
20
21 <% ELSE %>
22 <a href=”default.asp?cat=<%=Server.URLEncode(
23 catRS(“product_category”))%>”>
24 <%=catRS(“product_category”)%>
25 <% END IF %>
26 <%
27 catRS.MoveNext
28 WEND
29 %>
20
31 <% catRS.Close %>

This script creates an instance of the ADO Recordset object named catRS. After
catRS is opened, each of the product categories is displayed one by one by loop-

ing through the Recordset. If a product category isn’t the current category, it is displayed
as a hypertext link.

ANALYSIS

 08 0672318989 ch06 3/30/00 8:26 AM Page 125

In lines 2 and 3, the catRS Recordset is created and associated with an already opened
database connection. This connection isn’t opened in this script. It will be opened in
Default.asp.

Next, in lines 4–7, the catRS Recordset is opened with a SQL SELECT statement. The
SELECT statement retrieves the name of each distinct product category from the Products
table. The SELECT statement places the records in alphabetical order.

In lines 9–15, a link to the home page (Default.asp) is created. If a customer is brows-
ing a particular category of products, the customer can click this link to return to the
store’s home page.

The list of product categories is displayed in lines 16–28. The list is formatted by using
the HTML unordered list tag . This tag is used to create a bulleted list of category
names.

If a category isn’t the current category, it is displayed as a hypertext link. Each link pass-
es a query string variable named cat. This query string variable contains the name of the
category. Notice that the name of the category is URL encoded. You must URL Encode a
string if the string might contain special characters (such as spaces or & or “) that cannot
be passed in a query string.

Displaying the List of Products
The ProductList.asp script is used to display a list of all the products for a particular
category. When a customer clicks a category, the name of the category is passed within
the cat query string variable. The ProductList.asp script uses the cat variable to select
only those products in the currently selected category.

Listing 6.4 contains the ProductList.asp script.

LISTING 6.4 ProductList.asp—Displaying Products

1 <%
2 Set prodRS = Server.CreateObject(“ADODB.Recordset”)
3 prodRS.ActiveConnection = Con
4
5 sqlString = “SELECT product_id, product_picture, product_name,

➥product_briefDesc “ &_
6 “FROM Products WHERE product_category=’” & cat & “‘ “ &_
7 “AND product_status=1 “ &_
8 “ORDER BY product_name “
9 prodRS.Open sqlString
10 %>
11 <table width=”350” border=0
12 cellpadding=5 cellspacing=0>

126 Day 6

 08 0672318989 ch06 3/30/00 8:26 AM Page 126

Displaying Your Products 127

6

13 <%
14 WHILE NOT prodRS.EOF
15 %>
16 <tr>
17 <td>
18 <% IF prodRS(“product_picture”) <> “?????” THEN %>
19 <IMG SRC=”<%=prodRS(“product_picture”)%>”
20 HSPACE=4 VSPACE=4 BORDER=0 align=”center”>
21 <% END IF %>
22 </td>
23 <td>
24 <a href=”product.asp?pid=<%=prodRS(“product_id”)%>”>
25 <%=prodRS(“product_name”)%>
26
<%=prodRS(“product_briefDesc”)%>
27
<a href=”product.asp?pid=<%=prodRS(“product_id”)%>”>
28 get more information
29 </td>
30 </tr>
31 <tr>
32 <td colspan=2 align=”center”>
33
34 </td>
35 </tr>
36 <%
37 prodRS.MoveNext
38 WEND
39 %>
40 </table>

This script creates an instance of the ADO Recordset object named prodRS. The
prodRS Recordset contains all the products from a certain category. A description

of each product is displayed one by one.

The instance of the prodRS Recordset is created and associated with an open database
connection in lines 2 and 3. The database connection is not created in this script. It will
be created in Default.asp.

Next, an SQL SELECT statement is created in lines 5–8. This SELECT statement retrieves
the records from Products table where the product has a status of 1 and the product
belongs to the current category. The records are returned in alphabetical order of the
product name.

The prodRS Recordset is opened in line 9. A description of each product is displayed in
lines 11–40. The product descriptions are displayed within an HTML table. If a product
has a picture, the picture is displayed in the left cell. The product name and brief descrip-
tion are displayed in the right cell.

ANALYSIS

 08 0672318989 ch06 3/30/00 8:26 AM Page 127

The product names are displayed as hypertext links to the Product.asp page. If a cus-
tomer clicks a product, he will be brought to the Product.asp page to view the product
details. Each link to the Product.asp page contains a query string variable named pid.
This variable is passed to the Product.asp page when the link is clicked. The
Product.asp page uses this variable to display the information for the correct product.

Creating the Main Store Page
In the previous two sections, you learned how to create the CatList.asp script to display
the list of product categories and the ProductList.asp scripts to display the list of prod-
ucts for a category. These scripts are brought together in the Default.asp page.

The Default.asp page is the main ASP page for your online store. Customers browse
your products by requesting this page.

The Default.asp page is contained in Listing 6.5.

LISTING 6.5 Default.asp—The Main Store Page

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <%
3 ‘ Get Current Category
4 cat = TRIM(Request(“cat”))
5 IF cat = “” THEN cat = “Home”
6
7 ‘ Open Database Connection
8 Set Con = Server.CreateObject(“ADODB.Connection”)
9 Con.Open “accessDSN”
10 %>
11 <html>
12 <head>
13 <title>Johnson’s Candies and Gifts</title>
14 </head>
15 <body link=”#ff4040” vtext=”lightred”>
16 <center>
17
18 <table width=640 border=0
19 cellspacing=0 cellpadding=0>
20 <tr>
21 <td>
22
23 </td>
24 <td align=right valign=”bottom”>
25 shopping cart
26 |
27 account
28 </td>
29 </tr>
30 <tr>

128 Day 6

 08 0672318989 ch06 3/30/00 8:26 AM Page 128

Displaying Your Products 129

6

31 <td colspan=2>
32 <hr width=”640”>
33 </td>
34 </tr>
35 </table>
36
37
38 <table width=640 border=0
39 cellpadding=0 cellspacing=0>
40 <tr><td valign=”top”>
41
42 <table cellpadding=0 cellspacing=0 border=0>
43 <tr>
44 <td valign=”bottom” bgcolor=”pink”>
45 </td>
46 </tr>
47 <tr>
48 <td>
49 <table width=”200” cellpadding=4 cellspacing=0
50 bgcolor=”lightyellow” border=1>
51 <tr>
52 <td>
53 <form method=”post” action=”search.asp”>
54 <input name=”searchfor” size=”15”>
55 <input type=”submit” value=”Search”>
56 </form>
57 </td>
58 </tr>
59 </table>
60 </td>
61 </tr>
62 <tr>
63 <td>
64
65 </td>
66 </tr>
67 <tr>
68 <td valign=”bottom”>
69 </td>
70 </tr>
71 <tr>
72 <td>
73 <table width=”200” cellpadding=4 cellspacing=0
74 bgcolor=”lightyellow” border=1>
75 <tr>
76 <td>
77
78 <!-- #INCLUDE FILE=”CatList.asp” -->
79
80 </td>
81 </tr>

continues

 08 0672318989 ch06 3/30/00 8:26 AM Page 129

82 </table>
83 </td>
84 </tr>
85 </table>
86
87 </td><td valign=”top”>
88 <% IF cat = “Home” THEN %>
89
90 <% ELSE %>
91 <!-- #INCLUDE FILE=”ProductList.asp” -->
92 <% END IF %>
93
94
95 </td></tr>
96 </table>
97
98 <hr width=640>
99 Copyright © 2000 the Johnson Gift Company
100
101
102 </center>
103 </body>
104 </hmtl>

The listing for Default.asp might appear to be very long. However, the majority
of the page is devoted to plain old HTML.

In lines 3–5, the cat query string variable is retrieved and assigned to a variable named
cat. If no category is currently selected, cat will equal home.

In lines 7–9, a database connection is opened. This connection is used within both the
CatList.asp script and the ProductList.asp script. It is normally a good idea to open
only one database connection within an ASP page and use it for all your database opera-
tions.

The CatList.asp script is included in line 78. This script displays the list of the product
categories.

The ProductList.asp script is included in line 91. If there is no current category (the
cat variable has the value home), no products are displayed.

Displaying Product Details
When a customer clicks the name of a product, or clicks Get More Information, she is
brought to the Product.asp page. This page shows more detailed information on a prod-
uct. A customer can also use this page to add a product to the customer’s shopping cart
(see Figure 6.2).

130 Day 6

LISTING 6.5 continued

ANALYSIS

 08 0672318989 ch06 3/30/00 8:26 AM Page 130

Displaying Your Products 131

6

The Product.asp page is contained in Listing 6.6.

FIGURE 6.2
The Product Detail
Page.

LISTING 6.6 Product.asp—Display Product Details

1 <%
2 ‘ Get the Product ID
3 productID = TRIM(Request(“pid”))
4
5 ‘ Open the Database Connection
6 Set Con = Server.CreateObject(“ADODB.Connection”)
7 Con.Open “accessDSN”
8
9 ‘ Get the Product Information
10 sqlString = “SELECT * FROM Products “
11 sqlString = sqlString & “WHERE product_id=” & productID
12 Set RS = Server.CreateObject(“ADODB.Recordset”)
13 RS.ActiveConnection = Con
14 RS.Open sqlString
15
16 ‘ Get Current Category
17 cat = RS(“product_category”)
18 %>
19 <html>
20 <head>
21 <title>Johnson’s Candies and Gifts</title>
22 </head>
23 <body link=”#ff4040” vtext=”lightred”>

continues

 08 0672318989 ch06 3/30/00 8:26 AM Page 131

24 <center>
25
26 <table width=640 border=0
27 cellspacing=0 cellpadding=0>
28 <tr>
29 <td>
30
31 </td>
32 <td align=right valign=”bottom”>
33 shopping cart
34 |
35 account
36 </td>
37 </tr>
38 <tr>
39 <td colspan=2>
40 <hr width=”640”>
41 </td>
42 </tr>
43 </table>
44
45
46 <table width=640 border=0
47 cellpadding=0 cellspacing=0>
48 <tr><td valign=”top”>
49
50 <table cellpadding=0 cellspacing=0 border=0>
51 <tr>
52 <td valign=”bottom” bgcolor=”pink”>
53 </td>
54 </tr>
55 <tr>
56 <td>
57 <table width=”200” cellpadding=4 cellspacing=0
58 bgcolor=”lightyellow” border=1>
59 <tr>
60 <td>
61 <form method=”post” action=”search.asp”>
62 <input name=”searchfor” size=”15”>
63 <input type=”submit” value=”Search”>
64 </form>
65 </td>
66 </tr>
67 </table>
68 </td>
69 </tr>
70 <tr>
71 <td>

132 Day 6

LISTING 6.6 continued

 08 0672318989 ch06 3/30/00 8:26 AM Page 132

Displaying Your Products 133

6

72
73 </td>
74 </tr>
75 <tr>
76 <td valign=”bottom”>
77 </td>
78 </tr>
79 <tr>
80 <td>
81 <table width=”200” cellpadding=4 cellspacing=0
82 bgcolor=”lightyellow” border=1>
83 <tr>
84 <td>
85
86 <!-- #INCLUDE FILE=”CatList.asp” -->
87
88 </td>
89 </tr>
90 </table>
91 </td>
92 </tr>
93 </table>
94
95 </td><td valign=”top”>
96
97 <table cellpadding=10 cellspacing=0
98 border=0>
99 <tr>
100 <td>
101
102 <% IF RS(“product_picture”) <> “?????” THEN %>
103 <img src=”<%=RS(“product_picture”)%>”>
104 <% END IF %>
105 <p>
106
107 <%=RS(“product_name”)%>
108
109 <p><%=RS(“product_briefDesc”)%>
110 <form method=”post” action=”cart.asp”>
111 <input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
112 <input type=”submit” value=”Add To Cart”>
113 </form>
114
115 <%=RS(“product_fullDesc”)%>
116
117 <form method=”post” action=”cart.asp”>
118 <input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
119 <input type=”submit” value=”Add To Cart”>
120 </form>
121 </td>

continues

 08 0672318989 ch06 3/30/00 8:26 AM Page 133

122 </tr>
123 </table>
124
125 </td></tr>
126 </table>
127
128 <hr width=640>
129 Copyright © 2000 the Johnson Gift Company
130
131
132 </center>
133 </body>
134 </hmtl>

This page displays detailed information for a particular product. The product ID
is retrieved from the pid query string variable in line 3. This product ID is used

to retrieve the information for the product in lines 10–14.

The product information is displayed in lines 97–126. Notice that two HTML forms are
created. These forms are used to create the Add To Cart buttons. When a customer clicks
either one of these buttons, the product is added to the customer’s shopping cart.

Paging Through A Recordset
If you have listed a number of products under a single category, you might not want all
the products to be displayed on a single page. For example, you might want no more
than five product descriptions to be listed on a single page. In this section, you will learn
how to divide your product listings into multiple pages.

The Recordset object has three properties that enable you to divide the results from a
database query into multiple pages:

AbsolutePage—Sets or returns the current page of records.

PageCount—Returns the number of pages in a RecordSet.

PageSize—Sets or returns the number of records contained in a single page (the
default is 10).

We are going to modify the ProductList.asp page so that it will display the product
listings in multiple pages. Listing 6.7 contains the new version of ProductList.asp.

134 Day 6

LISTING 6.6 continued

ANALYSIS

 08 0672318989 ch06 3/30/00 8:26 AM Page 134

Displaying Your Products 135

6

LISTING 6.7 MPProduct.asp—Display Pages of Products

1 <%
2 ‘ Get the Current Page
3 pg = TRIM(Request(“pg”))
4 IF pg = “” THEN pg = 1
5
6 ‘ Open the Recordset
7 Set prodRS = Server.CreateObject(“ADODB.Recordset”)
8 prodRS.ActiveConnection = Con
9 prodRS.CursorType = adOpenStatic
10 prodRS.PageSize = 5
11 sqlString = “SELECT product_id, product_picture, product_name,

➥ product_briefDesc “ &_
12 “FROM Products WHERE product_category=’” & cat & “‘ “ &_
13 “AND product_status=1 “ &_
14 “ORDER BY product_name “
15 prodRS.Open sqlString
16 prodRS.AbsolutePage = pg
17 %>
18 <table width=”350” border=0
19 cellpadding=5 cellspacing=0>
20 <%
21 WHILE NOT prodRS.EOF AND rowCount < prodRS.PageSize
22 rowCount = rowCount + 1
23 %>
24 <tr>
25 <td>
26 <% IF prodRS(“product_picture”) <> “?????” THEN %>
27 <IMG SRC=”<%=prodRS(“product_picture”)%>”
28 HSPACE=4 VSPACE=4 BORDER=0 align=”center”>
29 <% END IF %>
30 </td>
31 <td>
32 <a href=”product.asp?pid=<%=prodRS(“product_id”)%>”>
33 <%=prodRS(“product_name”)%>
34
<%=prodRS(“product_briefDesc”)%>
35
<a href=”product.asp?pid=<%=prodRS(“product_id”)%>”>
36 get more information
37 </td>
38 </tr>
39 <tr>
40 <td colspan=2 align=”center”>
41
42 </td>
43 </tr>
44 <%
45 prodRS.MoveNext
46 WEND
47 %>

continues

 08 0672318989 ch06 3/30/00 8:26 AM Page 135

48 </table>
49 <%
50 IF prodRS.PageCount > 1 THEN
51 %>
52
53 Go to page:
54 <%
55 FOR i = 1 to prodRS.PageCount
56 IF i <> cINT(pg) THEN
57 %>
58 <a href=”default.asp?cat=<%=Server.URLEncode(cat)%>&pg=<%=i%>”>
59 <%=i%>
60 <% ELSE %>
61 <%=i%>
62 <% END IF %>
63 <%
64 NEXT
65 %>
66
67 <%
68 END IF
69 %>
70

The current page number is retrieved in lines 2–4. The query string variable
named pg contains the current page number. If pg has no value, the page number

is set to equal 1.

In lines 6–16, the prodRS Recordset is opened. Notice that the Recordset is opened with
a Static cursor. You must use a Static cursor to use the Recordset paging properties.

136 Day 6

LISTING 6.7 continued

ANALYSIS

If you are using a version of Microsoft Access prior to Microsoft Access 2000,
you will need to open the Recordset using a client-side cursor in order to use
the Recordset paging properties. To use a client-side cursor, add the follow-
ing line after line 8:

prodRS.CursorLocation = adUSEClient

Note

In line 10, the PageSize property is used to set the number of records contained in a sin-
gle page. Because we want to show no more than five products on a page, the property is
set to equal 5. If you want to show more products on a page, you can change this number
to any value you prefer.

 08 0672318989 ch06 3/30/00 8:26 AM Page 136

Displaying Your Products 137

6

In line 16, the current page is set with the AbsolutePage property. For example, if
AbsolutePage is set to the value 2, and there are 5 records to a page, the first record dis-
played by the Recordset will be record number 6.

The records are displayed in lines 21–46. Notice that the PageSize property is used in
line 21 to limit the number of records shown. Contrary to what you might expect, you
can continue to loop through a Recordset beyond the records in the current page.

Lines 50–68 are used to display a list of links to other pages. A FOR...NEXT loop is used
to display a link for each of the page numbers. If you click on a link, the query string
named pg is passed back to Default.asp, resulting in a different page being displayed.

Making Your Store More Scalable
Connecting and retrieving records from a database is expensive in terms of computer
resources. If you want to create a Web site that scales to support hundreds of concurrent
users, you should avoid selecting records from a database whenever possible.

The online store described in today’s lesson retrieves records from a database whenever
the product categories are displayed and whenever a list of products is displayed. The
product categories are retrieved on every page.

Most likely, your product categories won’t change very frequently. When working with
data that is relatively static, you should attempt to find ways to avoid using the database.

One way to avoid retrieving the product categories from the database would be to simply
list the product categories as static HTML links. In other words, you can make the
CatList.asp file into a static HTML page.

The drawback to this approach is that you will need to update the CatList.asp file by
hand whenever you add a product that belongs to a new category or you remove or deac-
tivate all the products in a category. Web site maintenance also has significant costs.

Fortunately, there is a better solution. Instead of retrieving the list of product categories
whenever you display a page, you can retrieve the product categories only once and store
them in memory. If you store the categories in memory, you can avoid accessing the
database whenever the product categories are displayed.

The advantage of this approach is that it makes your online store more scalable while not
making it more difficult to maintain. The list of product categories is still generated auto-
matically from the database. However, the list isn’t generated every time a page is
requested.

 08 0672318989 ch06 3/30/00 8:26 AM Page 137

To store the list of product categories in memory, we will use an Application variable.
The Application variable will be named productCategories. It will contain an array in
which each element contains the name of a product category.

The modified version of CatList.asp is contained in Listing 6.8.

LISTING 6.8 FastCatList.asp—Fast Product Category List

1 <%
2 IF NOT isArray(Application(“productCategories”)) THEN
3 Set catRS = Server.CreateObject(“ADODB.Recordset”)
4 catRS.ActiveConnection = Con
5 sqlString = “SELECT DISTINCT product_category FROM Products “
6 sqlString = sqlString & “WHERE product_status=1 “
7 sqlString = sqlString & “ORDER BY product_category”
8 catRS.Open sqlString
9 productCategories = catRS.GetRows()
10 Application.Lock
11 Application(“productCategories”) = productCategories
12 Application.UnLock
13 catRS.Close
14 END IF
15 %>
16 <% If cat = “Home” THEN %>
17 Home
18
19 <% ELSE %>
20 Home
21
22 <% END IF %>
23 <%
24 FOR i = 0 TO UBOUND(Application(“productCategories”), 2)
25 prodCat = Application(“productCategories”)(0, i)
26 %>
27 <% IF prodCat = cat THEN %>
28
29 <%=prodCat%>
30
31 <% ELSE %>
32 <a href=”default.asp?cat=<%=Server.URLEncode

➥(prodCat)%>”><%=prodCat%>
33 <% END IF %>
34 <%
35 NEXT
36 %>
37

138 Day 6

 08 0672318989 ch06 3/30/00 8:26 AM Page 138

Displaying Your Products 139

6

The script in Listing 6.8 displays a list of all the product categories. The first
time the script is executed, the list of product categories is retrieved from the

database and assigned to the Application variable named productCategories. After the
script has run once, the list of product categories is retrieved from the Application array.

The Application array is created in lines 2–16. The GetRows() method of the Recordset
object is used to transfer the list of product categories from the Recordset to an array
named productCategories. The GetRows() method returns a two-dimensional array.
The first index of the array represents the database column, and the second index of the
array represents the database record.

In line 11, the productCategories array is assigned to the Application variable with the
same name. Assigning the list of product categories to the Application variable places the
list in memory.

The list of product categories is displayed in lines 16–37. Notice that the categories are
retrieved from the productCategories Application variable and not from the database.

Because the list of product categories is stored in memory, it won’t be updated automatical-
ly if you change a product in the database. The product categories will be refreshed only
when your computer is rebooted or the Web service is stopped and started. If you want to
force the list of product categories to be refreshed, you can use the script in Listing 6.9.

LISTING 6.9 Reset.asp—Reset Product Categories

1 <%
2 Application.Lock
3 Application(“productCategories”) = “”
4 Application.UnLock
5 %>
6 <html>
7 <head><title>Reset</title></head>
8 <body>
9 Product Categories have been reset!
10 </body>
11 </html>

This script simply sets the Application variable named productCategories to a
zero length string. This clears the array from the Application variable, causing

the list of product categories to be retrieved from the database the next time a page is
requested.

ANALYSIS

ANALYSIS

 08 0672318989 ch06 3/30/00 8:26 AM Page 139

Summary
In today’s lesson, you learned how to display the list of products in your online store.
You learned how to work with the Recordset object and how to open different sets of
records with the SELECT statement. You also learned how to divide a Recordset into
different pages of records. Finally, you learned how to optimize your online store by
transferring a Recordset into memory.

Q&A
Q When the list of products is displayed in the online store, the products are dis-

played alphabetically. Can I display the list of products in a different order?
For example, can I list the products in order of price?

A You can order the list of products using any column in the Products table. To order
the products using a different column, simply change the ORDER BY clause in the
SELECT statement used in ProductList.asp. To order the products by price, use the
database column product_price. To order the products in the same order that they
were entered into the database, use the product_id column.

Q What’s the best way to add pictures to my online store? How can I transfer a
picture of a product to my computer?

A You can transfer a picture to your computer by using a flatbed scanner, a digital
camera, or having your pictures transferred to a CD when they are developed.
Check with your local Kinko’s to rent a flatbed scanner. Most drugstores that
develop film can transfer your film to a CD.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What is the correct SQL SELECT statement for retrieving the name of every product

from the Products table that costs more than $20.25?

2. What method do you use to move to the next row in a Recordset?

3. What do you need to include in a script before you can use ADO constants such as
adOpenStatic?

4. Which default property of a Recordset do you need to change before you can use
Recordset properties such as RecordCount and PageSize?

140 Day 6

 08 0672318989 ch06 3/30/00 8:26 AM Page 140

Displaying Your Products 141

6

Exercise
In today’s lesson, you learned how to modify the CatList.asp page so that the list
of product categories is retrieved from memory rather than the database. Modify
the ProductList.asp page so that the list of products is retrieved from memory
rather than the database.

 08 0672318989 ch06 3/30/00 8:26 AM Page 141

 08 0672318989 ch06 3/30/00 8:26 AM Page 142

DAY 7

WEEK 1

Searching for Products
In yesterday’s lesson, you learned how to create the main pages for your online
store. You learned how to create the Active Server Pages that display your prod-
ucts. In today’s lesson, you will learn how to add several additional features to
your store. Today, you will learn the following:

• How to randomly display a list of featured products on your store’s home
page

• How to create a product search page for your store

• How to set up a special directory to enable your products to be indexed
by Search Engines such as AltaVista

Displaying a Rotating List of Featured
Products

In yesterday’s lesson, you created the home page for your online store. The
home page displays a list of product categories. However, unless you click on a
particular product category, the home page is mostly blank.

 09 0672318989 ch07 3/30/00 8:19 AM Page 143

Today, we are going to add some content to the home page. We are going to add a rotat-
ing list of featured products (see Figure 7.1). This list of featured products will enable
you to promote particular products in your store on your home page.

144 Day 7

FIGURE 7.1
Displaying Featured
Products.

To create the list of featured products, we will need to modify the files discussed in
Days 5, “Building Your Product Catalog,” and 6, “Displaying Your Products.” We will
need to modify the manageproducts.asp and updateproduct.asp files discussed in Day
5 to enable you to select the products that you want to list as featured. We will also need
to modify the home page file, default.asp, discussed in Day 6 so that it will display the
list of featured products.

Selecting the List of Featured Products
In this section, you will learn how to add an additional field to the Products table to track
featured products. You will also learn how to change the updateProduct.asp file and the
manageproducts.asp file, so you can select the products that you want to list as featured.

The steps for adding a featured field to the Products table described in
this section are the same as you would use to add any other field to the
Products table. For example, you could follow the same steps to add a
product_saleprice field or a product_sku field.

Note

 09 0672318989 ch07 3/30/00 8:19 AM Page 144

Searching for Products 145

7

First, you will need to add an additional field to the Microsoft Access table named
Products. Launch Microsoft Access, and open the Products table in Design View. Next,
go to the end of the list of fields and add a field named product_featured. Create this
field as a Number field. It can be an integer field (see Figure 7.2).

FIGURE 7.2
Adding the
product_featured

field.

To enable you to select which products to list as featured, you will need to modify both
the updateProduct.asp file and the manageproducts.asp file. You created these files in
Day 5.

Open the updateProduct.asp file and add the following line to the Open the Recordset
section:

1 productFeatured = RS(“product_featured”)
2 IF isNULL(productFeatured) THEN productFeatured =

The first line assigns the value of the table column product_featured to the local vari-
able named productFeatured. The second line takes care of the situation in which the
product_featured table column is NULL. When the product_featured is NULL, the pro-
ductfeatured variable is assigned the value 0.

Next, add the following HTML code within the HTML form in updateProduct.asp:

<tr>
<td>
Product Featured:
</td>

 09 0672318989 ch07 3/30/00 8:19 AM Page 145

<td>
<select name=”productFeatured”>
<option value=”0” <%=SELECTED(“0”, productFeatured)%>>Normal
<option value=”1” <%=SELECTED(“1”, productFeatured)%>>Featured
</select>
</td>

</tr>

This code fragment adds an HTML select list to the updateProduct.asp HTML form
that enables you to select whether a product should be displayed on the home page as
featured. The final version of updateProduct.asp is included on the CD-ROM that
accompanies this book.

Finally, you will need to modify the manageproducts.asp page to update the database
with information about whether a product is featured. Open the manageproducts.asp file
and add the following line to the section labeled Get the Form Variables:

productFeatured = TRIM(Request(“productFeatured”))

This line retrieves the form field named productFeatured and assigns it to the
productFeatured variable. Next, modify the SQL String created in the section labeled
Update Product to include the productFeatured variable. The modified update string
should resemble the following string:

sqlString = “UPDATE Products SET “ &_
“product_name=’” & fixQuotes(productName) & “‘,” &_
“product_price=” & cCUR(productPrice) & “,” &_
“product_picture=’” & fixQuotes(productPicture) & “‘,” &_
“product_category=’” & fixQuotes(productCategory) & “‘,” &_
“product_briefdesc=’” & fixQuotes(productBriefDesc) & “‘,” &_
“product_fulldesc=’” & fixQuotes(productFullDesc) & “‘,” &_
“product_featured=” & productFeatured & “,” &_
“product_status=” & productStatus & “ WHERE “ &_
“product_id=” & productID

The final version of manageproducts.asp is included on the CD-ROM that accompanies
this book.

After you perform these modifications to both updateProduct.asp and manageprod-
ucts.asp, you will be able to use these pages to select the products that you want listed
as featured. Before reading the next section, open manageproducts.asp in your Web
browser and select four or five products that you want featured on the home page of your
store.

Retrieving the List of Featured Products
Now that you’ve selected the featured products for your online store, you will need a
method of displaying the featured products on your home page. We will display the list

146 Day 7

 09 0672318989 ch07 3/30/00 8:19 AM Page 146

Searching for Products 147

7

of featured products with the help of an #INCLUDE file named Featured.asp. This
#INCLUDE file will be displayed when no category is selected. It will be included in the
following section of default.asp:

<% IF cat = “Home” THEN %>
<!-- #INCLUDE FILE=”Featured.asp” -->
<% ELSE %>
<!-- #INCLUDE FILE=”ProductList.asp” -->
<% END IF %>

This code fragment displays a list of products, generated within ProductList.asp, if a
category is selected. Otherwise, if no category is selected, the Featured.asp page is dis-
played. The modified version of default.asp is included on the CD-ROM that accompa-
nies this book.

The file named Featured.asp contains the code that displays the featured products. The
complete listing for Featured.asp is contained in Listing 7.1.

LISTING 7.1 Displaying Featured Products

1 <%
2 Randomize
3 CONST numFeatured = 3
4
5 ‘ Retrieve Featured Products
6 sqlString = “SELECT product_id, product_picture, product_name,

➥ product_briefDesc “ &_
7 “FROM Products WHERE product_featured = 1 “ &_
8 “AND product_status=1 “ &_
9 “ORDER BY product_name “
10
11 SET Featured = Con.Execute(sqlString)
12 IF NOT Featured.EOF THEN
13 featuredArray = Featured.GetRows()
14 Featured.Close
15
16 ‘ Display Featured Products
17 topFeatured = UBOUND(featuredArray, 2) + 1
18 skip = topFeatured / numFeatured
19 IF topFeatured <= numFeatured THEN skip = 1
20 %>
21 <table width=”350” border=0
22 cellpadding=5 cellspacing=0>
23 <%
24 FOR i = 0 TO topFeatured - 1 STEP skip
25 offset = RND * (skip - 1)
26 productID = featuredArray(0, i + offset)
27 productPicture = featuredArray(1, i + offset)

INPUT

continues

 09 0672318989 ch07 3/30/00 8:19 AM Page 147

28 productName = featuredArray(2, i + offset)
29 productBriefDesc = featuredArray(3, i + offset)
30 %>
31 <tr>
32 <td>
33 <% IF productPicture <> “?????” THEN %>
34 <IMG SRC=”<%=productPicture%>”
35 HSPACE=4 VSPACE=4 BORDER=0 align=”center”>
36 <% END IF %>
37 </td>
38 <td>
39 <a href=”product.asp?pid=<%=productID%>”>
40 <%=productName%>
41
<%=productBriefDesc%>
42
<a href=”product.asp?pid=<%=productID%>”>
43 get more information
44 </td>
45 </tr>
46 <tr>
47 <td colspan=2 align=”center”>
48
49 </td>
50 </tr>
51 <%
52 NEXT
53 %>
54 </table>
55 <%
56 END IF
57 %>

The script in Listing 7.1 randomly displays a predetermined number of featured
products from the Products table. The constant in line 3, numfeatured, specifies

the number of featured products to display. This script will display only three featured
products, but you can change this constant to any value you want.

In lines 6–9, a SQL SELECT string is constructed that retrieves all the featured products
from the database. This SQL string is executed in line 11, and the results of the database
query are assigned to a Recordset named Featured.

In line 13, the contents of the Featured Recordset are transferred to an array named
featuredArray. This transfer is accomplished with the GetRows() method of the
Recordset object. The GetRows() method simply creates a two-dimensional array
from any Recordset.

148 Day 7

LISTING 7.1 continued

ANALYSIS

 09 0672318989 ch07 3/30/00 8:19 AM Page 148

Searching for Products 149

7

In lines 17–19, two variables are assigned values: topFeatured and skip. The variable
named topFeatured contains the index number of the top element of the Featured array.
The variable named skip is used to indicate the number of elements to skip within the
array when displaying the featured products.

For example, assume that 12 featured products are in the Products table. Assume that you
want to display only three featured products on the home page and, therefore, the con-
stant numFeatured has the value 3. In that case, the skip variable will have the value 4.
This guarantees that exactly three products are shown.

Finally, in lines 21–54, the featured products are displayed by looping through the
featuredArray Recordset. Notice, in particular, the FOR...NEXT loop in line 21. This
loop uses the skip variable to step through the array.

In line 25, a variable named offset is used to randomly select a featured product to dis-
play. If the script in Listing 7.1 is executed multiple times, and there are more than three
products marked as featured in the Products table, different featured products will be
randomly displayed each time the script is executed.

Optimizing the Display of Featured Products
The script in Listing 7.1 does a good job of displaying the list of featured products.
However, as it stands, the script isn’t particularly efficient. Every time someone visits the
store’s home page, the script queries the Products database table to retrieve the list of
featured products. Because, most likely, the list of featured products will change infre-
quently, this constant querying of the database is a waste of precious database resources.

If you remember yesterday’s lesson, a solution should leap readily to mind: Application
variables. Instead of querying the database every time the home page is displayed, the
list of featured products can be stored in an Application variable within the server’s
memory. Listing 7.2 is the same as Listing 7.1; except the list of featured products is
placed in an Application variable named Featured.

The GetRows() Method

The GetRows() method copies the contents of a Recordset into a two-
dimensional array. The first index of the array represents the table column:
The second index of the array represents the table row.

Note

 09 0672318989 ch07 3/30/00 8:20 AM Page 149

LISTING 7.2 Displaying Featured Products from Memory

1 <%
2 Randomize
3 CONST numFeatured = 3
4
5 ‘ Retrieve Featured Products
6 IF NOT isArray(Application(“Featured”)) THEN
7
8 sqlString = “SELECT product_id, product_picture, product_name,

➥product_briefDesc “ &_
9 “FROM Products WHERE product_featured = 1 “ &_
10 “AND product_status=1 “ &_
11 “ORDER BY product_name “
12
13 SET Featured = Con.Execute(sqlString)
14 IF NOT Featured.EOF THEN
15 featuredArray = Featured.GetRows()
16 Featured.Close
17 END IF
18
19 ‘ Add the Array To Application Variable
20 Application.Lock
21 Application(“Featured”) = featuredArray
22 Application.UnLock
23
24 ELSE
25 featuredArray = Application(“Featured”)
26 END IF
27
28 ‘ Display Featured Products
29 topFeatured = UBOUND(featuredArray, 2) + 1
30 skip = topFeatured / numFeatured
31 IF topFeatured <= numFeatured THEN skip = 1
32 %>
33 <table width=”350” border=0
34 cellpadding=5 cellspacing=0>
35 <%
36 FOR i = 0 TO topFeatured - 1 STEP skip
37 offset = RND * (skip - 1)
38 productID = featuredArray(0, i + offset)
39 productPicture = featuredArray(1, i + offset)
40 productName = featuredArray(2, i + offset)
41 productBriefDesc = featuredArray(3, i + offset)
42 %>
43 <tr>
44 <td>
45 <% IF productPicture <> “?????” THEN %>
46 <IMG SRC=”<%=productPicture%>”
47 HSPACE=4 VSPACE=4 BORDER=0 align=”center”>

150 Day 7

INPUT

 09 0672318989 ch07 3/30/00 8:20 AM Page 150

Searching for Products 151

7

48 <% END IF %>
49 </td>
50 <td>
51 <a href=”product.asp?pid=<%=productID%>”>
52 <%=productName%>
53
<%=productBriefDesc%>
54
<a href=”product.asp?pid=<%=productID%>”>
55 get more information
56 </td>
57 </tr>
58 <tr>
59 <td colspan=2 align=”center”>
60
61 </td>
62 </tr>
63 <%
64 NEXT
65 %>
66 </table>

The conditional in line 6 is used to detect whether the list of featured products is
already stored in memory within an Application variable. If the featured prod-

ucts list isn’t in memory, the database is queried and the results are assigned to an
Application variable named Featured. Otherwise, the list of featured products is
retrieved directly from the Application variable named Featured.

After the first time this script is executed, the featured list will continue to be stored in
memory until your computer is shut down (or it crashes). If you modify your store’s list
of featured products, you will need a way to clear the Application variable so that the
list of featured products can be retrieved from the database once again. The script in
Listing 7.3 clears the Application variable named Featured.

LISTING 7.3 Reset Featured Products

1 <html>
2 <head><title>Reset Featured</title></head>
3 <body>
4 <%
5 Application(“Featured”) = “”
6 %>
7 <big>Featured Products Reset!</big>
8
9 </body>
10 </html>

ANALYSIS

INPUT

 09 0672318989 ch07 3/30/00 8:20 AM Page 151

The script in Listing 7.3 sets the Application variable named Featured equal to
a zero length string. This is accomplished in line 5. After running this script, the

home page will retrieve the list of featured products from the database.

Creating a Search Page
In this section, you will learn how to add a page to your online store that will enable
your customers to search for products. Customers will be able to enter search terms into
the search box that appears on the store’s home page and retrieve a list of matching prod-
ucts (see Figure 7.3).

152 Day 7

ANALYSIS

FIGURE 7.3
The Search Page.

To create the search page, we will be using the SQL LIKE operator. The SQL LIKE opera-
tor performs matches that include wildcard characters. Here is an example of how the
SQL LIKE operator can be used in a SQL statement:

SELECT * FROM Products
WHERE product_name LIKE ‘c%’

This SQL statement retrieves all the rows from the database table named Products in
which the product_name field starts with the letter c. For example, it retrieves the rows
where the product name is Caramel Nut Clusters or Chocolate Drops.

This SELECT statement is not case sensitive. It retrieves product names that start with
either a lowercase c or uppercase C.

 09 0672318989 ch07 3/30/00 8:20 AM Page 152

Searching for Products 153

7

Notice how the wildcard character % is used in the SQL statement. The character % is a
placeholder that represents one or more characters. In the search page, we will use the %
character to retrieve all the products that contain a search phrase within the product’s
name or brief description.

The % wildcard can only be used when using the Microsoft OLE DB Provider
for Jet or Microsoft Jet version 4.0 or above. Otherwise, you must use the *
character instead of the % character.s

Note

For example, suppose that someone enters the search term Chocolate. In that case, the
search page will use the following SQL SELECT statement to retrieve matching products:

SELECT product_id, product_picture, product_name, product_briefDesc
FROM Products
WHERE product_status = 1
AND (product_name LIKE ‘%chocolate%’
OR product_briefDesc LIKE ‘%chocolate%’)
ORDER BY product_name

The SELECT statement uses the % wildcard character to match any product_name field or
product_briefdesc field no matter where the search term chocolate appears within the
field.

The complete script for the search page is contained in Listing 7.4. (It’s also included on
the CD-ROM as Search.asp.)

LISTING 7.4 Searching for Products

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <%
3 ‘ Get Current Category
4 cat = TRIM(Request(“cat”))
5 IF cat = “” THEN cat = “Home”
6
7 ‘ Get Search Phrase
8 searchFor = TRIM(Request(“searchFor”))
9
10 ‘ Open Database Connection
11 Set Con = Server.CreateObject(“ADODB.Connection”)
12 Con.Open “accessDSN”
13 %>
14 <html>
15 <head>
16 <title>Johnson’s Candies and Gifts - Search</title>

INPUT

continues

 09 0672318989 ch07 3/30/00 8:20 AM Page 153

17 </head>
18 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
19 <center>
20
21 <table width=640 border=0 bgcolor=”#ffffff”
22 cellspacing=0 cellpadding=0>
23 <tr>
24 <td>
25
26 </td>
27 <td align=right valign=”bottom”>
28 shopping cart
29 |
30 account
31 </td>
32 </tr>
33 <tr>
34 <td colspan=2>
35 <hr width=”640”>
36 </td>
37 </tr>
38 </table>
39
40
41 <table width=640 border=0 bgcolor=”#ffffff”
42 cellpadding=0 cellspacing=0>
43 <tr><td valign=”top”>
44
45 <table cellpadding=0 cellspacing=0 border=0>
46 <tr>
47 <td valign=”bottom” bgcolor=”pink”>
48 </td>
49 </tr>
50 <tr>
51 <td>
52 <table width=”200” cellpadding=4 cellspacing=0
53 bgcolor=”lightyellow” border=1>
54 <tr>
55 <td>
56 <form method=”post” action=”search.asp”>
57 <input name=”searchfor” size=”15”>
58 <input type=”submit” value=”Search”>
59 </form>
60 </td>
61 </tr>
62 </table>
63 </td>
64 </tr>
65 <tr>

154 Day 7

LISTING 7.4 continued

 09 0672318989 ch07 3/30/00 8:20 AM Page 154

Searching for Products 155

7

66 <td>
67
68 </td>
69 </tr>
70 <tr>
71 <td valign=”bottom”>
72 </td>
73 </tr>
74 <tr>
75 <td>
76 <table width=”200” cellpadding=4 cellspacing=0
77 bgcolor=”lightyellow” border=1>
78 <tr>
79 <td>
80
81 <!-- #INCLUDE FILE=”CatList.asp” -->
82
83 </td>
84 </tr>
85 </table>
86 </td>
87 </tr>
88 </table>
89
90 </td><td valign=”top”>
91
92 <%
93 sqlString = “SELECT product_id, product_picture, product_name,

➥product_briefDesc “ &_
94 “FROM Products “ &_
95 “WHERE product_status = 1 “ &_
96 “AND (product_name LIKE ‘%” & searchFor & “%’ “ &_
97 “OR product_briefDesc LIKE ‘%” & searchFor & “%’) “ &_
98 “ORDER BY product_name “
99
100 SET RS = Con.Execute(sqlString)
101 IF NOT RS.EOF AND searchFor <> “” THEN
102 %>
103 <table width=”350” border=0
104 cellpadding=5 cellspacing=0>
105 <tr>
106 <td colspan=2>
107
108 Search Results:
109
110 </td>
111 </tr>
112 <%
113 WHILE NOT RS.EOF

continues

 09 0672318989 ch07 3/30/00 8:20 AM Page 155

114 %>
115 <tr>
116 <td>
117 <% IF RS(“product_Picture”) <> “?????” THEN %>
118 <IMG SRC=”<%=RS(“product_Picture”)%>”
119 HSPACE=4 VSPACE=4 BORDER=0 align=”center”>
120 <% END IF %>
121 </td>
122 <td>
123 <a href=”product.asp?pid=<%=RS(“product_ID”)%>”>
124 <%=RS(“product_Name”)%>
125
<%=RS(“product_BriefDesc”)%>
126
<a href=”product.asp?pid=<%=RS(“product_ID”)%>”>
127 get more information
128 </td>
129 </tr>
130 <tr>
131 <td colspan=2 align=”center”>
132
133 </td>
134 </tr>
135 <%
136 RS.MoveNext
137 WEND
138 %>
139 </table>
140 <%
141 ELSE
142 %>
143 <table width=”350” border=0
144 cellpadding=5 cellspacing=0>
145 <tr>
146 <td>
147
148 No products matched your search terms.
149
150 </td>
151 </tr>
152 </table>
153 <%
154 END IF
155 %>
156
157 </td></tr>
158 </table>
159
160 <hr width=640>
161 Copyright © 2000 the Johnson Gift Company
162

156 Day 7

LISTING 7.4 continued

 09 0672318989 ch07 3/30/00 8:20 AM Page 156

Searching for Products 157

7

163
164 </center>
165 </body>
166 </hmtl>

The search terms that the user entered into the search box on the home page are
retrieved in line 8 and assigned to a variable named searchFor. Next, in lines

11–12, a database connection is created and opened.

The real work in the script happens in lines 93–98 where the SQL string is created. The
string is built using the searchFor variable to retrieve all the products that contain the
value of searchFor in their name or brief description.

If no matching products are retrieved, a message is displayed reporting this fact.
Otherwise, the matching products are displayed. This is accomplished in lines 101–139.

ANALYSIS

To see a live, working sample of the search page, visit http://
asp.superexpert.com/candystore/.

Note

Optimizing the Search Page
Using the SQL LIKE operator to match search terms is hard on your database. If you
have too many people attempting to perform searches at the same time, or you have
thousands of products to search through, you should investigate an alternative method of
enabling users to search for products at your Web site.

Microsoft has two products that you can use to add a more scalable search page to your
Web site. If you need the ability to search through static files, you can use Microsoft
Index Server. If you need to perform searches against database tables, you can use the
Microsoft Full-text Search Service included with Microsoft SQL Server.

Microsoft Index Server is included with the NT Option Pack and can be downloaded
from the Microsoft Web site at http://www.microsoft.com/downloads/. Index Server
can be used to perform searches against static files on your computer’s hard drive, but it
cannot be used to search through database tables. For example, you couldn’t use this
product to search through the products in the Products table.

The Full-text Search Service included with Microsoft SQL 7.0, on the other hand,
enables you to perform searches against SQL Server database tables. You can use it to
perform either simple searches or complex Boolean queries. To use the Full-text Search
Service, you must buy Microsoft SQL 7.0.

 09 0672318989 ch07 3/30/00 8:20 AM Page 157

Creating Indexable Web Pages
Previously, you learned how to add a search page to your online store that enables users
to search through the products at your Web site. In this section, you will learn how to
enable Internet search engines such as Altavista, Lycos, Inktomi, and Google to index the
pages on your Web site.

Getting your Web pages into the Internet search engines is extremely important if you
want to attract customers to your store. If you don’t get your pages indexed, most people
will never find your store or buy your products.

Internet search engines have problems with indexing pages generated from a database. If
a page displays different content depending on the values of the query string variables
passed to it, an Internet search engine will fail to correctly index the page’s content.

For example, the Product.asp page displays information about different products
depending on the value of the product ID passed to the page. If you attempt to submit
this page to a search engine, such as Altavista, the search engine wouldn’t be able to
index the page because it would attempt to index it without passing a product ID.

Fortunately, there is a way to get around this problem. The trick is to convince the search
engine that it is getting a static page when, in fact, it is retrieving a page generated from
the database. One easy way to do this is to take advantage of the Custom Errors feature
of Internet Information Server. (This trick won’t work with the Personal Web Server
because it doesn’t support Custom Errors.)

First, we need to create a special directory named Products. Follow these steps:

1. Create a new directory on your computer’s hard drive named Products as a subdi-
rectory of your Web site’s root directory (for example, c:\inetput\wwwroot\
products).

2. Next, launch the Internet Service Manager and open the property sheet for this
directory by right-clicking the Products folder and selecting Properties.

3. Choose the tab labeled Custom Errors.

4. We are going to create a custom error for error 404 File Not Found. Click the
button labeled Edit Properties after selecting this error.

5. For Message Type, select URL. In the text box labeled URL, enter /Product.asp.
These entries will redirect to the ASP page named Product.asp when a file is not
found in the Products directory.

6. Click OK to save all your changes.

158 Day 7

 09 0672318989 ch07 3/30/00 8:20 AM Page 158

Searching for Products 159

7

After you have completed the steps above, any time someone requests a page from the
Products directory, he will be redirected automatically to the Products.asp page. For
example, if someone requests the page at the address http://yourdomain/Products/
Product12.htm, the Product.asp page will be returned instead.

We aren’t finished yet. When someone requests the page Product12.htm, we want to
show the product information for the product with the ID of 12. To do this, we need to
modify the Product.asp page. Add the code in Listing 7.5 to the Product.asp page
beneath the section labeled Get the Product ID. (The final version of Product.asp is
included on the CD-ROM that accompanies this book.)

LISTING 7.5 Retrieving the Product ID

1 IF productID = “” THEN
2 workString = Request.QueryString
3 workString = RIGHT(workString, LEN(workString) -

➥ INSTRrev(workString, “/”))
4 FOR i = 1 TO LEN(workString)
5 IF isNumeric(MID(workString, i, 1)) THEN
6 productID = productID & MID(workString, i, 1)
7 END IF
8 NEXT
9 END IF

When you request a page from the Products directory, you are automatically
redirected to the Product.asp page. However, the query string includes the path

of the page that was originally requested. The script in Listing 7.5 retrieves the query
string (by using Request.QueryString) and assigns it to a variable named workString.
Next, workString is stripped of all non-numeric content. What’s left should be the prod-
uct ID.

When you submit the product pages from your online store to the Internet search
engines, you can submit them by using addresses like the following:

http://yourdomain/Products/product1.htm

http://yourdomain/Products/product2.htm

When an Internet search engine indexes these pages, it will correctly index the informa-
tion for each product. In this case, the search engine will index the products with the
product IDs of 1 and 2.

INPUT

ANALYSIS

 09 0672318989 ch07 3/30/00 8:20 AM Page 159

Summary
In today’s lesson, you learned how to add some important additional features to your
store. First, you learned how to add a randomly generated list of featured products to
your store’s home page. You also learned how to create a search page for your store
using the SQL LIKE operator. Finally, you learned how to trick Internet search engines
into indexing the database generated content at your Web site.

Q&A
Q When using the search page, I noticed that when searching for the word car, a

search for “car” would return records that contain the word caramel or the
word carpet. In other words, whole word matches aren’t being performed. Is
there any way to change this behavior?

A You could surround the search terms with single spaces. For example, instead of
searching for “%car%”, you would use the search expression “% car %”. The prob-
lem with this approach is that it would cause problems if the search terms appeared
at the end of a sentence (for example, followed by a period or exclamation mark).
The best solution is not to use the SQL LIKE operator but use the SQL Server Full-
text Search Service instead.

Q I believe I have an edge over my competition because I carry a wide range of
products within a given category. Is submitting multiple product pages to an
Internet search engine considered a form of spamming?

A You’ll have to look at the particular submission guidelines for each search engine.
However, in general, submitting multiple pages to a search engine is not the same
as spamming. It wouldn’t be considered spamming because you aren’t attempting
to trick the search engine into indexing content that doesn’t actually appear on the
page.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. How do I transfer the contents of a Recordset into an array?

2. The following SQL SELECT statement is intended to retrieve all the records from
the Products table where the product_name column contains the word “candy”.

160 Day 7

 09 0672318989 ch07 3/30/00 8:20 AM Page 160

Searching for Products 161

7

What’s wrong with this statement?

SELECT * FROM Products WHERE product_name = ‘%candy%’

3. When using the Internet Information Server’s Custom Errors feature to automati-
cally redirect to a new page, how do I determine the name of the original page
requested?

Exercise
The search page described in this chapter matches search terms in either the
product_name or the product_briefDesc database fields. How would you modify
the search page (Search.asp) so that it would also match terms appearing in the
product_fulldesc field?

 09 0672318989 ch07 3/30/00 8:20 AM Page 161

 09 0672318989 ch07 3/30/00 8:20 AM Page 162

WEEK 1

In Review
This week, you created the first pages for your online store. You started the
week by completing a crash course in Active Server Pages programming. You
learned how to use the Active Server Pages Request and Response objects to
interact with a customer. You also learned how to track customer information
with cookies and Session variables. Finally, you learned how to work with files
in your E-Commerce application.

Later in the week, in the lessons on Days 5 through 7, you learned how to cre-
ate Active Server Pages to manage the product catalog for your online store.
You learned how to store product information in a database table and how to
display the product information to customers with Active Server Pages. You
also learned how to enable customers to search your catalog of products
through your Web site.

Bonus Project
Creating a Customer Feedback Form
In this week’s lessons, you learned how to work with a database in an ASP
page. You learned how to use the SQL INSERT INTO statement to add informa-
tion to a database table and how to use the SQL SELECT statement to retrieve it.

 10 0672318989 w1 in review 3/30/00 8:20 AM Page 163

In this bonus lesson, you’ll apply this knowledge by creating a customer feedback form.
Your customers can use this form whenever they need to leave a message for the store
administrator. For example, the form can be used by a customer to request support or to
report errors at your Web site. When a customer leaves feedback, his feedback is stored
in a database table.

To create the customer feedback form, you’ll need to create a new database table and two
additional Active Server Pages. The new database table is named feedback and it con-
tains the following four fields:

• feedback_id—an AutoNumber field that uniquely identifies each row in the table.

• feedback_email—a Text field that contains the customer’s email address.

• feedback_comment—a Memo field that contains the text of the customer’s feed-
back.

• feedback_entrydate—a Date/Time field that automatically contains the date the
feedback is entered. This field should have a default value of NOW().

You can create the feedback table in the storeDB database (The same Access database
that you used in this week’s lessons).

Next, you’ll need to create an ASP page, named feedback.asp, that contains the HTML
form for customer feedback. The customer feedback form is contained in Listing BP1.1.

LISTING BP1.1 The Customer Feedback Form

1 <HTML>
2 <HEAD><TITLE>Customer Feedback</TITLE></HEAD>
3 <BODY>
4
5 Thank you for leaving customer feedback on our Web site.
6
Please enter your feedback in the form below:
7
8
9 <FORM METHOD=”post” ACTION=”saveFeedback.asp”>
10 <P>Your Email Address:
11
<INPUT NAME=”email” size=”50” maxlength=”255”>
12 <P>Your Feedback:
13
<TEXTAREA NAME=”comment” COLS=50 ROWS=4
14 WRAP=”Virtual”></TEXTAREA>
15 <P><INPUT TYPE=”submit” VALUE=”Submit Feedback”>
16 </FORM>
17
18 </BODY>
19 </HTML>

164 Week 1

 10 0672318989 w1 in review 3/30/00 8:20 AM Page 164

In Review 165

The customer feedback form consists of a standard HTML form. It has an Email
field and a Comments field. When a customer submits the form, the data is sub-

mitted to the savefeedback.asp page.

The savefeedback.asp page is contained in Listing BP1.2.

LISTING BP1.2 The Save Feedback Page

1 <%
2 FUNCTION fixQuotes(theString)
3 fixQuotes = REPLACE(theString, “‘“, “‘’”)
4 END FUNCTION
5
6 email = TRIM(Request(“email”))
7 comment = TRIM(Request(“comment”))
8 IF email <> “” AND comment <> “” THEN
9 Set Con = Server.CreateObject(“ADODB.Connection”)
10 Con.Open “accessDSN”
11 sqlString = “INSERT INTO feedback (feedback_email, feedback_comment) “ &_
12 “VALUES (‘“ & fixQuotes(email) & “‘,’” & fixQuotes(comment) & “‘)”
13 Con.Execute sqlString
14 END IF
15 %>
16 <HTML>
17 <HEAD><TITLE>Save Feedback</TITLE></HEAD>
18 <BODY>
19
20 Thank you for submitting your feedback!
21
22 </BODY>
23 </HTML>

The savefeedback.asp page contained in Listing BP1.2 saves the information
that the customer entered in the customer feedback form into the database table

named feedback. You should find the Active Server Pages script that appears in this page
easy to understand.

In lines 6 and 7, the customer’s email address and comments are retrieved from the
Request object. Next, in lines 9 and 10, a database connection is created and opened. A
SQL INSERT INTO statement is constructed in lines 11 and 12, and executed in line 13.
After the SQL INSERT INTO statement is executed, the customer feedback should appear
in the database table.

Feel free to modify this customer feedback form by adding additional fields. For exam-
ple, you might want to ask the customer for his name and telephone number. In next
week’s bonus lesson, we’ll add some new features to the customer feedback form.

ANALYSIS

ANALYSIS

 10 0672318989 w1 in review 3/30/00 8:20 AM Page 165

 10 0672318989 w1 in review 3/30/00 8:20 AM Page 166

At A Glance
This week, you’ll finish building your online store. The first
lesson contains an overview of the database tables used in
your store. Next, on Days 9 and 10, you’ll learn two methods
of creating a virtual shopping cart. You’ll learn how to create
a shopping cart by using both Session variables and a data-
base table.

On Day 11, the very important topic of processing credit card
transactions is addressed. You’ll be provided with an overview
of the different options for processing credit cards. One
method of processing credit cards will be discussed in detail.
You’ll learn how to build ASP scripts to authorize and settle
credit card transactions with CyberCash.

On Day 12, you’ll learn how to enable customers to track
their product orders. You’ll create a Web page that provides
customers with a means to view the status of their orders.
You’ll also learn how to enable customers to track their orders
as the orders are being shipped from your store to their
homes.

Finally, you’ll learn how to build a subscription Web site. On
Day 13, you’ll learn how to create a user registration system.
You can use this registration system to create password-pro-
tected Web pages that can be viewed only by paying cus-
tomers.

WEEK 2 8

9

10

11

12

13

14

 11 0672318989 part 02 3/29/00 4:05 PM Page 167

 11 0672318989 part 02 3/29/00 4:05 PM Page 168

DAY 8

WEEK 2

Building the Transaction
Databases

In today’s lesson, we will continue building our online store. First, you will get
an overview of the database tables that we will need to create in this and the
following chapter to receive and process customer orders. Next, you will learn
how to create a user registration system that will enable you to track such infor-
mation as user credit card numbers and shipping addresses. Finally, you will
learn how to securely accept credit card information over the Internet. Today,
you will learn the following:

• How to create a registration form and login page that requests user regis-
tration information

• How to validate the information that a user enters into a form, including
credit card numbers

• How to create an error page that enables users to easily correct mistakes
made when completing an online form

• How to use the Secure Sockets Layer to securely transmit information
across the Internet

 12 0672318989 ch08 3/30/00 8:21 AM Page 169

The Transaction Database Tables
Before we get into the details of how to process customer orders, it might be helpful to
have an overview of the tables that we will need to create in order to complete our online
store. You have already created one table, the Products table, that you have used in previ-
ous lessons to store product information. You will also need to create the following
tables:

• The Users Table—This table will be used to store user information, such as user-
names and passwords, address information, and credit card information. You will
learn the details of creating this table in this chapter.

• The Cart Table—This table will be used to store customer shopping carts. When
customers add items to their virtual shopping cart while browsing your store, the
items will be added to this table. You will learn how to create the Cart table in
tomorrow’s lesson.

• The Orders Table—When a customer checks out and completes an order, all the
products in the customer’s shopping cart are transferred to this table. The orders
table contains information about all the products that have been ordered in addition
to information about the status of an order. You will learn how to create this table
in the lesson on Day 10.

When customers add items to their shopping carts, a registration page appears requesting
that the customer log in. If this is the first time a customer has used your store, they are
required to enter registration information including their username and password. After
customers have registered once, they can access their shopping cart in the future by sim-
ply entering their username and password, or automatically if their browser supports
cookies.

170 Day 8

To get a better sense of how all the pages in the online store interact, visit
the live version of the store discussed in this book at superexpert. Go to
http://www.superexpert.com/candystore.

Note

After a user logs in, the item that the customer selected to add to the shopping cart is
added to the Cart database table. Items remain in the shopping cart permanently. The
customer can leave your site for a year and return to add and remove items from the
shopping cart.

Finally, when customers are ready to complete their orders, they can click the Checkout
button on their shopping cart. When the customer clicks Checkout, all the items are

 12 0672318989 ch08 3/30/00 8:21 AM Page 170

Building the Transaction Databases 171

8
transferred to the Orders database table from the Cart table and the customers’ items in
the Cart table are deleted.

Notice that the Users table, the Cart table, and the Orders table are used in sequence. A
customer selects an item, and then he must login. The Users table is employed to validate
the login information. Next, the item selected is added to the Cart table. Finally, when a
customer clicks Checkout, the items are transferred from the Cart table to the Orders
table.

Creating the Users Database Table
All the customer registration information is contained in the Users table. This table has
the following fields:

user_id—This field is an autonumber field. It contains an automatically generated
unique number for each customer.

user_username—This field contains the name that the customer uses to login to your
online store. Each user has a unique username.

user_password—This field contains the secret password that a customer uses to
access her shopping cart.

user_email—The email address of the customer. We don’t really use this field, but it
is always good information to have in case you need to contact the customer.

user_street—The street address of the customer. For example, 775 Evergreen Road.

user_city—The city where the customer lives. For example, San Francisco.

user_zip—The customer’s zip code. For example, 94108.

user_state—The two letter state code. For example, CA.

user_cctype—The type of credit card that the customer wants to use to make pur-
chases. For example, VISA or MasterCard.

user_ccnumber—The customer’s credit card number.

user_ccexpires—The expiration date of the customer’s credit card.

user_ccname—The customer’s name as it appears on the customer’s credit card.

You can create the Users table by launching Microsoft Access and creating a new table
called Users in the storeDB database with all the fields just described. Alternatively, you
can copy the storeDB.mdb file from the CD that accompanies this book. This database
already contains the Users table.

 12 0672318989 ch08 3/30/00 8:21 AM Page 171

Registering Users
Before customers can add items to their shopping cart, they must first register.
Registration creates a better shopping experience for the customer. Instead of entering
address and payment information every time a new item is bought, the customer can
enter this information once. After the information has been entered once, it can be auto-
matically retrieved from the database whenever the customer purchases additional items.

Another benefit to requiring customers to register is that it enables customers to retain a
shopping cart over many visits to your Web site. For example, a customer might add two
items to the shopping cart, but might wait a couple of days to consider purchasing the
items before clicking the Checkout button. It would not be possible to create a persistent
shopping cart without requiring the customer to enter registration information so that a
shopping cart can be matched with a user over time.

In this section, you’ll learn how to create the Active Server Pages that enable a customer
to enter her register information and login to password protected pages.

Creating the cart.asp Page
When a customer clicks the Add to Cart button on a product page, he is brought to the
cart.asp page. In tomorrow’s lesson, you’ll learn how to create the shopping cart itself.
In today’s lesson, you’ll learn how to force the customer to register and login before
accessing the shopping cart.

The cart.asp page is contained in Listing 8.1. (You can also open cart.asp from the
CD-ROM that accompanies this book.)

LISTING 8.1 The cart.asp Page

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <!-- #INCLUDE FILE=”storefuncs.asp” -->
3 <%
4 ‘ Get Product ID
5 productID = TRIM(Request(“pid”))
6
7 ‘ Get Login Information
8 username = TRIM(Request(“username”))
9 password = TRIM(Request(“password”))
10 register = TRIM(Request(“register”))
11 error = TRIM(Request(“error”))
12
13 ‘ Open Database Connection
14 Set Con = Server.CreateObject(“ADODB.Connection”)
15 Con.Open “accessDSN”
16

172 Day 8

 12 0672318989 ch08 3/30/00 8:21 AM Page 172

Building the Transaction Databases 173

8
17 ‘ Check For New Registration
18 IF register <> “” AND error = “” THEN
19 addUser
20 END IF
21
22 ‘ Get User ID
23 userID = checkpassword(username, password, Con)
24
25 IF userID > 0 THEN
26 %>
27 <!-- #INCLUDE FILE=”addCart.asp” -->
28 <% ELSE %>
29 <!-- #INCLUDE FILE=”register.asp” -->
30 <%
31 END IF
32 %>

When a customer arrives at the cart.asp page, one of two things will happen. If
the customer’s username and password can be retrieved from the Request collec-

tion, the addCart.asp page will be displayed. Otherwise, the registration page will be
displayed. In other words, the customer can view the addCart.asp page only if the cus-
tomer has already entered registration information.

Lines 1 and 2 include two files named adovbs.inc and storefuncs.asp. You should
already be familiar with the adovbs.inc file. It’s the file that contains all the constants for
the ActiveX Data Objects. The storefuncs.asp file is used to contain all the common
functions used in the pages of your online store. You’ll learn how to create this file later
in this chapter.

In line 5, the product ID is retrieved. This product ID will be used to identity the product
that is added to the shopping cart.

In lines 7–11, the customer’s username and password are retrieved. There are two ways
that a customer’s username and password might be passed to this page through the
Request collection. If the customer has logged in, the username and password will be
included in the Request collection as form fields. Alternatively, the username and pass-
word might be contained in the Request collection as cookies if the customer’s browser
supports cookies.

In lines 13–15, a database connection is opened by using the Data Source Name that you
created in Day 5, “Building Your Product Catalog.”

In lines 17–20, the customer’s registration information is added to the database. This is
accomplished with the addUser subroutine. You’ll learn how to create this subroutine
when you create the storefuncs.asp file later in this chapter.

ANALYSIS

 12 0672318989 ch08 3/30/00 8:21 AM Page 173

In lines 22–23, the customer’s username and password are checked against the Users
table. If the username and password combination exist in this table, the user ID is
returned. Otherwise, a negative number is returned indicating that the username and
password entered by the customer is invalid. The function that checks the username and
password, checkpassword(), is included in the storefuncs.asp file.

Finally, in lines 25–31, either the register.asp page or the addCart.asp page is dis-
played. If the customer hasn’t entered valid login information, the registration page is
displayed. Otherwise, the customer can access the shopping cart.

Notice how the pages are conditionally displayed by using #INCLUDE files. Both the
addCart.asp and register.asp page are included in the cart.asp page. However, only
one of the two pages will be displayed at any time.

174 Day 8

You might be tempted to conditionally display alternative pages by assign-
ing a variable as the value of the #INCLUDE directive. For example, you might
be tempted to use a script like this:

<%
IF userID > 0 THEN
showFile = “cart.asp”

ELSE
showFile = “register.asp”

END IF
%>
<!-- #INCLUDE FILE=<%=showFile%> -->

Regrettably, however, this script won’t work. The problem is that any
#INCLUDE directives contained in an ASP page are processed before any
scripts. This means that the above script will attempt to include a file named
<%=showFile%>.

You’ll be happy to know that the new version of Active Server Pages (includ-
ed with Windows 2000) supports a better method of including files.

Note

Creating the register.asp Page
The register.asp page contains two HTML forms that enable a customer to either
login with an existing username and password or register as a new customer (see Figure
8.1). The listing for register.asp is quite long, so it isn’t included in this chapter.
However, you can open the register.asp file from the CD-ROM that accompanies
this book.

 12 0672318989 ch08 3/30/00 8:21 AM Page 174

Building the Transaction Databases 175

8

After a customer completes either of the two HTML forms, the customer is sent back to
the page that includes register.asp. For example, if the register.asp page was dis-
played because the customer was attempting to access the shopping cart, the login infor-
mation or registration information is sent to cart.asp. The register.asp page uses the
following code to determine the page in which it is included:

submitpage = Request.ServerVariables(“SCRIPT_NAME”)

This statement uses the server variable named SCRIPT_NAME to retrieve the name of the
current page. Because the register.asp page is contained in cart.asp, the value
returned will be cart.asp rather than register.asp. The HTML forms are submitted to
the correct containing page by using the following HTML code:

<form method=”post” action=”<%=submitpage%>”>

This is a normal HTML <FORM> tag. However, it has the submitpage variable as the
value of its ACTION attribute.

You might wonder why the ACTION attribute wasn’t simply given the value cart.asp
rather than the value of the submitpage variable. The reason is that the register.asp
page will be contained in a number of pages in the store. For example, the register.asp
page is also contained in the account.asp page. By not hard-coding the value of the
ACTION attribute in the register.asp page, the register.asp page can be reused in
multiple pages.

FIGURE 8.1
The register.asp
page.

 12 0672318989 ch08 3/30/00 8:21 AM Page 175

The Registration Functions
Most of the work of registering and validating the login information of customers hap-
pens in the storefuncs.asp file. The storefuncs.asp file contains the functions and
subroutines that validate a customer’s login information and adds the new registration
information to the database.

When a new customer enters registration information, the addUser subroutine is called.
This subroutine retrieves all the registration form fields, validates the field data, adds the
information to the Users table, and adds cookies to the customer’s browser that contains
the username and password. The addUser subroutine is included in Listing 8.2.

LISTING 8.2 The addUser Subroutine

1 SUB addUser
2 ‘ Get Registration Fields
3 newusername = TRIM(Request(“newusername”))
4 newpassword = TRIM(Request(“newpassword”))
5 email = TRIM(Request(“email”))
6 street = TRIM(Request(“street”))
7 city = TRIM(Request(“city”))
8 state = TRIM(Request(“state”))
9 zip = TRIM(Request(“zip”))
10 cctype = Request(“cctype”)
11 ccnumber = TRIM(Request(“ccnumber”))
12 ccexpires = TRIM(Request(“ccexpires”))
13 ccname = TRIM(Request(“ccname”))
14
15 ‘ Check For Required Fields
16 backpage = Request.ServerVariables(“SCRIPT_NAME”)
17 IF newusername = “” THEN
18 errorForm “You must enter a username.”, backpage
19 END IF
20 IF newpassword = “” THEN
21 errorForm “You must enter a password.”, backpage
22 END IF
23 IF email = “” THEN
24 errorForm “You must enter your email address.”, backpage
25 END IF
26 IF street = “” THEN
27 errorForm “You must enter your street address.”, backpage
28 END IF
29 IF city = “” THEN
30 errorForm “You must enter your city.”, backpage
31 END IF
32 IF state = “” THEN
33 errorForm “You must enter your state.”, backpage
34 END IF

176 Day 8

 12 0672318989 ch08 3/30/00 8:21 AM Page 176

Building the Transaction Databases 177

8
35 IF zip = “” THEN
36 errorForm “You must enter your zip code.”, backpage
37 END IF
38 IF ccnumber = “” THEN
39 errorForm “You must enter your credit card number.”, backpage
40 END IF
41 IF ccexpires = “” THEN
42 errorForm “You must enter your credit card expiration date.”, backpage
43 END IF
44 IF ccname = “” THEN
45 errorForm “You must enter the name that appears on your credit card.”,

➥backpage
46 END IF
47
48 ‘ Check for Necessary Field Values
49 IF invalidEmail(email) THEN
50 errorForm “You did not enter a valid email address”, backpage
51 END IF
52 IF NOT validCCNumber(ccnumber) THEN
53 errorForm “You did not enter a valid credit card number”, backpage
54 END IF
55 IF NOT isDATE(ccexpires) THEN
56 errorForm “You did not enter a valid credit card expiration date”,

➥backpage
57 END IF
58
59 ‘ Check whether username already registered
60 IF alreadyUser(newusername) THEN
61 errorForm “Please choose a different username.”, backpage
62 END IF
63
64 ‘ Add New User to Database
65 sqlString = “INSERT INTO users (“ &_
66 “user_username, “ &_
67 “user_password, “ &_
68 “user_email,” &_
69 “user_street, “ &_
70 “user_city,” &_
71 “user_state,” &_
72 “user_zip,” &_
73 “user_ccnumber, “ &_
74 “user_cctype, “ &_
75 “user_ccexpires,” &_
76 “user_ccname” &_
77 “) VALUES (“ &_
78 “ ‘“ & fixQuotes(newusername) & “‘, “ &_
79 “ ‘“ & fixQuotes(newpassword) & “‘, “ &_
80 “ ‘“ & fixQuotes(email) & “‘, “ &_
81 “ ‘“ & fixQuotes(street) & “‘, “ &_

continues

 12 0672318989 ch08 3/30/00 8:21 AM Page 177

82 “ ‘“ & fixQuotes(city) & “‘, “ &_
83 “ ‘“ & fixQuotes(state) & “‘, “ &_
84 “ ‘“ & fixQuotes(zip) & “‘, “ &_
85 “ ‘“ & fixQuotes(ccnumber) & “‘, “ &_
86 “ ‘“ & cctype & “‘, “ &_
87 “ ‘“ & ccexpires & “‘, “ &_
88 “ ‘“ & fixQuotes(ccname) & “‘ “ &_
89 “)”
90
91 Con.Execute sqlString
92
93 ‘ Use the new username and password
94 username = newusername
95 password = newpassword
96
97 ‘ Add Cookies
98 addCookie “username”, username
99 addCookie “password”, password
100 END SUB

As you can see, Listing 8.2 is very long. However, the addUser subroutine per-
forms a number of important functions, so it is worthwhile to examine how it

works in detail.

Lines 2–13 are used to retrieve all the registration form fields that the customer complet-
ed in register.asp. Next, in lines 15–46, all the fields are checked to make sure that
they aren’t empty. We don’t want to let a customer get away with entering an empty
email address or password, for instance. If a form field is, in fact, empty, the errorForm
subroutine is called. This subroutine displays a page to the customer reporting the error
and invites the customer to return to the form to make corrections. (The errorForm sub-
routine is described in detail in the next section of this chapter.)

Next, in lines 48–57, the data that the customer entered into the email address, credit
card number, and credit card expiration date form fields is validated. The email address
is validated by using a function named invalidEmail(). This function simply checks
whether the email address that the customer entered contains both a period and the @
sign. This function is contained in Listing 8.3.

LISTING 8.3 The invalidEmail() Function

1 FUNCTION invalidEmail(email)
2 IF INSTR(email, “@”) = 0 OR INSTR(email, “.”) = 0 THEN
3 invalidEmail = TRUE
4 ELSE

178 Day 8

LISTING 8.2 continued

ANALYSIS

 12 0672318989 ch08 3/30/00 8:21 AM Page 178

Building the Transaction Databases 179

8
5 invalidEmail = FALSE
6 END IF
7 END FUNCTION

The credit card expiration date that the customer entered is also validated. If the cus-
tomer didn’t enter a valid date, the errorForm subroutine is called so that the customer
can fix the problem.

The credit card number that the customer entered is validated by using a Luhn check. All
the major credit cards, such as VISA, MasterCard, American Express, and Discover
cards, include a check digit that enables you to check whether a credit card number is
valid. Of course, a Luhn check cannot be used to determine whether a customer actually
has any credit left in their credit card account, or whether the credit card was actually
issued to anyone. However, using a Luhn check is a good way to discard clearly bad
credit card numbers. The Luhn check is performed in the validCCNumber() function
contained in Listing 8.4.

LISTING 8.4 The validCCNumer() Function

1 FUNCTION validCCNumber(ccnumber)
2 ccnumber = cleanCCNum(ccnumber)
3 IF ccnumber = “” THEN
4 validCCNumber = FALSE
5 ELSE
6 isEven = False
7 digits = “”
8 for i = Len(ccnumber) To 1 Step -1
9 if isEven Then
10 digits = digits & CINT(MID(ccnumber, i, 1)) * 2
11 Else
12 digits = digits & CINT(MID(ccnumber, i, 1))
13 End If
14 isEven = (Not isEven)
15 Next
16 checkSum = 0
17 For i = 1 To Len(digits) Step 1
18 checkSum = checkSum + CINT(MID(digits, i, 1))
19 Next
20 validCCNumber = ((checkSum Mod 10) = 0)
21 END IF
22 End Function

The validCCNumber() function checks whether a credit card number is valid by doubling
every other digit, starting from the last digit, and adding the resulting numbers together.
If the result can be divided by 10 without a remainder, the credit card number passes the
check.

 12 0672318989 ch08 3/30/00 8:21 AM Page 179

Notice that the first thing the validCCNumber() function does is to call another function
named cleanCCNum(). The cleanCCNum() function removes any non-numeric characters
from a credit card number. It’s common for users to enter a credit card number including
dashes and spaces. To validate the number, we must first strip these characters away. The
cleanCCNum() function is contained in Listing 8.5.

LISTING 8.5 The cleanCCNum() Function

1 FUNCTION cleanCCNum(ccnumber)
2 FOR i = 1 TO LEN(ccnumber)
3 IF isNumeric(MID(ccnumber, i, 1)) THEN
4 cleanCCNum = cleanCCNum & MID(ccnumber, i, 1)
5 END IF
6 NEXT
7 END FUNCTION

The cleanCCNumber() function simply walks through all the characters in the credit card
number one by one by using the MID() function. If a character is not numeric, the char-
acter is skipped. Otherwise, it is added back to the credit card number.

After the form fields have been validated in the addUser subroutine, the alreadyUser()
function is called to check whether someone has already registered using the username
the customer entered. The function is called in line 60. We need to check whether the
username already exists so that we can guarantee that all the usernames in the Users
table are unique. The alreadyUser() function is contained in Listing 8.6.

LISTING 8.6 The alreadyUser() Function

1 FUNCTION alreadyUser(theUsername)
2 sqlString = “SELECT user_username FROM users “ &_
3 “WHERE user_username=’” & fixQuotes(theUsername) & “‘“
4 SET RS = Con.Execute(sqlString)
5 IF RS.EOF THEN
6 alreadyUser = FALSE
7 ELSE
8 alreadyUser = TRUE
9 END IF
10 RS.Close
11 END FUNCTION

The alreadyUser() function constructs a SQL SELECT statement to check whether the
username exists in the database. This SQL statement is used to open a Recordset named
RS. If RS is empty (which is tested with the EOF property of the Recordset property), we
know that the user doesn’t already exist in the Users database table.

180 Day 8

 12 0672318989 ch08 3/30/00 8:21 AM Page 180

Building the Transaction Databases 181

8
Next, returning to the addUser subroutine once again, a SQL INSERT INTO statement is
constructed out of the form fields that the customer submitted. This statement is created
in lines 65–89 and executed in line 91. After the statement is executed, the customer’s
registration information is added to the Users database table.

Finally, in lines 98 and 99, two cookies are added to the customer’s browser that contain
the username and password. This is done so that the customer doesn’t have to log in
every time the customer wants to access the shopping cart or view account information.
The cookies are added with a subroutine named, appropriately enough, addCookie. The
addCookie subroutine is contained in Listing 8.7.

LISTING 8.7 The addCookie Subroutine

1 SUB addCookie(theName, theValue)
2 Response.Cookies(theName) = theValue
3 Response.Cookies(theName).Expires = “July 31, 2001”
4 Response.Cookies(theName).Path = “/”
5 Response.Cookies(theName).Secure = FALSE
6 END SUB

The addCookie subroutine adds a cookie to a customer’s browser by using the Cookies
collection of the Response object. The cookie is set to expire on July 31, 2001 in line
3. If you don’t set the Expires property, the cookie will automatically expire after the
customer leaves your Web site (or closes the browser).

Note that there is no guarantee the cookie will persist until the year 2001. A cookie file
can contain only a limited amount of information, so the username and password might
be removed from the cookie file much earlier. If the cookies are lost from the customer’s
browser, it really doesn’t matter. The user will merely need to login once again, and the
cookies will be automatically re-added.

Gracefully Handling Form Errors
The addUser subroutine discussed in the previous sections makes extensive use of anoth-
er subroutine named errorForm. The errorForm subroutine displays an error message
and asks the user to return to the previous page to correct the mistake (see Figure 8.2).

The errorForm page has a nice feature. When the user clicks the button labeled Return,
all the original data that the user entered into the HTML form is passed back to the form.
Because the information is passed back to the form, the user doesn’t need to start filling
out the form again.

 12 0672318989 ch08 3/30/00 8:21 AM Page 181

The errorForm subroutine is contained in Listing 8.8.

LISTING 8.8 The errorForm Subroutine

1 SUB errorForm(errorMSG, backpage)
2 %>
3 <html>
4 <head><title>Problem</title></head>
5 <body bgcolor=”lightyellow”>
6
7 <center>
8 <table width=”500” border=1
9 cellpadding=5 cellspacing=0>
10 <tr>
11 <td>
12
13 There was a problem with the information you entered:
14
15
16
<%=errorMSG%>
17
18

19 <form method=”post” action=”<%=backpage%>”>
20 <input name=”error” type=”hidden” value=”1”>
21 <% formFields %>
22 <input type=”submit” value=”Return”>
23 </form>
24 </td>

182 Day 8

FIGURE 8.2
The errorForm page.

 12 0672318989 ch08 3/30/00 8:21 AM Page 182

Building the Transaction Databases 183

8
25 </tr>
26 </table>
27 </center>
28
29 </body>
30 </html>
31 <%
32 Response.End
33 END SUB

The errorForm subroutine accepts two parameters: errorMSG and backpage. The
errorMSG parameter contains the text of the error message to be displayed. The

backpage parameter contains the path of the original form.

Lines 19–23 contain the form that passes the original values of the form fields back to
the original page. The form fields are all hidden. The only thing the user sees is a submit
button labeled Return.

The hidden form fields are created with the formFields subroutine. The formFields
subroutine is contained in Listing 8.9.

LISTING 8.9 The formFields Subroutine

1 SUB formFields
2 FOR each item in Request.Form
3 %>
4 <input name=”<%=item%>” type=”hidden”
5 value=”<%=Server.HTMLEncode(Request(item))%>”>
6 <%
7 NEXT
8 END SUB

The formFields subroutine loops through all the items contained in the Form
collection of the Request object. Each item in the Form collection is made into a

hidden form field. When the user clicks return, these hidden form fields are passed back
to the original HTML form so that they can be displayed again.

Using the Secure Sockets Layer
When a customer fills out the registration form, he must enter credit card information.
When the registration form is submitted, the credit card information is transmitted across
the Internet in plain text form. This is very dangerous.

ANALYSIS

ANALYSIS

 12 0672318989 ch08 3/30/00 8:21 AM Page 183

Whenever information travels across the Internet, it must pass through several intermedi-
ate connections. In theory, an individual with impure intentions could steal the informa-
tion while it is en route to its destination.

To protect your customers’ credit cart information, you must use the Secure Sockets
Layer (SSL). SSL is a technology originally developed by Netscape that enables you to
transfer information securely across the Internet. SSL provides a technical solution to
three distinct security problems: encryption, authentication, and data integrity.

When information is transmitted using SSL, the information is encrypted. Even if some-
one manages to steal data off the wire as it travels from a customer’s browser to your
Web server, the data wouldn’t be useable.

SSL encrypts information as it passes back and forth between a Web server and Web
browser by encoding the information with a publicly known encryption algorithm and a
secret session encryption key. The number of bits in the session key determines the
strength of the encryption. There are currently two standard key sizes: 40-bit and 128-bit.
Although there have been cases when messages encrypted with the 40-bit key have been
hacked, the 128-bit key is considered unbreakable with current technology.

SSL can also be used to authenticate a Web server. In theory, a malicious individual
could trick a customer into believing that another Web site is your Web site. The mali-
cious individual could then steal credit card numbers when customers submit information
to the fraudulent Web site.

184 Day 8

SSL version 3.0 also supports client certificates. Client certificates work in
exactly the same way as server certificates except that they are used to
authenticate Web browser rather than Web servers. Both Microsoft Internet
Explorer (version 3.0 and higher) and Netscape Navigator (version 3.0 and
higher) support client certificates.

Note

However, when you enable SSL on your Web server, you are required to install a server
certificate. This server certificate prevents other Web sites from pretending to be your
Web site. A server certificate verifies your Web site’s identity in much the same way as
your driver’s license verifies your personal identity. A server certificate contains informa-
tion about your Web site, your organization, and the issuer of the certificate.

Finally, SSL protects the integrity of the data as it is transmitted across the Internet. In theo-
ry, a person with questionable intentions could tamper with data as it is transmitted back and
forth from a Web browser to a Web server. SSL protects the integrity of the data by includ-
ing a message authentication code (MAC) with the data as it is transmitted. In other words,
when you use SSL, you know that the message received is the same as the message sent.

 12 0672318989 ch08 3/30/00 8:21 AM Page 184

Building the Transaction Databases 185

8
Again, if you request confidential information such as credit card numbers from your
customers, you have a responsibility to protect this information. The only generally avail-
able solution to this problem is to use SSL.

Enabling SSL on Your Web Server
You cannot use SSL with the Personal Web Server. You can only use SSL with Internet
Information Server. This makes sense because the Personal Web Server was designed for
prototyping Web sites and hosting small intranet Web sites and not for hosting commer-
cial Web sites.

You should be warned that enabling SSL can be time-consuming and expensive. The
time and expense results from the requirement that you obtain a server certificate from a
certificate authority. VeriSign, for example, currently charges $349.00 for a 40-bit SSL
key and $895.00 for the 128-bit key. I’ve personally experienced waits of six weeks for a
server certificate to be processed.

To enable SSL with the Internet Information Server, you will need to complete the fol-
lowing three steps (each of these steps will be described in detail in the following sec-
tions):

1. Generate a Certificate Request File and an encryption key pair file using Microsoft
Key Manager.

2. Apply for a server certificate from a certificate authority by providing your
Certificate Request File.

3. Install your server certificate by using Microsoft Key Manager.

Generating the Certificate Request File
To create a Certificate Request File—also called a Certificate Signing Request (CSR)—
you must use the Microsoft Key Manager. To access the Microsoft Key Manager, launch
the Internet Service Manager and click the Key Manager icon that appears on the toolbar.
Within the Key Manager, select Key, Create New Key. This starts a wizard that will
guide you through the task of creating the Certificate Request File (see Figure 8.3).

To create the Certificate Request File, you will need to supply the following information:

• Request File—When you complete the wizard, your Certificate Request File will
be stored on your hard drive with this name.

• Key Name—You can supply any name here. The name is used to identify the key.

• Password—You will need this password when you install your signed server cer-
tificate after you receive it from the certificate authority.

 12 0672318989 ch08 3/30/00 8:22 AM Page 185

• Key Size—By default, the Key Size will be 512 bits long. The key size refers to
the strength of the server certificate, not the strength of the session key used to
encrypt messages.

• Organization—The name of the owner of your domain name. Typically, the organi-
zation is the name of your company.

• Organizational Unit—The name of your department or business unit.

• Common Name—Your fully qualified domain name. For example, asp.superex-
pert.com. You shouldn’t include the protocol (HTTP://).

• Country/Region—The two-letter ISO country code for your country. For example,
US for the United States or CA for Canada. The wizard provides a link to a list of
these country codes.

• State/Province—The full name of your state or province. For example, California.

• Locality—The name of your city or town. For example, San Francisco.

• Your Name—Your full name.

• Email Address—Your email address.

• Phone Number—Your phone number.

When you have completed the wizard, a Certificate Request File will be saved to your
hard drive. A broken key will appear in Key Manager signifying that a Certificate
Request File has been generated, but the server certificate hasn’t been installed.

Applying for a Server Certificate
After you create your Certificate Request File, you must send it to a certificate authority
in order to get your server certificate. Here is a list of three of the more popular certifi-
cate authorities:

• VeriSign Inc. (http://www.verisign.com)

186 Day 8

FIGURE 8.3
Creating a Certificate
Request File.

 12 0672318989 ch08 3/30/00 8:22 AM Page 186

Building the Transaction Databases 187

8
• Thawte Consulting (http://www.thawte.com)

• GTE CyberTrust Solutions (http://www.cybertrust.gte.com)

For example, to apply for a VeriSign server certificate, go to http://www.verisign.com
and choose Secure Server ID. You will need to provide VeriSign with identifying infor-
mation about your organization such as your Dun and Bradstreet DUNS number, your
articles of incorporation, or your business license. After you have provided this informa-
tion, you can submit your certificate request file through an online form. After your
information is verified, you will receive an email message that contains instructions for
downloading your new server certificate.

Installing Your Server Certificate
The last step in configuring your server to use SSL is to actually install the server certifi-
cate after you receive it from the certificate authority. To install the server certificate,
launch the Internet Service Manager and select the Microsoft Key Manager. Next, choose
Key, Install Key Certificate. Open your new server certificate file from your hard drive
and supply the same password as you used when you generated the Certificate Request
File. Next, specify the IP address and port to use with SSL (You can change this infor-
mation at any time in the future within the Internet Service Manager). When you have
finished, an icon of a completed key should appear within Microsoft Key Manager.

A server certificate only lasts for a preset period of time. In the right frame of the
Microsoft Key Manager, you can view the exact date when your certificate will expire.
To continue using SSL, you must request a new server certificate before this date.

If you need to transfer your certificate to a new server, you can use
Microsoft Key Manager to create a back-up copy of your certificate. Select
Key, Export Key, Backup File. You can then load the certificate on the new
server by selecting Key, Import Key, Backup File. The new server must have
the same Internet domain name as the original server. (However, the IP
address can be different.)

Note

Using SSL in an ASP Page
After you have installed your server certificate, you can request any page from your Web
site securely. To request a page using SSL, you must use an address that begins with the
protocol https:// rather than the standard http://. For example, to request the cart.asp
page using SSL, you would use https://www.yourdomain.com/cart.asp.

 12 0672318989 ch08 3/30/00 8:22 AM Page 187

If you want to force a user to use SSL when requesting a page from your Web site, you
can use the Internet Service Manager to configure a directory (or a particular file) to
require SSL. To do this, launch the Internet Service Manager and open the property sheet
for one of the directories within your Web site. Next, click the Edit button under Secure
Communications and choose Require Secure Channel When Accessing This Resource.

Whenever we ask customers for registration information in the online store, we need to
enable SSL to protect the customer’s credit card information. For example, when a cus-
tomer attempts to add an item to the shopping cart, the customer might be asked to regis-
ter if the customer is using the shopping cart for the first time. The easiest way to enable
SSL is to alter the address of the cart.asp page in the Product.asp page.

The HTML form that shows the Add To Cart button looks like this:

<form method=”post” action=”cart.asp”>
<input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
<input type=”submit” value=”Add To Cart”>
</form>

To request the cart.asp page using SSL, you will need to modify the ACTION attribute of
the <FORM> tag like this:

<form method=”post” action=”https://www.yourdomain.com/cart.asp”>
<input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
<input type=”submit” value=”Add To Cart”>
</form>

After you have requested a page using SSL, all subsequent pages requested will also use
SSL until you specify otherwise. To stop using SSL, use a link that uses http:// rather
than https:// like this:

http://www.yourdomain.com/default.asp

Summary
In today’s lesson, you were provided with an overview of the database tables that you
will need in order to process customer orders. You learned how to create one of these
database tables in detail. You learned how to create the Users table to store user registra-
tion information. You also learned how to create Active Server Pages that enable you to
request registration information and store the information in the Users table. Next, you
learned how to use a Luhn check to validate credit card numbers. Finally, you learned
how to securely request confidential information, such as credit card numbers, from cus-
tomers by using the Secure Sockets Layer.

188 Day 8

 12 0672318989 ch08 3/30/00 8:22 AM Page 188

Building the Transaction Databases 189

8
Q&A

Q How accurate is the Luhn check? Are there any credit card numbers that will
pass the Luhn check but are not valid?

A Because the Luhn check is nothing more than an algorithm, you cannot use it to
test whether a credit card account with a certain number actually exists, or whether
the credit card account has sufficient credit to cover a purchase. For example, the
credit card number 8888-8888-8888-888 will pass the Luhn check because it satis-
fies the formal conditions of the algorithm.

Q Is there any way to experiment with the Secure Sockets Layer without buying
a server certificate?

A Yes, several of the certificate authorities offer trial certificates that you can down-
load. For example, VeriSign is currently offering a free 14-day trial certificate (go
to http://www.verisign.com).

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. The following script was designed to conditionally display one of two pages

depending on the value of the variable named showPage. What’s wrong with this
script?
<%
IF DATE() > “12/25/1999” THEN
showPage = “page1.asp”

ELSE
showPage = “page2.asp”

END IF
%>
<!-- #INCLUDE FILE=”<%=showPage%>” -->

2. How can I add a cookie to a customer’s browser named customerID that has the
value 17?

3. What do I need to do in order to request a page named confidential.asp using
the Secure Sockets Layer?

 12 0672318989 ch08 3/30/00 8:22 AM Page 189

Exercise
The registration form described in this chapter has fields for login information,
payment information, and address information. How would you add additional
fields such as customer first and last name to this form?

190 Day 8

 12 0672318989 ch08 3/30/00 8:22 AM Page 190

DAY 9

WEEK 2

Building the Shopping
Cart

In today’s lesson, you will be presented with two methods of adding a shopping
cart to your online store. You will also learn several additional methods of work-
ing with the ActiveX Data Objects (ADO). Today, you will learn the following:

• How to create a shopping cart using Session variables

• How to use the native methods of the ADO to add, delete, and update
records in a Recordset

• How to create a shopping cart using a database table

Using Session Variables to Create
a Shopping Cart

In this section, you’ll learn how to create a shopping cart by storing product
information in a Session variable. When a customer clicks the Add To Cart
button on a product page, the product the customer selected will be added to an
array contained in a Session variable named cart. As the customer continues

 13 0672318989 ch09 3/29/00 4:28 PM Page 191

to browse the store, new items can be added to the shopping cart or existing items can be
removed. When the customer has finished shopping, the customer can click the Checkout
button to actually purchase the items stored in the shopping cart.

Before discussing how to create a shopping cart using Session variables, you should be
warned that this isn’t the best method of creating a shopping cart. This is because the shop-
ping cart relies on Session variables, and Session variables are notoriously unreliable.

When a visitor first arrives at a Web site that uses Session variables, the Web server adds
a cookie to the visitor’s browser that tracks the visitor as he moves from page to page.
When a Session variable is created, this cookie is used to associate the variable with the
proper user. If, for whatever reason, the cookie cannot be created on the user’s browsers,
the Session variables won’t work.

What would prevent a cookie from being added to a user’s browser? There are several
possibilities. Some older browsers simply don’t support cookies. Also, most recent
browsers—including both Netscape Navigator and Internet Explorer—provide the user
with the option to refuse to accept cookies. Finally, cookies might not work on a user’s
browser if the user’s cookie file becomes corrupted.

Another significant problem with using Session variables is that they time out after a
preset period of time. By default, a user session will end after 20 minutes of inactivity.
After a session has timed out, all the Session variables associated with that user session
are automatically removed from memory. This means that if you add some items to the
shopping cart, the phone rings, and you have a pleasant 21-minute conversation, all the
items that you added to your shopping cart will be gone when you return to shopping.

192 Day 9

By default, Session variables are deleted automatically after 20 minutes of
activity. You can change this default behavior either by script or (if you are
using Internet Information Server) by using the Internet Service Manager.

To change the default session timeout period within an ASP script, modify
the Timeout property of the Session object. For example, the following
script changes the session timeout period to 40 minutes:

<%
Session.Timeout = 40
%>

To change the default session timeout period within the Internet Service
Manager, open the property sheet for your default Web site, choose the
Home Directory tab, click the Configuration button in the section labeled
Application Settings, and select the App Options tab.

Note

 13 0672318989 ch09 3/29/00 4:28 PM Page 192

Building the Shopping Cart 193

9

Later in this chapter, you will learn how to create a shopping cart by using a database
table instead of Session variables. These problems with cookies can be completely
avoided with this second method of creating a shopping cart. However, because creating
a shopping cart with Session variables is a very popular method of creating a shopping
cart, we will discuss this method first.

Creating the SessionCart.asp Page
One advantage to using Session variables to create a shopping cart is that you don’t
need to force customers to register or log in before adding items to the shopping cart.
Session variables are associated with different users automatically. You can allow an
anonymous customer to create a shopping cart, and register or log in only after deciding
to buy the items in the shopping cart.

To use the shopping cart created with Session variables, we will need to modify the
Product.asp page to link to the page with the shopping cart. Open the Product.asp
page in a text editor and search for the two places in the code where the Add To Cart
HTML form appears. The Add To Cart HTML form looks like this:

<form method=”post” action=”cart.asp”>
<input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
<input type=”submit” value=”Add To Cart”>
</form>

Replace the previous code (in both places where it appears), with the following Add To
Cart form:

<form method=”post” action=”sessionCart.asp”>
<input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
<input name=”productName” type=”hidden” value=”<%=RS(“product_name”)%>”>
<input name=”productPrice” type=”hidden” value=”<%=RS(“product_price”)%>”>
<input type=”submit” value=”Add To Cart”>
</form>

This HTML form displays an Add To Cart button that submits the contents of the form to
a page named sessionCart.asp. Notice that the form also passes the product ID, prod-
uct name, and product price in hidden form fields to the sessionCart.asp page.

The sessionCart.asp page is where the shopping cart itself is displayed. The complete
code for sessionCart.asp is contained in Listing 9.1. (You can also retrieve this page
from the CD-ROM that accompanies this book.)

 13 0672318989 ch09 3/29/00 4:28 PM Page 193

The sessionCart.asp Page

LISTING 9.1 The sessionCart.asp Page

1 <%
2 ‘ Define Constants
3 CONST CARTPID = 0
4 CONST CARTPNAME = 1
5 CONST CARTPPRICE = 2
6 CONST CARTPQUANTITY = 3
7
8 ‘ Get The Shopping Cart
9 IF NOT isArray(Session(“cart”)) THEN
10 DIM localCart(4, 20)
11 ELSE
12 localCart = Session(“cart”)
13 END IF
14
15 ‘ Get Product Information
16 productID = TRIM(Request(“pid”))
17 productName = TRIM(Request(“productName”))
18 productPrice = TRIM(Request(“productPrice”))
19
20 ‘ Add Item to cart
21 IF productID <> “” THEN
22 foundIT = FALSE
23 FOR i = 0 TO UBOUND(localCart)
24 IF localCart(CARTPID, i) = productID THEN
25 localCart(CARTPQUANTITY, i) = localCart(CARTPQUANTITY, i) + 1
26 foundIT = TRUE
27 EXIT FOR
28 END IF
29 NEXT
30 IF NOT foundIT THEN
31 FOR i = 0 TO UBOUND(localCart, 2)
32 IF localCart(CARTPID, i) = “” THEN
33 localCart(CARTPID, i) = productID
34 localCart(CARTPNAME, i) = productName
35 localCart(CARTPPRICE, i) = productPrice
36 localCart(CARTPQUANTITY, i) = 1
37 EXIT FOR
38 END IF
39 NEXT
40 END IF
41 END IF
42
43 ‘ Update Shopping Cart Quantities
44 IF Request(“updateQ”) <> “” THEN
45 FOR i = 0 TO UBOUND(localCart, 2)
46 newQ = TRIM(Request(“pq” & localCart(CARTPID, i)))

194 Day 9

 13 0672318989 ch09 3/29/00 4:28 PM Page 194

Building the Shopping Cart 195

9

47 deleteProduct = TRIM(Request(“pd” & localCart(CARTPID, i)))
48 IF newQ = “” or newQ = “0” or deleteProduct <> “” THEN
49 localCart(CARTPID, i) = “”
50 ELSE
51 IF isNumeric(newQ) THEN
52 localCart(CARTPQUANTITY, i) = newQ
53 END IF
54 END IF
55 NEXT
56 END IF
57
58
59 ‘ Update Session variable with Array
60 Session(“cart”) = localCart
61 %>
62 <html>
63 <head><title>Session Shopping Cart</title></head>
64 <body bgcolor=”white”>
65
66 <center>
67
68 Your shopping cart:
69
70 <%
71 orderTotal = 0
72 %>
73 <form method=”post” action=”sessionCart.asp”>
74 <input name=”updateQ” type=”hidden” value=”1”>
75 <table bgcolor=”lightyellow” border=1
76 cellpadding=4 cellspacing=0>
77 <tr bgcolor=”lightgreen”>
78 <th>Product</th>
79 <th>Price</th>
80 <th>Quantity</th>
81 </tr>
82 <%
83 FOR i = 0 TO UBOUND(localCart, 2)
84 IF localCart(CARTPID, i) <> “” THEN
85 orderTotal = orderTotal + (localCart(CARTPPRICE, i)
➥ * localCart(CARTPQUANTITY, i))
86 %>
87 <tr>
88 <td>
89 <%=Server.HTMLEncode(localCart(CARTPNAME, i))%>
90 </td>
91 <td>
92 <%=formatCurrency(localCart(CARTPPRICE, i))%>
93 </td>

continues

 13 0672318989 ch09 3/29/00 4:28 PM Page 195

94 <td>
95 <input name=”pq<%=localCart(CARTPID, i)%>” type=”text” size=4
96 value=”<%=localCart(CARTPQUANTITY, i)%>”>
97 <input name=”pd<%=localCart(CARTPID, i)%>” type=”checkbox” value=”1”>

➥ Delete
98 </td>
99 </tr>
100 <%
101 END IF
102 NEXT
103 %>
104 <tr bgcolor=”yellow”>
105 <td colspan=2 align=right>
106 Order Total:
107 </td>
108 <td>
109 <%=formatCurrency(orderTotal)%>
110 </td>
111 </tr>
112 <tr>
113 <td colspan=3>
114 <table border=0>
115 <tr>
116 <td align=”right”>
117 <input type=”submit” value=”Update Cart”>
118 </td>
119 </form>
120 <form method=”post” action=”checkout.asp”>
121 <td>
122 <input type=”submit” value=”Checkout”>
123 </td>
124 </form>
125 <form action=”default.asp”>
126 <td>
127 <input type=”submit” value=”Continue Shopping”>
128 </td>
129 </form>
130 </tr>
131 </table>
132 </td>
133 </tr>
134 </table>
135
136
137 </center>
138
139 </body>
140 </html>

196 Day 9

LISTING 9.1 continued

 13 0672318989 ch09 3/29/00 4:28 PM Page 196

Building the Shopping Cart 197

9

The sessionCart.asp page displays the shopping cart in Figure 9.1. For each
product, it displays the name of the product, the quantity of the product being

ordered, and the product price.

ANALYSIS

FIGURE 9.1
The Session virtual
shopping cart.

If a customer changes one or more of the product quantities and clicks Update Cart, the
product quantities are updated in the shopping cart. If the customer changes any of the
product quantities to either zero or nothing, the product is removed from the shopping
cart. The customer can also remove a particular item by selecting the Delete check box.

If the customer clicks Checkout, she is brought to the checkout.asp page and the prod-
ucts in the shopping cart are ordered. We’ll discuss the checkout.asp page in detail in
tomorrow’s lesson.

Finally, if the customer clicks Continue Shopping, she is brought back to the
default.asp page of the store. If the customer leaves the sessionCart.asp page, the
items in the shopping cart aren’t lost. As long as the customer doesn’t leave the Web site,
all the items will remain in the shopping cart.

The sessionCart.asp page has three main sections of code. First, it has a section of
code that adds a new item to a customer’s shopping cart. Next, it has a code section that

 13 0672318989 ch09 3/29/00 4:28 PM Page 197

updates the quantities of the items in the shopping cart (after a customer clicks Update
Cart). Finally, it has a section of code that displays all the items in the shopping cart.

The shopping cart is either created or retrieved in lines 8–13. In line 9, the VBScript
isArray() function is used to check whether the shopping cart already exists in a
Session variable named cart. If the shopping cart doesn’t exist, it is created in line 10.
Otherwise, if the shopping cart already exists, it is retrieved from the Session variable in
line 12.

When a customer adds a new product to the shopping cart by clicking the Add To
Cart button on the product page, information about the product is passed to the
sessionCart.asp page in lines 15–18. The product information is added to the cart
in lines 20–41.

The section of code in lines 20–41 loops through all the current items in the localCart
array. If the product already exists in the array, its quantity is incremented by one.
Otherwise, if the product isn’t found, the product information is added to the localCart
array.

Lines 43–56 contain the section of code that updates the quantity of each product in the
shopping cart or completely removes a product from the shopping cart. When the cus-
tomer clicks the Update Cart button, form fields are passed back to the sessionCart.asp
page that represents the quantity desired for each product. The FOR...NEXT loop in lines
43–56 loops through the items in the shopping cart and updates the quantity value for
each product.

The FOR...NEXT loop in lines 43–56 also checks whether a customer has clicked the
Delete checkbox next to any item in the shopping cart. In line 47, the Delete check box
form field is retrieved. If the check box is checked, the product is removed.

In line 60, the localCart array is saved in a Session variable named cart. It is neces-
sary to create a local copy of the Session array because you cannot change the values of
the items in a Session array directly. You must first copy the contents of a Session array
to a local variable, modify the elements of the array contained in the local variable, and
then reassign the local variable to the Session variable.

198 Day 9

 13 0672318989 ch09 3/29/00 4:28 PM Page 198

Building the Shopping Cart 199

9

Finally, in lines 66–137, the shopping cart is displayed on the page. The shopping cart is
displayed by looping through the items in the localCart array. If an array element has a
value, it is displayed. Otherwise, the element is simply skipped.

The shopping cart contained in the sessionCart.asp page is limited to containing no
more than 20 distinct products. This limitation is imposed in line 10 where the
localCart array is declared. If you attempt to add more than 20 products to the shopping
cart, the last product you attempt to add will be ignored. You can change the dimensions
of the localCart array to any value you please. Remember, however, that a separate
copy of this array will be created for each visitor to your Web site.

It’s worth emphasizing that although you can read the values of the ele-
ments of an array in an Application or Session variable directly, you cannot
change the values directly. For example, the following script creates a
Session array named myarray, assigns a value to one of its elements, assigns
the array to a Session variable, and then displays the element:

<%

DIM myarray(20, 20)

myarray(1, 3) = "Hello World!"

Session("myarray") = myarray

Response.Write Session("myarray")(1, 3)

%>

This script works perfectly fine. However, the following script won’t work. It
won’t work because it tries to modify an element in the Session array
directly:

<%
DIM myarray(20, 20)
myarray(1, 3) = “Hello World!”
Session(“myarray”) = myarray
Session(“myarray”)(1, 3) = “Hello Again!”
%>

If you need to modify the value of an element in a Session or Application
array, you will need to copy the array to a local array first, make the modifi-
cation, and then assign the array back to the Session or Application vari-
able.

Note

 13 0672318989 ch09 3/29/00 4:28 PM Page 199

Using Native ADO Methods
In previous lessons, you learned how to pass SQL strings through the ADO to make
changes to a database. For example, to insert a new record in a database, you used a
script like the following:

<%
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “accessDSN”
sqlString = “INSERT myTable (mycol) VALUES (‘somevalue’)”
Con.Execute sqlString
%>

This script creates an instance of the ADO Connection object and opens the database
connection by using a Data Source Name named accessDSN. Next, a SQL string is con-
structed that inserts a new record into a database table. Finally, the SQL string is execut-
ed and the new record is inserted by calling the Execute method of the Connection
object.

In this section, you’ll learn a second method of using the ADO to work with a database.
Instead of using the ADO to pass SQL strings to a database, you will learn how to use
the native methods of the ADO to modify database records.

Why do you need an alternative method of using the ADO with a database? Although,
strictly speaking, you never need to use the native ADO methods, in certain situations, it
is much more convenient. For example, in the next section, you will learn how to create a
shopping cart by using a database table. When the shopping cart is modified, multiple
records in the database table need to be updated as a group. Although you could modify
multiple records in a database table by executing multiple SQL strings, it’s easier to
make the modifications by using the native methods of the ADO.

200 Day 9

Be aware that there are some disadvantages to using the native ADO meth-
ods. In general, the native ADO methods are less efficient than using SQL
strings (in other words, slower). Furthermore, it is more difficult to debug
scripts that use the native ADO methods. When using the native ADO meth-
ods, it is quite likely that you will encounter the unhelpful error message
“errors occurred”. When using SQL strings to modify a database, on the
other hand, you will receive more detailed error messages.

Note

Creating Updateable Recordsets
Before you can use the native ADO methods to modify the records in a Recordset, you
must open the Recordset in such a way that it is updateable. By default, when you open a
Recordset, the Recordset is read-only. You can open a modifiable Recordset by changing

 13 0672318989 ch09 3/29/00 4:28 PM Page 200

Building the Shopping Cart 201

9

the Recordset’s LockType property. For example, the following statement opens a
Recordset using Optimistic Locking:

RS.LockType = adOpenOptimistic

This statement opens the Recordset using Optimistic Locking. The LockType property
can accept any of the four values listed in Table 9.1.

TABLE 9.1 The LockType Property Values

adLockReadOnly This is the default value. When a read-only Recordset is opened,
you cannot modify any of the records contained in the Recordset.

adLockPessimistic When a Recordset is opened with pessimistic locking, other users
are prevented from accessing the records in the Recordset as soon
as you begin editing a record.

adLockOptimistic When a Recordset is opened with Optimistic locking, other users
can access the record until the changes are actually committed.

adLockBatchOptimistic This locking type is used when performing batch updates (modi-
fying multiple records in the Recordset at once).

In general, you should use Optimistic Locking when you need to open a Recordset that
can be modified because it results in the least interference with other users and it is least
likely to cause database deadlock.

When you use ADO constants, such as adLockOptimistic, remember to
include the ADOVBS.inc file in your ASP page by using the #INCLUDE
directive.

Note

Adding New Records with AddNew
After you have opened an updateable Recordset, you can modify the records that it con-
tains. The script in Listing 9.2 adds a new record to a Recordset by using the native ADO
AddNew method.

LISTING 9.2 The AddNew Method

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <%
3 Set Con = Server.CreateObject(“ADODB.Connection”)
4 Con.Open “accessDSN”

continues

 13 0672318989 ch09 3/29/00 4:28 PM Page 201

5 Set RS = Server.CreateObject(“ADODB.Recordset”)
6 sqlString = “SELECT * FROM cart WHERE 1<>1”
7 RS.ActiveConnection = Con
8 RS.lockType = adLockOptimistic
9 RS.Open sqlString
10 RS.AddNew
11 RS(“cart_userID”) = 1
12 RS(“cart_productID”) = 34
13 RS(“cart_quantity”) = 2
14 RS.Update
15 RS.Close
16 %>

The script in Listing 9.2 adds a new record to a database table named cart. (This
table will be used for our shopping cart later in this chapter.) The script assigns

the values 1, 34, and 2 to the table columns named cart_userID, cart_productID, and
cart_quantity.

In line 1, the ADOVBS.inc file is included in the page by using the #INCLUDE directive.
You need to include this file in order to use the adLockOptimistic constant in the script.

Next, in lines 5–8, an instance of an ADO Recordset object is created. In line 8, the
Recordset is opened with Optimistic Locking. This allows a new record to be added to
the Recordset.

In line 9, the Recordset is opened. Notice the syntax of the SQL string used to open the
Recordset. The SQL string is defined in line 6. This string selects every record from the
database table named cart in which 1 is not equal to 1. Because the case doesn’t exist in
which 1 is not equal to itself, no records are returned. This is what we want because we
don’t want to actually retrieve any records. We are only interested in opening the
Recordset so that we can add a new record.

In line 10, the AddNew method of the Recordset object is called. This prepares the
Recordset to accept a new record. The contents of the new record are created in lines
11–13. Finally, in line 14, the Update method of the Recordset is called. After the
Update method is called, the new record is actually added to the database table.

The script in Listing 9.2 does exactly the same thing as the following SQL statement:

INSERT INTO cart (cart_userID, cart_productID, cart_quantity)
VALUES (1, 34, 2)

Updating Existing Records
After you have created an updateable Recordset, you also can update existing records.
Doing this is very simple. You merely need to assign a new value to a Recordset field.

202 Day 9

LISTING 9.2 continued

ANALYSIS

 13 0672318989 ch09 3/29/00 4:28 PM Page 202

Building the Shopping Cart 203

9

The script in Listing 9.3 demonstrates how you can modify a record in the database table
named cart.

LISTING 9.3 Updating a Recordset

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <%
3 Set Con = Server.CreateObject(“ADODB.Connection”)
4 Con.Open “accessDSN”
5 Set RS = Server.CreateObject(“ADODB.Recordset”)
6 sqlString = “SELECT * FROM cart WHERE cart_productID=34”
7 RS.ActiveConnection = Con
8 RS.lockType = adLockOptimistic
9 RS.Open sqlString
10 RS(“cart_userID”) = 3
11 RS(“cart_quantity”) = 12
12 RS.Update
13 RS.Close
14 %>

The script in Listing 9.3 updates two columns in the database table named cart.
In line 5–9, an instance of the Recordset object is created and opened that con-

tains all the records from the cart table in which the value of the cart_productID col-
umn equals 34. Next, in lines 10–11, the table columns named cart_userID and
cart_quantity are assigned the values 3 and 12. Finally, in line 12, the Update method
of the Recordset object is called, which causes the cart database table to be updated
with the new column values.

The script in Listing 9.3 has almost, but not quite, the same effect as executing the fol-
lowing SQL statement:

UPDATE cart SET cart_userID=3, cart_quantity=12
WHERE cart_productID=34

The script in Listing 9.3 will cause the same changes to a database table as this SQL
statement when there is only one row in which the value of the cart_productID column
is 34. The SQL UPDATE statement will update all rows in which the value of the
cart_productID column is 34. The script, on the other hand, will update only the first
row retrieved in which the value of the cart_productID column is 34.

Deleting Records with Delete
To remove a record from an updateable Recordset, you can use the DELETE method of the
Recordset object. The script in Listing 9.4 demonstrates how the DELETE method is used.

ANALYSIS

 13 0672318989 ch09 3/29/00 4:28 PM Page 203

LISTING 9.4 The Delete Method

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <%
3 Set Con = Server.CreateObject(“ADODB.Connection”)
4 Con.Open “accessDSN”
5 Set RS = Server.CreateObject(“ADODB.Recordset”)
6 sqlString = “SELECT * FROM cart WHERE cart_productID=34”
7 RS.ActiveConnection = Con
8 RS.lockType = adLockOptimistic
9 RS.Open sqlString
10 RS.Delete
11 RS.Update
12 RS.Close
13 %>

The script in Listing 9.4 retrieves all the records from the cart table in which the
cart_productID column has the value 34. In line 10, the first record retrieved in

the Recordset is deleted by calling the ADO DELETE method. Finally, in line 11, the
changes to the Recordset are updated in the underlying table by calling the Recordset
UPDATE method.

If you attempt to run this script when there are no records in the cart table and in which
the value of the cart_productID column has the value 34, you will receive the following
error:

ADODB.Recordset error ‘800a0bcd’
Either BOF or EOF is True, or the current record has been deleted; the
operation requested by the application requires a current record.
/deleteRecord.asp, line 10

Using the ADO DELETE method is almost, but not quite, the same as executing the fol-
lowing SQL statement:

DELETE FROM cart
WHERE cart_productID = 34

Although this SQL DELETE statement will delete every record in which the
cart_productID column has the value 34 from the cart table, the script in Listing 9.4 will
delete only the first record retrieved into the Recordset in which the column has this value.

Using a Database Table to Create
a Shopping Cart

Earlier in this chapter, you learned how to create a shopping cart using Session vari-
ables. There was one major drawback to this method of creating a shopping cart.

204 Day 9

ANALYSIS

 13 0672318989 ch09 3/29/00 4:28 PM Page 204

Building the Shopping Cart 205

9

Session variables depend on cookies, and not all browsers reliably support cookies. In
the section, you’ll learn a better method of creating a shopping cart.

We are going to create a shopping cart by creating a database table named cart. To create
this table, launch Microsoft Access, open the storeDB database, and create a new table
named cart with the columns contained in Table 9.2 (You can also copy this database
from the CD-ROM that accompanies this book).

TABLE 9.2 The Cart Database Table

cart_id An autonumber field that contains a unique number for each item in the
shopping cart.

cart_userID A number field that associates an item in the shopping cart with a partic-
ular customer.

cart_productID A number field that contains the product ID of the product contained in
the shopping cart.

cart_quantity A number field that contains the quantity of the item that the customer
selected.

Next, if you modified the Product.asp page when creating the Session version of the
shopping cart earlier in this chapter, you will need to replace the Add To Cart HTML
forms with the original code. Find the two places in the Product.asp page where the fol-
lowing code appears.

<form method=”post” action=”sessionCart.asp”>
<input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
<input name=”productName” type=”hidden” value=”<%=RS(“product_name”)%>”>
<input name=”productPrice” type=”hidden” value=”<%=RS(“product_price”)%>”>
<input type=”submit” value=”Add To Cart”>
</form>

Replace this HTML form (in both places where it appears in the Product.asp page) with
the following HTML form:

<form method=”post” action=”cart.asp”>
<input name=”pid” type=”hidden” value=”<%=RS(“product_id”)%>”>
<input type=”submit” value=”Add To Cart”>
</form>

This HTML form submits the form to a page named cart.asp. You created this page in
yesterday’s lesson. The cart.asp page does one of two things. If a customer hasn’t reg-
istered or logged in, the page displays a registration/login screen. Otherwise, the page
shows another page called addCart.asp. The code for the shopping cart is contained in
the addCart.asp page.

 13 0672318989 ch09 3/29/00 4:28 PM Page 205

Creating the addCart.asp Page
The addCart.asp page displays a shopping cart retrieved from the database table named
cart. The complete code for the addCart.asp page is contained in Listing 9.5. (The
addCart.asp is also included on the CD-ROM that accompanies this book.)

The addCart.asp Page

LISTING 9.5 The addCart.asp Page

1 <%
2 ‘ Get Product ID
3 productID = TRIM(Request(“pid”))
4
5
6 ‘ Add Item to cart
7 IF productID <> “” THEN
8 sqlString = “SELECT cart_id FROM cart “ &_
9 “WHERE cart_userID=” & userID & “ “ &_
10 “AND cart_productID=” & productID
11 SET RS = Con.Execute(sqlString)
12 IF RS.EOF THEN
13 sqlString = “INSERT INTO cart (“ &_
14 “cart_userID, “ &_
15 “cart_productID, “ &_
16 “cart_quantity “ &_
17 “) VALUES (“ &_
18 userID & “, “ &_
19 productID & “, 1)”
20 ELSE
21 sqlString = “UPDATE cart SET “ &_
22 “cart_quantity=cart_quantity+1 “ &_
23 “WHERE cart_id=” & RS(“cart_id”)
24 END IF
25 RS.Close
26 SET RS = Nothing
27 Con.Execute sqlString
28 END IF
29
30
31 ‘ Update Shopping Cart Quantities
32 IF Request(“updateQ”) <> “” THEN
33 SET RS = Server.CreateObject(“ADODB.Recordset”)
34 RS.ActiveConnection = Con
35 RS.CursorType = adOpenDynamic
36 RS.LockType = adLockOptimistic
37 sqlString = “SELECT cart_id, cart_quantity FROM cart “ &_
38 “WHERE cart_userID=” & userID
39 RS.Open sqlString

206 Day 9

 13 0672318989 ch09 3/29/00 4:28 PM Page 206

Building the Shopping Cart 207

9

40 WHILE NOT RS.EOF
41 newQ = TRIM(Request(“pq” & RS(“cart_id”)))
42 deleteProduct = TRIM(Request(“pd” & RS(“cart_id”)))
43 IF newQ = “” OR newQ = “0” OR deleteProduct <> “” THEN
44 RS.Delete
45 ELSE
46 IF isNumeric(newQ) THEN
47 RS(“cart_quantity”) = newQ
48 END IF
49 END IF
50 RS.MoveNext
51 WEND
52 RS.Close
53 SET RS = Nothing
54 END IF
55
56
57
58
59 %>
60 <html>
61 <head><title>Shopping Cart</title></head>
62 <body bgcolor=”white”>
63
64 <center>
65
66 <%=username%>’s shopping cart:
67
68
69 <%
70 ‘ Get the shopping cart
71 sqlString = “SELECT cart_id, product_name, “ &_
72 “product_price, cart_quantity “ &_
73 “FROM cart, products “ &_
74 “WHERE cart_userID=” & userID & “ “ &_
75 “AND cart_productID = product_id “ &_
76 “ORDER BY cart_id DESC”
77 SET RS = Con.Execute(sqlString)
78
79 IF RS.EOF THEN
80 %>
81 <p>You do not have any items in your shopping cart
82 <p>
83 <form action=”default.asp”>
84 <input type=”submit” value=”Continue Shopping”>
85 </form>
86 <%
87 ELSE
88 orderTotal = 0
89 %>

continues

 13 0672318989 ch09 3/29/00 4:28 PM Page 207

90 <form method=”post” action=”cart.asp”>
91 <input name=”updateQ” type=”hidden” value=”1”>
92 <input name=”username” type=”hidden” value=”<%=username%>”>
93 <input name=”password” type=”hidden” value=”<%=password%>”>
94 <table bgcolor=”lightyellow” border=1
95 cellpadding=4 cellspacing=0>
96 <tr bgcolor=”lightgreen”>
97 <th>Product</th>
98 <th>Price</th>
99 <th>Quantity</th>
100 </tr>
101 <%
102 WHILE NOT RS.EOF
103 orderTotal = orderTotal + (RS(“product_price”) * RS(“cart_quantity”))
104 %>
105 <tr>
106 <td>
107 <%=Server.HTMLEncode(RS(“product_name”))%>
108 </td>
109 <td>
110 <%=formatCurrency(RS(“product_price”))%>
111 </td>
112 <td>
113 <input name=”pq<%=RS(“cart_id”)%>” type=”text” size=4
114 value=”<%=RS(“cart_quantity”)%>”>
115 <input name=”pd<%=RS(“cart_id”)%>”
116 type=”checkbox” value=”1”> Delete
117 </td>
118 </tr>
119 <%
120 RS.MoveNext
121 WEND
122 %>
123 <tr bgcolor=”yellow”>
124 <td colspan=2 align=right>
125 Order Total:
126 </td>
127 <td>
128 <%=formatCurrency(orderTotal)%>
129 </td>
130 </tr>
131 <tr>
132 <td colspan=3>
133 <table border=0>
134 <tr>
135 <td align=”right”>
136 <input type=”submit” value=”Update Cart”>
137 </td>

208 Day 9

LISTING 9.5 continued

 13 0672318989 ch09 3/29/00 4:28 PM Page 208

Building the Shopping Cart 209

9

138 </form>
139 <form method=”post” action=”checkout.asp”>
140 <input name=”username” type=”hidden” value=”<%=username%>”>
141 <input name=”password” type=”hidden” value=”<%=password%>”>
142 <td>
143 <input type=”submit” value=”Checkout”>
144 </td>
145 </form>
146 <form action=”default.asp”>
147 <td>
148 <input type=”submit” value=”Continue Shopping”>
149 </td>
150 </form>
151 </tr>
152 </table>
153 </td>
154 </tr>
155 </table>
156 <% END IF %>
157
158
159 </center>
160
161 </body>
162 </html>

The script in Listing 9.5 displays the shopping cart shown in Figure 9.2. The
addCart.asp page has three main sections of code. Lines 2–28 contain the code

to add a new item to the shopping cart. This section of code is executed after the cus-
tomer clicks the Add To Cart button on the Product.asp page. Next, lines 31–54 contain
the code to update the product quantities in the shopping cart. This section of code is
executed after the customer clicks the Update Cart button on the shopping cart. Finally,
the majority of the script, lines 64–159, is used to actually display the shopping cart.

Lines 2–28 contain the script that adds a new item to the shopping cart. This script will
do one of two things. If the item is already contained in the shopping cart, the quantity of
the item in the shopping cart is incremented by one. Otherwise, the new item is added.
This prevents duplicate items from being displayed in the shopping cart.

Lines 31–54 contain the code to update the quantity of each item in the shopping cart. A
customer can change the quantity of each item ordered by entering new values in the
HTML form that represent the shopping cart and clicking Update Cart. Also, a customer
can completely remove an item by setting its quantity to zero or nothing in the shopping
cart form. The code in lines 31–54 is executed after the customer clicks the Update Cart
button.

ANALYSIS

 13 0672318989 ch09 3/29/00 4:28 PM Page 209

The script for updating the shopping cart item quantities makes heavy use of the native
ADO methods discussed in the second part of this chapter: “Using Native ADO
Methods.” In lines 33–39, an instance of a Recordset is created and opened. Notice that
in line 36, the LockType property of the Recordset is assigned the value
adLockOptimistic. By opening the Recordset with an Optimistic LockType, the records
in the Recordset can be modified.

In lines 40–51, a WHILE...WEND loop is used to loop through all the records in the
Recordset. Each record in the Recordset is compared against the quantity value that the
customer submitted in the shopping cart form. If the quantity of an item submitted by the
customer in the shopping cart form doesn’t match the quantity of the item in the data-
base, the database record is updated.

Lines 40–51 also contain the code to check whether a customer has selected a product to
delete. In line 42, the value of the Delete check box field is retrieved. If this field has a
value, the item is removed from the customer’s shopping cart.

Finally, in lines 64–159, the contents of the shopping cart are displayed. This is accom-
plished by retrieving all the records contained in the cart database table for a particular
customer. Each of the items in the shopping cart is displayed one by one.

Unlike the shopping cart created with Session variables discussed in the first part of this
chapter, the shopping cart created in this section is permanent. In theory, a customer can

210 Day 9

FIGURE 9.2
The Database virtual
shopping cart.

 13 0672318989 ch09 3/29/00 4:28 PM Page 210

Building the Shopping Cart 211

9

add some items to the shopping cart, go on an extended vacation to Borneo, return to the
online store, and the items will still be in the shopping cart. Furthermore, this shopping
cart doesn’t rely on the properties of a user’s browser. Not a single cookie is used.

Summary
In today’s lesson, you learned two methods of creating a shopping cart. First, you learned
how to create a shopping cart by using Session variables. In particular, you learned how
to store the items in a shopping cart in an array stored in a Session variable. You also
learned how to create a shopping cart using a database table. The advantages of this sec-
ond method of creating a shopping cart were discussed. Finally, you were introduced to
the native ADO methods of adding, updating, and deleting records in a Recordset. You
learned how to create an updateable Recordset by modifying a Recordset’s LockType
property.

In tomorrow’s lesson, you’ll learn how to create the Checkout page that enables a cus-
tomer to place an order for the items contained in the customer’s shopping cart. You will
also learn how to create the Active Server Pages that you will need to manage customer
orders after they have been placed.

Q&A
Q Two methods of creating a shopping cart were discussed in this chapter.

Which method should I use?

A If the warnings about Session variables and cookies in today’s lesson don’t con-
cern you, there is a significant advantage to creating a shopping cart with Session
variables. When you create a shopping cart with session variables, customers don’t
need to log in before using the shopping cart. Because registration forms have a
tendency to prematurely scare customers away, not requiring a customer to register
before using the shopping cart might result in more business.

Q When using the native ADO methods to add a new record, I receive the error
“errors occurred”. What could cause this error?

A The current version of the ADO doesn’t provide very descriptive error messages
for the native ADO methods. The message “errors occurred” could result from a
number of different problems. For example, you might receive this error when
attempting to insert a NULL value in a table column that doesn’t accept NULL values.
Or, you might receive this error when attempting to insert a value of the wrong
data type.

 13 0672318989 ch09 3/29/00 4:28 PM Page 211

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. The following script assigns the value “Hello World” to an element in an array

stored in a Session variable. What’s wrong this script?

Session(“myarray”)(2) = “hello world!”

2. Before you can add new records or update existing records in a Recordset, you
must modify a property of the Recordset object. What is the name of this
property?

Exercise
Assume that you wanted to add a new button to the shopping cart labeled Clear
Cart that enables customers to remove all the existing items from their shopping
cart. How would you add this button to both of the shopping carts described in this
chapter?

212 Day 9

 13 0672318989 ch09 3/29/00 4:28 PM Page 212

DAY 10

WEEK 2

Checking Out
In today’s lesson, you will finish building the shopping cart that was introduced
in yesterday’s lesson. You will learn how to enable customers to order the items
contained in their shopping carts. You will also learn how to create a page that
will allow you to process these orders. Today, you will learn the following:

• How to create transactional Active Server Pages and transactional data-
base connections

• How to create a Checkout page

• How to create a page that enables you to process customer orders

Understanding Transactions
When a customer clicks the Checkout button on the shopping cart, two things
must happen. First, all the items in the shopping cart must be transferred to the
Orders table. Second, the items must be deleted from the shopping cart. This is
a perfect example of a transaction.

In a transaction, a series of steps either succeeds or fails as a whole. A transac-
tion strictly abides by the slogan:

 14 0672318989 ch10 3/30/00 8:17 AM Page 213

If it’s worth doing at all, it’s worth doing it right.

The standard example of a transaction is transferring money from one account to another
(for instance, transferring money using an ATM machine). If you transfer money from
your checking account to your savings account, two things must happen. Your checking
account must be debited a certain amount and your savings account must be credited the
same amount. However, if the first step completes and the second step doesn’t complete,
a certain amount of money will disappear never to be found again.

214 Day 10

Ideally, every transaction should satisfy a set of properties collectively known
as the ACID properties. ACID stands for

Atomic—A transaction is atomic if it either succeeds or fails as a single
unit.

Consistent—A transaction is consistent if it preserves the consistency of
the data that it transforms.

Isolated—A transaction is isolated if no other concurrent transaction can
access partial results of the uncompleted transaction.

Durable—A transaction is durable when changes made by the transaction
are guaranteed to persist if the transaction succeeds.

Note

Using transactions solves this problem. If any step in a transaction fails, all the other
steps are rolled back. So, if your ATM machine is hit by lightning the moment after it
debits your checking account, your money won’t be lost. All the steps in the transaction
will be rolled back, and the money will be credited to your checking account once again.

There are three different methods of using transactions within an ASP page. You can cre-
ate transactional Active Server Pages, create ADO transactions, or use database transac-
tions.

ASP Page Transactions
In a transactional ASP page, changes made within the page are automatically rolled back
if an error occurs or the transaction is explicitly aborted. Both the Internet Information
Server and the Personal Web Server use Microsoft Transaction Server to manage transac-
tions in an ASP page.

 14 0672318989 ch10 3/30/00 8:17 AM Page 214

Checking Out 215

10

It is important to understand that Microsoft Transaction Server only supports rolling-
back certain types of transactions. For example, Microsoft Transaction Server cannot roll
back changes made to Application or Session variables, the file system, or components
that weren’t designed to support transactions. Generally, you will use a transactional ASP
page to roll back only database changes. In particular, changes made to a Microsoft SQL
Server database.

You create a transactional ASP page, by including the @TRANSACTION directive at the top
of the page. The @TRANSACTION directive must appear as the very first line in the page.
For example, the following page (as shown in Listing 10.1) correctly uses the directive.

LISTING 10.1 A Transactional ASP page

1 <%@ TRANSACTION=REQUIRED %>
2 <html>
3 <head><title>Transaction</title></head>
4 <body>
5 <%
6 blah.blah
7 %>
8 </body>
9 </html>

If you open this page in your Web browser, you will receive the following error:

Microsoft VBScript runtime error ‘800a01a8’
Object required: ‘’
/transaction.asp, line 6

This error results from calling the blah method of the blah object within the ASP script.
Because, as a matter of fact, there is no such thing as the blah object, an error occurs.
However, because the script is contained within a transactional ASP page, you can trap
this error. You do this by using the ObjectContext object.

The ObjectContext object is a built-in ASP object like the Server or Request objects.
However, it has one feature that makes it unique. Unlike any of the other ASP objects,
the ObjectContext object supports events. The object supports the OnTransactionAbort
and the OnTransactionCommit events.

Because transactional Active Server Pages depend on Microsoft Transaction
Server, you must have this program installed before you can use the scripts
discussed in this section. Microsoft Transaction Server is included with the NT
Option Pack. It’s compatible with Windows 95 (with DCOM installed),
Windows 98, and Windows NT.

Note

 14 0672318989 ch10 3/30/00 8:18 AM Page 215

The OnTransactionAbort event occurs whenever there is an error in a page. For exam-
ple, an OnTransactionAbort event would occur if a script included a call to the blah
object. Listing 10.2 demonstrates how you would use this event in an ASP page.

LISTING 10.2 The OnTransactionAbort Event

1 <%@ TRANSACTION=REQUIRED %>
2 <%
3 SUB OnTransactionAbort
4 Response.Write “<p>Uh oh! An error has occurred!”
5 END SUB
6 %>
7 <html>
8 <head><title>Transaction</title></head>
9 <body>
10 <%
11 blah.blah
12 %>
13 </body>
14 </html>

The ASP page contained in Listing 10.2 is the same as the page in Listing 10.1,
except that it includes a new subroutine that handles the OnTransactionAbort

event. When the error is encountered in the script, the OnTransactionAbort subroutine is
called, and a message is displayed on the screen.

The OnTransactionAbort event is useful in two situations. You can use this event to roll
back changes made by your script that aren’t handled by Microsoft Transaction Server.
For example, if the script changes the value of a Session variable, you can change the
value back to its original value within the OnTransactionAbort subroutine if an error
occurs.

You can also use the OnTransactionAbort event to trap and gracefully report errors. For
example, imagine that your store is receiving heavy traffic. Every once in a while, no
matter how well you design your database queries, you will receive database errors that
result from database deadlocks, connection timeouts, and so on. Listing 10.3 shows how
you can use the OnTransactionAbort event to display better error messages. (This ASP
page is included on the book’s CD-ROM with the name transaction.asp.)

LISTING 10.3 Better Error Handling

1 <%@ TRANSACTION=REQUIRED %>
2 <%
3 Response.Buffer = TRUE

216 Day 10

ANALYSIS

 14 0672318989 ch10 3/30/00 8:18 AM Page 216

Checking Out 217

10

4 SUB OnTransactionAbort
5 Response.Clear
6 %>
7 <html>
8 <head><title>Error</title></head>
9 An error has occurred.
10 <a href=”<%=Request.ServerVariables(“script_name”)%>”>
11 Click Here
12 to try this page again.
13 <%
14 END SUB
15 %>
16 <html>
17 <head><title>Transaction</title></head>
18 <body>
19 <%
20 blah.blah
21 %>
22 </body>
23 </html>

The ASP page in Listing 10.3 displays the message “Click Here to try this
page again.” if an error is encountered while processing the page (see Figure

10.1). Notice that page buffering is enabled for the page. This is necessary to hide the
default error message. The Clear method is called in line 5 to prevent the script error
from being sent to the browser.

ANALYSIS

FIGURE 10.1
A transactional ASP
page.

 14 0672318989 ch10 3/30/00 8:18 AM Page 217

The ObjectContext object also supports an additional event called the
OnTransactionCommit event. This event is called when a page completes successfully.
When you use a transactional ASP page, either the OnTransactionAbort or the
OnTransactionCommit event will always be called.

Finally, the ObjectContext has two methods for working with transactions. You can use
the SetAbort() method to manually cause the OnTransactionAbort method to be called.
You can use this method to prevent a transaction from completing even if the transaction
doesn’t encounter any errors.

The SetComplete() method forces the OnTransactionCommit event to occur. This
method can be used to override any calls to the SetAbort() method.

When you need to ensure that an ASP page either fails or succeeds as a whole, it is a
good idea to use transactions. You can use transactions to automatically respond to fail-
ure by providing a customer a chance to try a page again or by cleaning up partially
completed steps in a transaction.

ADO Transactions
ASP transactions apply to a whole ASP page. If you want to process only database oper-
ations within a transaction, you can use ADO transactions.

The ADO Connection object has three methods—BeginTrans(), CommitTrans(), and
RollbackTrans()—that enable you to manage transactions. To begin a new transaction,
call the BeginTrans() method. To mark the end of a transaction, call the CommitTrans()
method. Finally, to abort a transaction and start over, call the RollbackTrans() method.

The script in Listing 10.4 demonstrates how you can use these methods when updating
two database tables.

LISTING 10.4 ADO Transaction

1 <%
2 Set Con = Server.CreateObject(“ADODB.Connection”)
3 Con.Open “accessDSN”
4 Con.BeginTrans
5 ‘ Debit Checking Account
6 sqlString = “UPDATE checking SET checking_balance = “ &_
7 “checking_balance - 15 WHERE checking_userID = 3”
8 Con.Execute sqlString
9 ‘ Credit Savings Account
10 sqlString = “UPDATE savings SET savings_balance = “ &_
11 “savings_balance + 15 WHERE savings_userID = 3”
12 Con.Execute sqlString
13 Con.CommitTrans
14 %>

218 Day 10

 14 0672318989 ch10 3/30/00 8:18 AM Page 218

Checking Out 219

10

The script in Listing 10.4 updates two database tables named checking and sav-
ings. It removes $15.00 from a customer’s checking account and adds $15.00 to

the customer’s savings account. This is accomplished by executing two SQL UPDATE
statements in a row.

The beginning of the transaction is marked by calling the BeginTrans() method in line
4. The end of the transaction is marked by calling the CommitTrans() method in line 13.
All the database operations that are executed between lines 4 and 13 will either succeed
or fail as a unit.

You can test this by adding the following statement immediately after line 8:

blah.blah

Adding a call to the blah object will generate an error. However, the error will cause
both SQL UPDATE statements to be rolled back, so no changes will be made to either the
checking or savings table.

If the BeginTrans() and CommitTrans() methods weren’t used in this script and an error
occurred, the customer’s checking account would be debited, but the customer’s savings
account would not be credited. In other words, the ADO transaction has prevented the
potential of angry customers.

Database Transactions
Although this topic is beyond the scope of this book, it is worth mentioning yet a third
method of working with transactions. The Microsoft SQL Server database uses a transac-
tion log to record almost every change made to the database. This allows changes to be
rolled back in case of trouble.

The Transact-SQL language, the language used to interact with SQL Server, has several
statements for controlling transactions. You can use these statements within SQL stored
procedures to mark the beginning and end of transactions. For more information on pro-
gramming with the Transact-SQL language, see Microsoft SQL 7 Programming
Unleashed by John Papa, et al (ISBN: 067231293X).

Completing the Order
When a customer has finished shopping and clicks the button labeled Checkout on the
shopping cart, he is presented with two pages. First, he is presented with a form that
enables him to update address and payment information. For example, he can change the
shipping address or the credit card number used for the order.

ANALYSIS

 14 0672318989 ch10 3/30/00 8:18 AM Page 219

Next, the customer is presented with a page that thanks him for placing the order. Within
this page, his order is actually completed. The items are transferred from the shopping
cart to the Orders table.

In the next two sections, you will learn how to create the Active Server Pages necessary
to complete a customer’s order. You’ll also learn how to complete the order using an
ADO transaction.

Retrieving Address and Payment Information
Immediately after a customer clicks the Checkout button, he will see the page shown in
Figure 10.2. This ASP page is named doCheckout.asp. It contains a normal HTML form
that displays the customer’s address and payment information. This data is retrieved from
the Users database table with the script in Listing 10.5.

220 Day 10

FIGURE 10.2
Updating customer
information.

LISTING 10.5 Retrieving Customer Data

1 sqlString = “SELECT * FROM users “ &_
2 “WHERE user_id=” & userID
3 SET RS = Con.Execute(sqlString)
4 IF NOT RS.EOF THEN
5 street = RS(“user_street”)
6 city = RS(“user_city”)
7 state = RS(“user_state”)

 14 0672318989 ch10 3/30/00 8:18 AM Page 220

Checking Out 221

10

8 zip = RS(“user_zip”)
9 cctype = RS(“user_cctype”)
10 ccnumber = RS(“user_ccnumber”)
11 ccexpires = RS(“user_ccexpires”)
12 ccname = RS(“user_ccname”)
13 END IF
14
15 ‘ Hide Credit Card Number
16 ccnumber = LEFT(ccnumber, 2) &_
17 “************” &_
18 RIGHT(ccnumber, 2)

The script in Listing 10.5 uses a SQL SELECT statement to retrieve all the fields
from the Users database table in which the user has the current customer’s user

ID. Next, in lines 4–13, local variables are assigned the values of the database fields.

The customer’s current information is displayed in the HTML form by assigning the
local variables to the VALUE attribute of each form field. For example, to display the cus-
tomer’s current street address in the HTML form, the following HTML <INPUT> tag is
used:

street:
<input name=”street” size=20 maxlength=50
value=”<%=Server.HTMLEncode(street)%>”>

The credit card number is treated different from the other variables. You should notice
that the credit card number is hidden in lines 15–18. Only the first two digits and the last
two digits of the credit card number are shown. This is done for security reasons. If
someone manages to guess a customer’s username and password, the thief wouldn’t be
able to steal the customer’s credit card number. The worst thing the thief could do would
be to buy quite a lot of candy.

Updating Address and Payment Information
When the form in the doCheckout.asp page is submitted, the customer is brought to the
doCheckout2.asp page. This page does two things. First, it takes the address and pay-
ment information just submitted within the HTML form and updates the Users table.
Second, it contains a script that transfers the items from the shopping cart to the Orders
table.

The customer information is updated with the updateUser subroutine contained in
Listing 10.6. This subroutine is included in the storefuncs.asp file contained on the
CD-ROM that accompanies this book.

ANALYSIS

 14 0672318989 ch10 3/30/00 8:18 AM Page 221

LISTING 10.6 The updateUser Subroutine

1 SUB updateUser
2 ‘ Get Registration Fields
3 street = TRIM(Request(“street”))
4 city = TRIM(Request(“city”))
5 state = TRIM(Request(“state”))
6 zip = TRIM(Request(“zip”))
7 cctype = Request(“cctype”)
8 ccnumber = TRIM(Request(“ccnumber”))
9 ccexpires = TRIM(Request(“ccexpires”))
10 ccname = TRIM(Request(“ccname”))
11
12 ‘ Check For Required Fields
13 backpage = “checkout.asp”
14 IF street = “” THEN
15 errorForm “You must enter your street address.”, backpage
16 END IF
17 IF city = “” THEN
18 errorForm “You must enter your city.”, backpage
19 END IF
20 IF state = “” THEN
21 errorForm “You must enter your state.”, backpage
22 END IF
23 IF zip = “” THEN
24 errorForm “You must enter your zip code.”, backpage
25 END IF
26 IF ccnumber = “” THEN
27 errorForm “You must enter your credit card number.”, backpage
28 END IF
29 IF ccexpires = “” THEN
30 errorForm “You must enter your credit
➥ card expiration date.”, backpage
31 END IF
32 IF ccname = “” THEN
33 errorForm “You must enter the name that appears on your
➥ credit card.”, backpage
34 END IF
35
36 ‘ Check for Necessary Field Values
37 IF INSTR(ccnumber, “*”) = 0 THEN
38 IF NOT validCCNumber(ccnumber) THEN
39 errorForm “You did not enter a valid credit
➥ card number”, backpage
40 ELSE
41 ccnumber = “‘“ & ccnumber & “‘“
42 END IF
43 ELSE
44 ccnumber = “user_ccnumber”
45 END IF

222 Day 10

 14 0672318989 ch10 3/30/00 8:18 AM Page 222

Checking Out 223

10

46 IF NOT isDATE(ccexpires) THEN
47 errorForm “You did not enter a valid credit card
➥ expiration date”, backpage
48 END IF
49
50 ‘ Update user information in the database
51 sqlString = “UPDATE users SET “ &_
52 “user_street=’” & fixQuotes(street) & “‘, “ &_
53 “user_city=’” & fixQuotes(city) & “‘,” &_
54 “user_state=’” & fixQuotes(state) & “‘,” &_
55 “user_zip=’” & fixQuotes(zip) & “‘,” &_
56 “user_ccnumber=” & ccnumber & “, “ &_
57 “user_cctype=” & cctype & “, “ &_
58 “user_ccexpires=’” & ccexpires & “‘,” &_
59 “user_ccname=’” & fixQuotes(ccname) & “‘ “ &_
60 “WHERE user_id=” & userID
61
62 Con.Execute sqlString
63 END SUB

The first lines of this subroutine, lines 2–10, retrieve the HTML form fields into
local variables. Next, in lines 12–34, each field is checked to see whether it con-

tains any data. If someone submits an empty form field, the errorForm subroutine is
called. This subroutine displays an error page and invites the user to return to the HTML
form to correct any problems.

Lines 36–38 are used to validate the field values. For example, if someone hasn’t entered
a real date for the credit card expiration date, an error page is displayed by calling the
errorForm subroutine.

Lines 37–45 checks the value of the credit card number. This section is a bit complicated
because the credit card number displayed within the HTML form is partially hidden for
security reasons.

If the customer doesn’t alter the credit card number within the HTML form, the credit
card number submitted will contain * characters (the * is used to hide numbers). The
statement in line 37 checks whether the credit card number contains an * by using the
VBScript INSTR() function. If the credit card number submitted does, in fact, contain an
*, the user_ccnumber database field isn’t altered. This is accomplished by setting the
value of the database field equal to itself (user_ccnumber=user_ccnumber).

On the other hand, if the customer enters a new credit card number, the database field is
updated. The user_ccnumber database field is assigned the value of the ccnumber form
field.

ANALYSIS

 14 0672318989 ch10 3/30/00 8:18 AM Page 223

In lines 50–60, the SQL UPDATE string that updates the Users database table is construct-
ed. The string is built from each of the values of the form variables. Notice that the
fixQuotes() function is used to construct the sqlString. The fixQuotes() function
replaces single quotes (‘) with two consecutive single quotes (‘’). You’ll remember that
this is necessary to prevent Microsoft Access from getting confused about the beginning
and end of strings when the sqlString is executed.

Finally, in line 62, the sqlString is executed and the customer’s payment and address
information is updated.

Transferring the Shopping Cart
After the customer’s address and payment information has been updated in the
doCheckout2.asp page, the order must be completed. This is accomplished by transfer-
ring all the customer’s items from the Cart database table (which represents the cus-
tomer’s shopping cart) to the Orders database table (which represents completed orders).
The Orders database table contains the following columns:

order_id—A number field that uniquely identifies each product order

order_productID—A number field that represents the product ID of the item

order_quantity—A number field that represents the number of items ordered

order_userID—A number field that contains the unique ID of the user placing the
order

order_entrydate—A Date/Time field that represents the date and time the order
was placed

order_status—A number field that represents the status of the order

order_shipdate—The date and time the product was shipped

To transfer the items from one table to another, we can use a variant of the SQL INSERT
INTO statement. By combining the INSERT INTO statement with the SELECT statement, we
can select a certain row of data from one table to insert into another table. Here is the
syntax of this variant of the INSERT INTO statement:

INSERT INTO table_name (column_list)
SELECT column_list
FROM table_name
WHERE condition

To move the items from the Cart database table to the Orders database table, we will use
the script in Listing 10.7.

224 Day 10

 14 0672318989 ch10 3/30/00 8:18 AM Page 224

Checking Out 225

10

LISTING 10.7 Transferring Between Cart and Orders

1 <%
2 ‘ Begin A Transaction
3 Con.BeginTrans
4
5 ‘ Transfer cart to orders table
6 sqlString = “INSERT INTO orders (“ &_
7 “order_id, “ &_
8 “order_productID, “ &_
9 “order_quantity, “ &_
10 “order_userID, “ &_
11 “order_entrydate, “ &_
12 “order_status “ &_
13 “) SELECT “ &_
14 “cart_id, “ &_
15 “cart_productID, “ &_
16 “cart_quantity, “ &_
17 “cart_userID, “ &_
18 “NOW(), “ &_
19 “0 “ &_
20 “FROM cart WHERE “ &_
21 “cart_userID =” & userID
22
23 Con.Execute sqlString
24
25 ‘ Empty shopping cart
26 sqlString = “DELETE FROM cart “ &_
27 “WHERE cart_userID=” & userID
28
29 Con.Execute sqlString
30
31
32 ‘ End the transaction
33 Con.CommitTrans
34
35 %>

The script in Listing 10.7 does five things. First, in line 3, a new transaction is
created by calling the BeginTrans() method of the ADO Connection object.

Next, in lines 5–23, the items in the Cart database table are transferred to the Orders
database table. In lines 25–29, the items are deleted from the customer’s shopping cart.
Finally, in line 33, the transaction is completed.

An ADO transaction is used in this script to guarantee that if the items are copied from
the Cart table to the Orders table, the items will also be deleted from the Cart table. The
transaction prevents one step from happening without the other step.

ANALYSIS

 14 0672318989 ch10 3/30/00 8:18 AM Page 225

After the customer has finished checking out, the page in Figure 10.3 is displayed. This
page thanks the customer for purchasing the products and invites the customer to return
to the list of products to continue shopping.

226 Day 10

FIGURE 10.3
A completed order.

Processing Orders
In this section, you will learn how to create an ASP page that will enable you to process
orders after they have been placed by a customer. This page is used by the administrator
of your store and not the customer. It provides you with a method of viewing and updat-
ing the status of each order. Each order can have one of the following status values:

Pending—This is the default value of an order. An order has this status immediate-
ly after it has been placed.

Credit Card Declined—An order has this status when the customer’s credit card
account couldn’t be charged and the product couldn’t be shipped.

Not in Stock—An order has this status when the product requested isn’t in stock
and, therefore, won’t be shipped.

Shipped—An order has this status when the credit card was successfully charged
and the product was shipped.

We are going to create a page named processOrders.asp that provides you with a
method of updating the status of each order. (The processOrders.asp page is included

 14 0672318989 ch10 3/30/00 8:18 AM Page 226

Checking Out 227

10

on the CD-ROM that accompanies this book.) Figure 10.4 shows the final version of
processOrders.asp.

FIGURE 10.4
Processing customer
orders.

The processOrders.asp page displays all the information for each order. Each order
appears within its own HTML table. For each order, you can view the order ID, the prod-
uct ID, the customer’s payment and address information, and the current status of the
order.

When viewing orders, by default, you only see pending orders. Typically, this is what
you will want because you will want to update only the new orders that have been
placed. However, you can use an HTML pick list to show only pending orders, only
credit card declined orders, only not in stock orders, only shipped orders, or all orders.

Orders are displayed five on a page. A list of page numbers that act as links to other
pages appears at the bottom of the page. If business is good, you don’t want to display
too many orders on a single page.

Finally, you can update the status of any order by clicking a hypertext link. The current
status of an order is highlighted in a blue table cell. The other status options appear in
gray table cells as hypertext links.

The processOrders.asp page is quite long. However, because it illustrates several
important programming techniques, it is worth looking at the page in detail. The com-
plete code for the processOrders.asp page is contained in Listing 10.8.

 14 0672318989 ch10 3/30/00 8:18 AM Page 227

LISTING 10.8 processOrders.asp

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <%
3 ‘ Get Form Variables
4 showOrders = TRIM(Request(“showOrders”))
5 showPage = TRIM(Request(“showPage”))
6 orderStatus = TRIM(Request(“os”))
7 orderId = TRIM(Request(“oid”))
8 allPages = TRIM(Request(“allpages”))
9
10 ‘ Assign Default Values
11 IF showOrders = “” THEN
12 showOrders = 0
13 END IF
14 IF showPage = “” THEN
15 showPage = 1
16 END IF
17
18 ‘ Open the Database Connection
19 Set Con = Server.CreateObject(“ADODB.Connection”)
20 Con.Open “accessDSN”
21
22 ‘ Update Order Status
23 IF orderID <> “” THEN
24 IF orderStatus = 3 THEN
25 sqlString = “UPDATE Orders “ &_
26 “SET order_status=” & orderStatus & “, “ &_
27 “order_shipdate=NOW() “ &_
28 “WHERE order_id=” & orderID
29 ELSE
30 sqlString = “UPDATE Orders “ &_
31 “SET order_status=” & orderStatus & “, “ &_
32 “order_shipdate=NULL “ &_
33 “WHERE order_id=” & orderID
34 END IF
35
36 Con.Execute sqlString
37 END IF
38
39
40 ‘ Retrieve Orders
41 sqlString = “SELECT * “ &_
42 “FROM Orders, Users, Products “ &_
43 “WHERE order_userID = user_id “ &_
44 “AND order_productID = product_id “
45 IF showOrders < 99 THEN
46 sqlString = sqlString & “AND order_status=” & showOrders
47 END IF
48 sqlString = sqlString & “ ORDER BY order_entrydate DESC”

228 Day 10

 14 0672318989 ch10 3/30/00 8:18 AM Page 228

Checking Out 229

10

49
50 SET RS = Server.CreateObject(“ADODB.Recordset”)
51 RS.CursorType = adOpenStatic
52 IF allPages = “” THEN
53 RS.PageSize = 5
54 ELSE
55 RS.PageSize = 99999
56 END IF
57 RS.ActiveConnection = Con
58 RS.Open sqlString
59 IF NOT RS.EOF THEN
60 RS.AbsolutePage = cINT(showPage)
61 END IF
62
63 FUNCTION SELECTED(val1, val2)
64 IF cSTR(val1) = cSTR(val2) THEN
65 SELECTED = “ selected “
66 END IF
67 END FUNCTION
68
69 %>
70 <html>
71 <head><title>Process Orders</title></head>
72 <body>
73
74 <form action=”processOrders.asp”>
75 <table width=”100%” border=0>
76 <tr>
77 <td>
78
79 Process Orders
80
81 </td>
82 <td align=”right”>
83 Show Orders:
84 <select name=”showOrders”>
85 <option value=”0” <%=SELECTED(“0”, showOrders)%>>
➥ Pending
86 <option value=”1” <%=SELECTED(“1”, showOrders)%>>
➥ Credit Card Declined
87 <option value=”2” <%=SELECTED(“2”, showOrders)%>>
➥ Not in Stock
88 <option value=”3” <%=SELECTED(“3”, showOrders)%>>
➥ Shipped
89 <option value=”99” <%=SELECTED(“99”, showOrders)%>>
➥ All Orders
90 </select>
91 <input type=”submit” value=”show”>
92 </td>

continues

 14 0672318989 ch10 3/30/00 8:18 AM Page 229

93 </tr>
94 </table>
95 </form>
96
97 <%
98 WHILE NOT RS.EOF AND rowCount < RS.PageSize
99 rowCount = rowCount + 1
100 %>
101 <p>
102 <table border=1
103 cellpadding=4 cellspacing=0>
104 <tr>
105 <td bgcolor=”lightyellow”>Order ID:</td>
106 <td><%=RS(“order_id”)%></td>
107 <td bgcolor=”lightyellow”>Order Date:</td>
108 <td><%=RS(“order_entrydate”)%></td>
109 </tr>
110 <tr>
111 <td bgcolor=”lightyellow”>Product ID:</td>
112 <td><%=RS(“product_id”)%></td>
113 <td bgcolor=”lightyellow”>Product:</td>
114 <td><%=RS(“product_name”)%></td>
115 </tr>
116 <tr>
117 <td bgcolor=”lightyellow”>Quantity Ordered:</td>
118 <td><%=RS(“order_quantity”)%></td>
119 <td bgcolor=”lightyellow”>Shipped:</td>
120 <td>
121 <% IF isDATE(RS(“order_shipdate”)) THEN %>
122 <%=RS(“order_shipdate”)%>
123 <% ELSE %>
124 N/A
125 <% END IF %>
126 </td>
127 </tr>
128 <tr>
129 <td bgcolor=”lightyellow”>Unit Price</td>
130 <td><%=FormatCurrency(RS(“product_price”))%></td>
131 <td bgcolor=”lightyellow”>Order Total:</td>
132 <td>
133 <%=FormatCurrency(RS(“order_quantity”) *
➥ RS(“product_price”))%>
134 </td>
135 <tr>
136 <td bgcolor=”lightyellow”>Credit Card:</td>
137 <td colspan=3>
138 name: <%=RS(“user_ccname”)%>
139
number: <%=RS(“user_ccnumber”)%>

230 Day 10

LISTING 10.8 continued

 14 0672318989 ch10 3/30/00 8:18 AM Page 230

Checking Out 231

10

140
type:
141 <%
142 SELECT CASE RS(“user_cctype”)
143 CASE “1” Response.Write “Visa”
144 CASE “2” Response.Write “MasterCard”
145 END SELECT
146 %>
147
expires: <%=RS(“user_ccexpires”)%>
148 </td>
149 </tr>
150 <tr>
151 <td bgcolor=”lightyellow”>Address:</td>
152 <td colspan=3>
153 street: <%=RS(“user_street”)%>
154
city: <%=RS(“user_city”)%>
155
state: <%=RS(“user_zip”)%>
156 </td>
157 </tr>
158 <tr>
159 <td colspan=4>
160 <table border=1 width=”100%”
161 cellpadding=4 cellspacing=0>
162 <tr bgcolor=”lightgrey”>
163 <% IF RS(“order_status”) = 0 THEN %>
164 <td bgcolor=”lightblue”>
165 Pending
166 </td>
167 <% ELSE %>
168 <td>
169 <a href=”processOrders.asp?showpage=<%=showPage%>&
➥ oid=<%=RS(“order_id”)%>&os=0&showOrders=<%=showOrders%>”>
170 Pending
171 </td>
172 <% END IF %>
173 <% IF RS(“order_status”) = 1 THEN %>
174 <td bgcolor=”lightblue”>
175 Credit Card Declined
176 </td>
177 <% ELSE %>
178 <td>
179 <a href=”processOrders.asp?showpage=<%=showPage%>&
➥ oid=<%=RS(“order_id”)%>&os=1&showOrders=<%=showOrders%>”>
180 Credit Card Declined
181 </td>
182 <% END IF %>
183 <% IF RS(“order_status”) = 2 THEN %>
184 <td bgcolor=”lightblue”>
185 Not in Stock
186 </td>
187 <% ELSE %>

continues

 14 0672318989 ch10 3/30/00 8:18 AM Page 231

188 <td>
189 <a href=”processOrders.asp?showpage=<%=showPage%>&
➥ oid=<%=RS(“order_id”)%>&os=2&showOrders=<%=showOrders%>”>
190 Not in Stock
191 </td>
192 <% END IF %>
193 <% IF RS(“order_status”) = 3 THEN %>
194 <td bgcolor=”lightblue”>
195 Shipped
196 </td>
197 <% ELSE %>
198 <td>
199 <a href=”processOrders.asp?showpage=<%=showPage%>&
➥ oid=<%=RS(“order_id”)%>&os=3&showOrders=<%=showOrders%>”>
200 Shipped
201 </td>
202 <% END IF %>
203 </tr>
204 </table>
205 </tr>
206 </table>
207 <%
208 RS.MoveNext
209 WEND
210 %>
211 <hr>
212 <% IF RS.PageCount > 1 THEN %>
213 Page:
214 <%
215 FOR i = 1 TO RS.PageCount
216 IF cINT(showPage) = i THEN
217 %>
218 <%=i%> |
219 <% ELSE %>
220 <a href=”processOrders.asp?showpage=<%=i%>&
➥ showorders=<%=showOrders%>”>
221 <%=i%>
222 |
223 <%
224 END IF
225 NEXT
226 IF allPages <> “” THEN
227 %>
228 All
229 <% ELSE %>
230 <a href=”processOrders.asp?showorders=<%=showOrders%>&
➥allPages=1”>
231 All

232 Day 10

LISTING 10.8 continued

 14 0672318989 ch10 3/30/00 8:18 AM Page 232

Checking Out 233

10

232
233 <%
234 END IF
235 END IF
236 %>
237
238 </body>
239 </html>

The first line in processOrders.asp includes the adovbs.inc file. You must
include this file because the processOrders.asp page makes use of the ADO

constant adOpenStatic.

In lines 3–8, all the form and URL variables are retrieved. These variables represent such
things as the current page, the ID of the order being updated, and the new order status.

Lines 10–16 assign default values to variables that don’t have a value. For example, if no
page of orders has been selected, the page defaults to the first page.

In lines 18–20, a connection to the Microsoft Access database is opened. The System
DSN named “accessDSN” is used to open the connection.

Lines 22–37 are used to update the status of a particular order. This is accomplished with
a SQL UPDATE statement. The UPDATE statement changes the value of the order_status
column for the database record with a certain order ID.

When an order’s status is changed to shipped, the order_shipdate column is also updat-
ed to reflect the current date. Otherwise, if any other status is selected, the order_ship-
date column is assigned the value NULL.

In lines 40–61, the order information is retrieved from the database. The information is
drawn from three tables: the Orders table, the Products table, and the Users table. A SQL
ORDER BY clause is used to retrieve the last orders placed first.

Line 46 is used to restrict the orders retrieved. For example, you can use the HTML pick
list to view only shipped orders. Line 46 adds a clause to the SQL SELECT statement that
retrieves only the orders with a certain order status. This statement is skipped if the All
Orders option is selected.

The PageSize and AbsolutePage properties of the Recordset object are used to display
only a certain page of orders at a time. The PageSize property sets the number of records
to show on a single page. The AbsolutePage property sets the page to display.

The HTML pick list is created in lines 74–95. This pick list enables you to view only
those orders with a certain status (for example, shipped) or all orders.

ANALYSIS

 14 0672318989 ch10 3/30/00 8:18 AM Page 233

The bulk of processOrders.asp, lines 97–210, are used to display the details of a partic-
ular order. A WHILE...WEND loop is used to loop through all the orders for a certain page.
The information for each order is formatted and displayed.

An HTML table is displayed in lines 160–204. This table contains a list of possible order
status values in each of the table cells. The current status of an order is highlighted with
a blue background.

Finally, in lines 212–236, a list of page numbers is displayed. By clicking on any one of
these page numbers, you can navigate to a particular page of orders. The list of page
numbers is created with a FOR...NEXT loop. The PageCount property of the Recordset
object is used to retrieve the number of pages.

Summary
In today’s lesson, you learned how to work with transactions. You learned how to create
both transactional Active Server Pages and ADO transactions. You learned how to use a
transaction to guarantee that a series of steps either succeeds or fails as a whole.

Next, you learned how to create a checkout page for the shopping cart. You learned how
to update a customer’s address and payment information. You also learned how to trans-
fer a customer’s shopping cart to the Orders table.

Finally, you learned how to process completed orders. You learned how to create a page
that enables you to view and update the status of customer orders.

Q&A
Q ADO transactions seem really great. When shouldn’t I use them?

A You should avoid using transactions whenever possible. You must be particularly
careful with using transactions when you have a large number of concurrent users.
Long running transactions can lock up the records in your database, preventing
other users from accessing the records.

Q When attempting to use the @TRANSACTION directive, I receive the following
error:
error ‘ASP 0216’
MSDTC Service not running
/tran.asp
Transactional web pages cannot be run if the MSDTC service is not running.

A ASP transactions rely on the Microsoft Distributed Transaction Coordinator. The
Microsoft Distributed Transaction Coordinator is included with both Microsoft

234 Day 10

 14 0672318989 ch10 3/30/00 8:18 AM Page 234

Checking Out 235

10

Transaction Server and Microsoft SQL Server. On both Windows 98 and Windows
NT computers, the MSDTC service should start automatically when you start your
computer.

You can manually start MSDTC on either a Windows 98 or Windows NT computer
by using the Microsoft Transaction Server Explorer. Launch this program, select
the name of your computer, and then choose Action, Start MS DTC.

If you have SQL Server installed, you can also enable the Microsoft Distributed
Transaction Coordinator from either the SQL Server Service Manager or the
MSDTC Administrative Console. (Both programs are located in the SQL Server
program group.)

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What’s wrong with the following script?

<%
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “accessDSN”
SET RS = Server.CreateObject(“ADODB.Recordset”)
RS.ActiveConnection = Con
RS.BeginTrans
RS.Open “select * FROM Orders”
RS.CommitTrans
%>

2. Suppose that you want to copy a particular row from the Orders table to a second
table named Orders_bak. The Orders_bak table is used to back up the data in the
Orders table. How can you copy the row from the Orders table in which the value
of the order_id column is 17 to the Orders_bak table?

Exercise
The processOrders.asp page discussed in today’s lesson enables you to assign
one of four status values to an order: Pending, Credit Card Declined, Not in Stock,
or Shipped. How would you modify the processOrders.asp page (contained in
Listing 10.8) to enable a fifth status value, Back Ordered, to be selected?

 14 0672318989 ch10 3/30/00 8:18 AM Page 235

 14 0672318989 ch10 3/30/00 8:18 AM Page 236

DAY 11

WEEK 2

Working with Credit
Cards

In today’s lesson, you’ll learn how to implement the most important function
for your online store: how to process customer credit cards. The lesson begins
with a brief overview of the different options available for credit card process-
ing. Next, you’ll be provided with detailed information on implementing one
credit card processing system: CyberCash. In today’s lesson, you’ll learn the
following:

• How to set up and configure CyberCash

• How to use CyberCash to authorize credit cards transactions

• How to use CyberCash to settle credit card transactions

Methods of Processing Credit Cards
There is a wide variety of options for processing the credit cards accepted at
your Web site, too many to be discussed in a single chapter. However, the vari-
ous credit card processing systems can be somewhat arbitrarily divided into

 15 0672318989 ch11 3/29/00 4:01 PM Page 237

three different types: offsite payment processors, payment terminals, and component-
based solutions.

Offsite Payment Processors
Severalcompanies enable you to link to their Web sites and they will process the credit
card transactions for you. They host the payment page that prompts the customer to enter
credit card information. After the customer has completed the payment transaction, the
customer is sent back to your Web site.

The advantage of this type of system is that it is very easy to set up. You don’t need to
configure and use the Secure Sockets Layer, and you don’t need to take special precau-
tions to maintain the privacy of the customer’s credit card information. All this is done
for you at another Web site.

The disadvantage of these offsite payment processors is that you lose some control over
the appearance of your payment page. You also never collect credit card information
directly from your customers. Finally, if something goes wrong with the offsite payment
processor—for example, its Web site goes down—the problem is out of your hands and
you can do nothing about it.

One example of a company that offers offsite payment processing is Authorize.Net
(www.authorizenet.com). To use the Authorize.Net WebLink service, you include the
following HTML form in your ASP page:

<form method=”POST” action=”https://secure.authorize.net/gateway/transact.dll”>
<input type=”hidden” name=”x_Version” value=”3.0”>
<input type=”hidden” name=”x_Login” value=”your login here”>
<input type=”hidden” name=”x_Amount” value=”total amount here”>

<input type=”hidden” name=”x_Show_Form” value=”Payment_Form”>
<input type=”hidden” name=”x_Invoice_Num” value=”your invoice number here”>
<input type=”hidden” name=”x_Description” value=”order description here”>
<input type=”hidden” name=”x_Cust_ID” value=”customer id here”>
<input type=”submit” value=”Click Here for Secure Payment Form”>
</form>

This HTML form creates a button labeled Click Here for Secure Payment Form that
links to the Authorize.Net Web site. You can substitute variables for the value attributes
of the HTML form to enable customers to purchase different products. For example, the
value of the x_Amount field is the amount that you want to charge the customer’s credit
card.

Another company that offers offsite payment processing is iBill. Currently, iBill offers a
service called the Resellers Subscription Sales service. This service cannot be used to
sell tangible goods. You can use this service only to sell Web site subscriptions and

238 Day 11

 15 0672318989 ch11 3/29/00 4:01 PM Page 238

Working with Credit Cards 239

11

informational content. The iBill service is worth mentioning, however, because it is the
only payment system discussed in this chapter that does not require you to have a credit
card merchant account. The only requirement to use this service is that you have a credit
card.

Payment Terminal Solutions
A different approach to processing credit cards is represented by payment terminal solu-
tions. A prime example of this type of software is ICVerify (www.icverify.com).

ICVerify is a software product that contains an easy-to-use interface for authorizing and
settling credit card transactions. You can launch the program, type in a customer’s credit
card information, click a button, and the program authorizes a credit card transaction.

ICVerify does not work over the Internet. You must use this program with a modem.
When you authorize or settle a credit card transaction, the program connects to your
processor over the phone line and completes the transaction.

Although it is possible to use ICVerify to perform real-time credit card authorizations, I
do not recommend doing this. ICVerify is better suited for processing credit card transac-
tions in batches. For example, you can manually run ICVerify once a night and run all
the credit card transactions for that day in a single batch.

ICVerify allows you to import CSV files (comma-separated value files). So, to process
the credit cards from your online store, you would need to export the credit card transac-
tions from your database to a flat file in CSV format. You can generate CSV files from
SQL Server by using the Data Transformation Services (DTS). With Microsoft Access,
you can use the Microsoft Access Export option to convert a database table to a delimit-
ed text file.

The main advantage of using ICVerify is that it is one of the cheapest solutions for pro-
cessing credit cards. Because ICVerify uses normal phone lines and not the Internet, the
banks do not need to configure special gateways to accept credit card transactions per-
formed with ICVerify. The end result is that banks typically charge you much lower fees.

Component-Based Solutions
The third and final method of processing credit cards is to use a component-based solu-
tion. This approach provides you with the greatest flexibility over processing credit
cards. You can write Active Server Pages scripts to do such things as authorize, capture,
and refund credit card transactions.

Two examples of this approach are CyberCash (www.cybercash.com) and VeriFone’s
vPos software (www.verifone.com). We’ll discuss CyberCash in detail for the remainder
of this chapter.

 15 0672318989 ch11 3/29/00 4:01 PM Page 239

The advantage of a component-based solution to payment processing is that it gives you
complete control over credit card transactions from your Active Server Pages scripts.
Unlike offsite payment solutions, the customer never needs to leave your Web site.
Unlike terminal-based solutions, the credit card transactions can be processed in real-
time over the Internet.

Component-based solutions have two main disadvantages. First, they are typically more
expensive than terminal solutions because they require the bank to set up a custom
Internet gateway. Second, setting up a component-based solution requires you to write
custom scripts. Writing the scripts can be time-consuming.

Choosing a Method of Processing Credit Cards
So, you might ask, what is the best method of processing credit cards? Which of the
credit card processing systems discussed should I implement at my Web site?

If you want a quick and easy method of processing credit cards from your Web site, I
recommend using an offsite payment processing method such as Authorize.Net
(www.authorizenet.com). If you want to implement the method with the lowest fees,
seriously consider using ICVerify (www.icverify.com). Finally, if you want the greatest
flexibility, CyberCash might be the best solution (www.cybercash.com).

To make it easier to research the various options for processing credit cards, here is a list
of some of the more popular solutions:

• Authorize.Net (www.authorizenet.com)

• CyberCash (www.cybercash.com)

• CyberSource (www.cybersource.com)

• iBill (www.ibill.com)

• ICVerify (www.icverify.com)

• OpenMarket (www.openmarket.com)

• Signio (www.signio.com)

Preparing for CyberCash
In this section, you’ll learn how to complete the three requirements for using CyberCash.
You’ll learn how to open a credit card merchant account. You will also learn how to reg-
ister as a merchant at the CyberCash Web site. Finally, you’ll learn how to download and
install the necessary software for communicating with CyberCash.

240 Day 11

 15 0672318989 ch11 3/29/00 4:01 PM Page 240

Working with Credit Cards 241

11

Opening a Credit Card Merchant Account
Before you can use a credit card processing system such as CyberCash, you must open a
credit card merchant account with an acquiring financial institution. Typically, your
acquiring financial institution will be a bank such as Wells Fargo, Bank of America, or
BankBoston. Your acquiring financial institution works with a third-party processor to
process credit card transactions and deposit money into your merchant account.

Before opening a credit card merchant account, you need to check whether the bank sup-
ports CyberCash because not all banks support it. Most banks select and promote only a
handful of credit card processing systems.

When choosing a bank to act as your acquiring financial institution, don’t be afraid to
comparison shop. Banks might charge any of the following fees:

• Application fee—This is a fee that a bank charges you just for applying for a mer-
chant account. Not all banks charge this fee, so you should avoid it if possible.

• Setup fee—This is a one-time fee that a bank charges you for opening a new mer-
chant account. Again, not all banks charge this fee, so try to avoid it.

• Transaction fee—Almost all banks charge you a transaction fee. The transaction
fee is the amount the bank charges you every time you process a credit card.
Transaction fees can range anywhere from 10 cents to 50 cents a transaction.

• Monthly minimum fee—Some banks, but not all, charge you a monthly minimum
fee. If your sales do not meet a certain threshold, you are charged this fee.

• A discount rate—Most banks retain a percentage of each transaction. This percent-
age is called the discount rate. Discount rates typically fall in the range of 2.00%
to 3.00% per transaction.

When researching the fees a bank charges, it is important to separate the bank’s fees
from the fees charged by CyberCash. CyberCash charges additional setup, transaction,
and monthly fees over and above the bank’s fees.

Depending on your credit history, opening a credit card merchant account can be very
easy, difficult and time-consuming, or impossible. If you already have an established

Unless you plan to use a wallet (see Day 20, “Working with Wallets”), you
must install a server certificate and enable the Secure Sockets Layer (SSL)
before you can use the CyberCash service. You must use SSL to protect the
privacy of customer credit card information when the information is entered
at your Web site. For more information on configuring SSL, see Day 8,
“Building the Transaction Databases.”

Note

 15 0672318989 ch11 3/29/00 4:01 PM Page 241

brick-and-mortar business, opening a merchant account might take only the time and
effort necessary to complete a one-page application.

If there are problems with your credit history, you might be forced to pay higher fees.
Again, don’t be afraid to comparison shop. CyberCash maintains a valuable list of
acquiring financial institutions at its Web site. To see this list, go to

http://www.cybercash.com/fi_display/home.html

Registering at CyberCash
After you have opened a credit card merchant account, you are ready to register at
CyberCash. CyberCash will lead you through the registration process in a series of
HTML forms (see Figure 11.1). To register at CyberCash, go to the following URL:

https://amps.cybercash.com/

You will be asked for the following information:

• The legal name of your business

• Your Doing Business As name (DBA name)

• Your business address

• Contact information, including phone number and email address

242 Day 11

FIGURE 11.1
CyberCash registra-
tion.

 15 0672318989 ch11 3/29/00 4:01 PM Page 242

Working with Credit Cards 243

11

After you have registered, you will be given a CyberCash ID (CCID), hash secret, and
merchant key. You will need this information when you install the CyberCash software,
so record this information and keep it in a safe place.

After you have registered, you can download the CyberCash Merchant Connection Kit
(MCK) and the CyberCash documentation. The MCK contains the components you will
need to communicate with CyberCash to process credit card transactions. It also contains
several sample scripts. (Sadly, most of these sample scripts are written using PERL
instead of ASP.) At the time of this writing, the current version of the MCK is version
3.2.0.4.

Immediately after you register at CyberCash, your CyberCash account is not “live.” All
the transactions are performed in test mode. This is good because you want to test your
scripts before you actually start charging credit cards. When you are ready to go live, log
in to the CyberCash Merchant Control Panel and select the Going Live option (see
Figure 11.2). You can access the Merchant Control Panel at the following URL:

https://amps.cybercash.com/

FIGURE 11.2
The Merchant Control
Panel.

Installing the CyberCash Software
After you download the MCK from CyberCash, you need to install it. The installation
procedure for the MCK is a little confusing because you need to run two installation

 15 0672318989 ch11 3/29/00 4:01 PM Page 243

programs. First, you must install the MCK itself. Next, you need to execute the build-
merchant installation program from Start, Programs, CyberCash Merchant Connection
Kit.

You must enter the following information to complete the installation program:

• The fully qualified domain name of your computer—For example,
www.yourdomain.com.

• Your CyberCash ID (CCID) and hash secret—You receive this information from
CyberCash after you register.

• The name of your store and a customer service phone number.

• Your merchant key—You receive your merchant key from CyberCash after you
register.

• The URL of your secure server—For example, https://www.yourdomain.com. You
must have the Secure Sockets Layer configured on your server to use CyberCash.

When you run the build-merchant installation program, you must specify the computer
language you want to use with CyberCash. You are given the choice of using PERL, C,
or ASP. Because this book is on Active Server Pages, I assume you want to choose ASP.

The installation programs add two virtual directories to your Web site. One virtual direc-
tory is named mck-shared and the other directory is given the same name as your store.
These directories contain the configuration files that CyberCash needs to process credit
card transactions. They also contain some sample Active Server Pages scripts.

The most important file that the installation program installs is named merchant_conf.
This file contains configuration information specific to your CyberCash account. It’s a
normal text file. You can open and view it with Notepad. Typically, this file is located at

c:\inetpub\wwwroot\yourstorename\mck-cgi\conf\merchant_conf

The installation program also installs two important components: the MessageBlock and
the Socket components. You will use these components in your Active Server Pages
scripts to communicate with the CyberCash service.

After you finish installing the CyberCash software, you can test your installation by
launching your Web browser and opening the following URL:

https://www.yourdomain.com/yourstorename/mck-htdocs/test-mck.html

Opening this page in your Web browser will open a test page that enables you to test var-
ious functions of CyberCash. For example, you can test the process of charging a credit
card (select the script named Direct Connect Credit Sale).

244 Day 11

 15 0672318989 ch11 3/29/00 4:01 PM Page 244

Working with Credit Cards 245

11

Authorizing a Credit Card Transaction
Two steps are involved in transferring money from a customer’s credit card account to
your merchant account. First, you must authorize the transaction. Next, you must capture
the transaction. Capturing a transaction submits a transaction for financial settlement.
Both steps—authorization and capture—must be completed for the money to be trans-
ferred into your account.

In this section, you will learn how to create Active Server Pages scripts that enable you
to authorize credit card transactions with the CyberCash service. Remember, however,
that the transaction is not complete until you capture and settle the transaction. This sec-
ond step will be covered in the next section.

To authorize a credit card transaction, you use the CyberCash MessageBlock and Socket
components. These are ActiveX components you can use in your Active Server Pages in
the same way as you would use the Ad Rotator and Browser Capabilities components.

The MessageBlock component represents a message that you either send or receive from
the CyberCash service. Before you authorize a transaction, you load the MessageBlock
component with a list of values. For example, you add the customer’s credit card number
and credit card expiration date to the MessageBlock before you send it.

The CyberCash Socket component is responsible for sending the message to the
CyberCash service. It’s a standard WinSock component. It imitates the process of posting
an HTML form.

The script in Listing 11.1 uses the MessageBlock and Socket components to authorize a
credit card transaction. (This file is included on the CD-ROM that accompanies this book
with the name Authorize.asp.)

LISTING 11.1 Authorizing a Credit Card Transaction

1 <%
2 FUNCTION addForm(theFormData, theName, theValue)
3 IF theFormData <> “” THEN
4 theFormData = theFormData & “&”
5 END IF
6 theFormData = theFormData & Server.URLEncode(theName)
7 theFormData = theFormData & “=”
8 theFormData = theFormData & Server.URLEncode(theValue)
9 addForm = theFormData
10 END FUNCTION
11
12 ‘ Set the location of Cash Register and Configuration File
13 paymentURL = “http://cr.cybercash.com/cgi-bin/directcardpayment.cgi”

INPUT

continues

 15 0672318989 ch11 3/29/00 4:01 PM Page 245

14 configLoc = “C:\\inetpub\\wwwroot\\yourstore\\mck-cgi\\conf\\merchant_conf”
15
16 ‘ Create MessageBlock Object
17 Set Args = CreateObject(“CyberCashMCK.MessageBlock”)
18
19 ‘ Create the Merchant Offer Form Fields
20 formData = addForm(formData, “mo.cybercash-id”, “test-mck”)
21 formData = addForm(formData, “mo.version”, “3.2.0.4”)
22 formData = addForm(formData, “mo.order-id”, “11111111”)
23 formData = addForm(formData, “mo.price”, “usd 1.50”)
24 Args.Add “MO”, formData
25
26 ‘ Create the Credit Payment Information Fields
27 formData = “”
28 formData = addForm(formData, “cpi.card-number”, “4111111111111111”)
29 formData = addForm(formData, “cpi.card-exp”, “02/00”)
30 formData = addForm(formData, “cpi.card-name”, “Stephen Walther”)
31 formData = addForm(formData, “cpi.card-address”, “877 Oakgrove”)
32 formData = addForm(formData, “cpi.card-city”, “Berkeley”)
33 formData = addForm(formData, “cpi.card-state”, “CA”)
34 formData = addForm(formData, “cpi.card-zip”, “94108”)
35 formData = addForm(formData, “cpi.card-country”, “USA”)
36 Args.Add “CPI”, formData
37
38 ‘ Send the Fields to CyberCash
39 set SockObj = Server.CreateObject(“CyberCashMCK.socket.1”)
40 set Result = SockObj.SendCCServer(paymentURL, configLoc, Args)
41
42 ‘ Display Status and any Error Message
43 Response.Write “<hr>Status=” & Result.Lookup(“MStatus”)
44 Response.Write “
 “ & Result.Lookup(“MErrMsg”)
45 %>

The script in Listing 11.1 contains the bare minimum of code necessary to per-
form an authorization transaction with CyberCash. It charges Stephen Walther’s

credit card account the amount of $1.50. This information is hardcoded into the script.

Lines 12–14 define two variables named paymentURL and configLoc. The paymentURL

variable contains the URL of the CyberCash program that performs the credit card autho-
rization. The configLoc variable contains the path of the merchant configuration file
(merchant_conf). Before you use this script, you must enter the correct path of the
merchant_conf file on your server.

Next, in lines 16 and 17, an instance of the CyberCash MessageBlock component is cre-
ated. In lines 19–36, a number of values are loaded into the MessageBlock component.
This is accomplished with the Add method of the MessageBlock component.

246 Day 11

LISTING 11.1 continued

ANALYSIS

 15 0672318989 ch11 3/29/00 4:01 PM Page 246

Working with Credit Cards 247

11

In lines 19–24, the merchant offer fields are added to the MessageBlock. Here’s an
explanation of each of these fields:

• mo.cybercash.id—This field is used to determine your identity. You are given
your CyberCash ID when you register. You can also look in your merchant_conf
file to find your CyberCash ID.

• mo.version—The version of the Merchant Connection Kit.

• mo.order-id—A unique identifier that contains an order ID. The order ID must be
25 characters or fewer. It can contain letters, numbers, periods, underscores, and
dashes. Every time you perform a transaction, you must use a new order ID.

• mo.price—The amount that the credit card should be charged. The first three char-
acters represent the currency code. In Listing 11.1, usd is used to represent US dol-
lars. When specifying the amount, you must trim any leading digits.

In lines 26–39, the credit information fields are added to the MessageBlock component.
These fields should be self-explanatory. They represent such things as the customer’s
credit card number, credit card expiration date, and home address.

You should notice that a function named addForm() is used to add each of the fields to
the MessageBlock object. This function is created in lines 2–10. The name and value of
each field must be URL encoded before it is added to the MessageBlock. Also, all the
fields must be joined together with an & character. The addForm() function performs
both these tasks.

In lines 38–40, the MessageBlock is sent to CyberCash through the Socket component.
The SendCCServer() method accepts three parameters: the URL of the CyberCash pro-
gram that processes the transaction, the path of the merchant configuration file on your
server, and the MessageBlock object. The SendCCServer() method returns a new
MessageBlock object that represents the results of the transaction.

In lines 42–44, two fields are retrieved from the MessageBlock returned from
CyberCash. The MStatus field contains a status code. It can have any one of the follow-
ing values:

• success—Indicates the transaction completed successfully

• success-duplicate—Indicates the result of a previously successful transaction

• partial-success—Batch with failed transactions

• failure-hard—Failed transaction; trying again will not help

• failure-q-or-cancel, failure-q-or-discard—Failed transaction due to a com-
munication failure; may be retried

 15 0672318989 ch11 3/29/00 4:01 PM Page 247

• failure-swversion—Transaction failed because you are using an old (or nonexis-
tent) software version

• failure-badmoney—Failed transaction because of a credit problem with the finan-
cial institution

In line 44, the MErrMsg field is displayed. This field contains a more verbose explanation
of any error that occurred when attempting to process the transaction. If the credit card
was successfully authorized, this field will be empty.

The first time you execute the script in Listing 11.1, you will see the screen shown in
Figure 11.3. The next time you execute the script, you will receive the following error:

Status=failure-hard
CR message: MerchantAuth: Order ID ‘11111111’ has been completed already

The error results from the fact that the same order ID was submitted more than once.
Every time you perform a new credit card transaction, you must use a new order ID. The
easiest way to generate a new order ID for each transaction is to use an autonumber field
in an Access database table or an identity field in a SQL database table.

248 Day 11

FIGURE 11.3
The Authorize script.

Integrating the Authorization Script into Your Store
The authorization script in Listing 11.1 is too simple to be useful. All the values, such
as the credit card number and purchase amount, are hardcoded into the script. In this

 15 0672318989 ch11 3/29/00 4:01 PM Page 248

Working with Credit Cards 249

11

section, you will learn how to modify the script so that it can be integrated into the
online store discussed in previous lessons.

The first thing we need to do is to convert the script in Listing 11.1 into a function.
By making the script into a function, we can pass different values for the credit
card number and purchase price. Listing 11.2 contains the modified script. (The
authorizeFunction.asp script is included on the CD-ROM that accompanies this book.)

LISTING 11.2 Authorize Function Script

1 <%
2 FUNCTION addForm(theFormData, theName, theValue)
3 IF theFormData <> “” THEN
4 theFormData = theFormData & “&”
5 END IF
6 theFormData = theFormData & Server.URLEncode(theName)
7 theFormData = theFormData & “=”
8 theFormData = theFormData & Server.URLEncode(theValue)
9 addForm = theFormData
10 END FUNCTION
11
12 FUNCTION authorize(orderID, price, cardnumber, cardexp,
➥cardname, cardaddress, cardcity, cardstate, cardzip, cardcountry)
13 ‘ Set the location of Cash Register and Configuration File
14 paymentURL = “http://cr.cybercash.com/cgi-bin/directcardpayment.cgi”
15 configLoc = “D:\\inetpub\\wwwroot\\test-mck\\mck-cgi\\conf\\merchant_conf”
16
17 ‘ Create MessageBlock Object
18 Set Args = CreateObject(“CyberCashMCK.MessageBlock”)
19
20 ‘ Create the Merchant Offer Form Fields
21 formData = addForm(formData, “mo.cybercash-id”, “test-mck”)
22 formData = addForm(formData, “mo.version”, “3.2.0.4”)
23 formData = addForm(formData, “mo.order-id”, orderID)
24 formData = addForm(formData, “mo.price”, “usd “ & price)
25 Args.Add “MO”, formData
26
27 ‘ Create the Credit Payment Information Fields
28 formData = “”
29 formData = addForm(formData, “cpi.card-number”, cardnumber)
30 formData = addForm(formData, “cpi.card-exp”, cardexp)
31 formData = addForm(formData, “cpi.card-name”, cardname)
32 formData = addForm(formData, “cpi.card-address”, cardaddress)
33 formData = addForm(formData, “cpi.card-city”, cardcity)
34 formData = addForm(formData, “cpi.card-state”, cardstate)
35 formData = addForm(formData, “cpi.card-zip”, cardzip)
36 formData = addForm(formData, “cpi.card-country”, cardcountry)
37 Args.Add “CPI”, formData

INPUT

continues

 15 0672318989 ch11 3/29/00 4:01 PM Page 249

38
39 ‘ Send the Fields to CyberCash
40 set SockObj = Server.CreateObject(“CyberCashMCK.socket.1”)
41 set Result = SockObj.SendCCServer(paymentURL, configLoc, Args)
42
43 ‘ Return Status field
44 authorize = Result.Lookup(“MStatus”) & Result.Lookup(“MErrMsg”)
45 END FUNCTION
46 %>

The script in Listing 11.2 is very similar to the script in Listing 11.1, except the
code for authorizing a credit card transaction has been converted into a function.

The authorize() function accepts 10 parameters that contain the credit card informa-
tion. The function returns the result of the transaction.

For example, to authorize a charge of $2.00 on Stephen Walther’s credit card, you would
use the following statement:

result = authorize(“111119”, “2.00”, “4111111111111111”,
➥ “02/00”, “Stephen Walther”, “899 Oakgrove”, “Berkeley”,
➥ “CA”, “94108”, “USA”)

There are three ways in which you can integrate the authorize() function into your
store. First, you might authorize the credit card transaction immediately after the cus-
tomer clicks the Checkout button on the shopping cart and places an order. To do this,
you would need to modify the doCheckout2.asp page to include the authorize()
function.

The advantage of this approach is that if, for whatever reason, the credit card transaction
fails, the customer will immediately know it. In that case, the customer can attempt the
same transaction again or try a different credit card.

Instead of authorizing the credit card transaction immediately after a customer checks
out, you could integrate the authorize() function into the page where you process cus-
tomer orders (processOrders.asp). The advantage of this approach is that you can
check whether items are in stock before performing the transaction.

Finally, you could create a standalone ASP page devoted to the task of processing credit
cards. The page in Listing 11.3 contains a standard HTML form that has all the fields
necessary to perform an authorization. (This page is named processCards.asp on the
CD-ROM that accompanies this book.) By completing the form fields and clicking
Authorize, you can authorize a credit card transaction (see Figure 11.4).

250 Day 11

LISTING 11.2 continued

ANALYSIS

 15 0672318989 ch11 3/29/00 4:01 PM Page 250

Working with Credit Cards 251

11

LISTING 11.3 processCards.asp

1 <html>
2 <head><title>Process Cards</title></head>
3 <body>
4 <center>
5 Process Cards
6 <p>
7 <form method=”post” action=”processCards2.asp”>
8 <table bgcolor=”#cccccc” border=1>
9 <tr>
10 <td align=right>Order ID:</td>
11 <td><input name=”orderID” size=”20”></td>
12 </tr>
13 <td align=right>Amount:</td>
14 <td><input name=”price” size=”20”></td>
15 </tr>
16 <tr>
17 <td align=right>Card Number</td>
18 <td><input name=”cardnumber” size=”16”></td>
19 </tr>
20 <tr>
21 <td align=right>Card Expires</td>
22 <td>
23 <input name=”monthExpires” size=”2”> /
24 <input name=”yearExpires” size=”2”>
25 </td>
26 </tr>
27 <tr>
28 <td align=right>Customer Name</td>
29 <td><input name=”cardname” size=”20”></td>
30 </tr>
31 <tr>
32 <td align=right>Customer Address</td>
33 <td><input name=”cardaddress” size=”20”></td>
34 </tr>
35 <tr>
36 <td align=right>Customer City</td>
37 <td><input name=”cardcity” size=”20”></td>
38 </tr>
39 <tr>
40 <td align=right>Customer State</td>
41 <td><input name=”cardstate” size=”20”></td>
42 </tr>
43 <tr>
44 <td align=right>Customer ZIP:</td>
45 <td><input name=”cardzip” size=”20”></td>
46 </tr>
47 <tr>
48 <td align=right>Customer Country:</td>

INPUT

continues

 15 0672318989 ch11 3/29/00 4:01 PM Page 251

49 <td><input name=”cardcountry” size=”20”>
50 </tr>
51 <tr>
52 <td align=right colspan=2>
53 <input type=”submit” value=”Authorize”>
54 </td>
55 </tr>
56 </table>
57 </form>
58 </center>
59 </body>
60 </html>

252 Day 11

LISTING 11.3 continued

FIGURE 11.4
Submitting an autho-
rization transaction.

When the form in Listing 11.3 is submitted, the authorize() function is called in
processCards2.asp. The processCards2.asp page simply shows the result of the trans-
action (see Figure 11.5). The complete code for processCards2.asp is included in
Listing 11.4. (processCards2.asp is also included on the CD-ROM that accompanies
this book.)

 15 0672318989 ch11 3/29/00 4:01 PM Page 252

Working with Credit Cards 253

11

LISTING 11.4 processCards2.asp

1 <!-- #INCLUDE FILE=”authorizeFunction.asp” -->
2 <%
3 ‘ Retrieve Form Fields
4 orderID = Request(“orderID”)
5 price = Request(“price”)
6 cardnumber = Request(“cardnumber”)
7 cardexp = Request(“monthExpires”) & _
8 “/” & Request(“yearExpires”)
9 cardname = Request(“cardname”)
10 cardaddress = Request(“cardaddress”)
11 cardcity = Request(“cardcity”)
12 cardstate = Request(“cardstate”)
13 cardzip = Request(“cardzip”)
14 cardcountry = Request(“cardcountry”)
15
16 result = authorize(orderID, price, cardnumber, cardexp,
➥cardname, cardaddress, cardcity, cardstate, cardzip, cardcountry)
17 %>
18 <html>
19 <head><title>Result</title></head>
20 <body>
21
22 <center>
23 <% IF result = “success” THEN %>
24 <table bgcolor=”lightgreen” border=1 cellpadding=15>
25 <tr>
26 <td>
27 Success!
28 </td>
29 </tr>
30 </table>
31 <% ELSE %>
32 <table bgcolor=”yellow” border=1 cellpadding=15>
33 <tr>
34 <td>
35 <%=Result%>
36 </td>
37 </tr>
38 </table>
39 <% END IF %>
40 Continue
41 </center>
42 </body>
43 </html>

INPUT

 15 0672318989 ch11 3/29/00 4:01 PM Page 253

Settling Credit Card Transactions
After you authorize a credit card transaction, you must capture and settle the transaction
in order for the money to be transferred from the customer’s account to your merchant
account. Exactly how this second step is performed depends on the arrangement you
made with your acquiring financial institute (your bank).

There are three different processing models for capturing and settling transactions. First,
in the AuthCapture model, transactions are automatically captured when they are autho-
rized. In other words, you do not need to do anything special to complete the transaction.

If your online store sells tangible goods, such as the candy store discussed in previous
chapters, your merchant account will most likely not be set up to use AuthCapture. The
AuthCapture model is intended for use when products or services can be delivered to a
customer immediately. For example, your bank might set up your merchant account to
use AuthCapture if you plan to sell subscriptions from your Web site.

A second processing model is the Auth/PostAuthCapture processing model. If your mer-
chant account is set up to use this processing model, you must capture the transactions
that have been authorized as a separate operation.

The Auth/PostAuthCapture model is intended for use when a product or service is not
immediately delivered to the customer. For example, if your online store sells candy, you
might not be able to ship the candy immediately after it has been ordered. In this case,

254 Day 11

FIGURE 11.5
Results of authoriza-
tion.

 15 0672318989 ch11 3/29/00 4:01 PM Page 254

Working with Credit Cards 255

11

you should not capture the transaction until you are actually ready to ship the merchan-
dise. You authorize the transaction when an order is made, and you capture the transac-
tion when the order ships.

If your merchant account has been set up to use the Auth/PostAuthCapture processing
model, you must explicitly capture transactions after they have been authorized. The eas-
iest way to do this is to use the CyberCash Merchant Administration Server. (After you
register, you should receive instructions that enable you to access the Merchant
Administration Server from your Web browser.) To capture authorized transactions, log
in to the Merchant Administration Server at http://cr.cybercash.com and select the
option Query Local Database and/or do PostAuths/Voids/Returns (see Figure 11.6).

FIGURE 11.6
Capturing transac-
tions.

Finally, your merchant account may be set up to use the TerminalCapture processing
model. In this processing model, there are two additional steps to completing a transac-
tion after it has been authorized. First, the transactions must be marked to be included in
a batch. Next, the batch must be sent to the processor for settlement.

When using the TerminalCapture processing model, you can configure the CyberCash
service to automatically mark and settle transactions for you. To automatically mark
transactions to be included in a batch, enable the Auto-Mark feature. To automatically
submit transactions for settlement, enable the Auto-Settle feature. You can enable both of
these features by going to the Merchant Control Panel (http://amps.cybercash.com)
and clicking the Automark/AutoSettle Preferences link.

 15 0672318989 ch11 3/29/00 4:01 PM Page 255

If you use the TerminalCapture processing model, you can also mark and settle transac-
tions by using the CyberCash Merchant Administration Server. To mark a transaction for
a batch, log in to the Merchant Administration Server at http://cr.cybercash.com and
select the option Query Local Database and/or do Marking/Unmarking/Returns. To sub-
mit transactions for settlement, select the option Assemble and Submit a Batch.

Your credit card merchant account is set up to use one of these three types of processing
models: AuthCapture, Auth/PostAuthCapture, or TerminalCapture. If you do not know
which processing model you should use, you should contact your bank. Alternatively,
you can log in to the Merchant Control Panel (http://amps.cybercash.com) and select
the Merchant Configuration link. Your processing model will be listed on this page.

Summary
In today’s lesson, you learned how to process credit cards. In the first section, you were
provided with a brief overview of the various options for processing credit cards, such as
Authorize.Net and ICVerify. The remainder of this chapter focused on one credit card
processing service: CyberCash. You learned how to open a credit card merchant account
that you can use with CyberCash, register at the CyberCash Web site, and install the
CyberCash software. Next, you learned how to create Active Server Pages scripts to
authorize credit card transactions with CyberCash. Finally, three different processing
models for capturing and settling credit card transactions were discussed.

Q&A
Q What is the SET standard and how is it relevant to processing credit cards?

A SET stands for Secure Electronic Transaction. It is a standard for transmitting cred-
it card information over the Internet that was developed by, among others, VISA
and MasterCard. The SET standard has not been widely adopted, mainly because it
requires customers to download and install special software on their Web browsers.

Q How does CyberCash protect the privacy of credit card information as it is
passed across the Internet?

A All communication between your Web server and the CyberCash service is
encrypted using triple DES encryption. This is done automatically when you use
the CyberCash MessageBlock and Socket components.

However, you are responsible for protecting the security of customer information
when it is entered into an HTML form at your Web site. You must use either the
Secure Socket Layer (see Chapter 8) or a wallet (see Chapter 20) to protect a cus-
tomer’s payment information.

256 Day 11

 15 0672318989 ch11 3/29/00 4:01 PM Page 256

Working with Credit Cards 257

11

Workshop
The Quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. Where is my merchant configuration information stored on my server when I use

the CyberCash service?

2. What are the names of the two CyberCash components used when sending an
authorization request to the CyberCash service?

3. After a transaction is authorized, what other steps must I take to transfer the money
from the customer’s credit card account to my merchant account?

 15 0672318989 ch11 3/29/00 4:01 PM Page 257

 15 0672318989 ch11 3/29/00 4:01 PM Page 258

DAY 12

WEEK 2

Letting Customers Track
Their Orders

After customers place orders at your store, it is important to provide them with
a method of tracking their orders. Enabling customers to track their own orders
has two major benefits.

First, providing customers with a method of tracking orders lowers customer
service costs. If a customer becomes anxious about the status of an order,
instead of telephoning you or your customer service department, the customer
can check on the order at your Web site. Human time and effort is expensive.
Whenever possible, you should automate customer service tasks.

A second benefit to enabling customers to track their orders is that it draws cus-
tomers back to your Web site. If a customer knows that he can view the status
of an order by opening a Web page at your site, the customer might return
many times to check the status of an order. Every time a customer visits your
Web site is a new opportunity to sell the customer another product.

 16 0672318989 ch12 3/30/00 8:24 AM Page 259

In today’s lesson, you’ll learn:

• How to create a Web page that enables customers to view the status of each of their
orders.

• How to automatically calculate the cost of shipping an order to a customer and dis-
play this information in a Web page.

Enabling Customers to Track Orders with a
Web Page

In this section, you’ll learn how to create an Account page. Customers can view the
Account page by clicking the Account link from the store home page. The Account page
displays status information for each order a customer has placed (see Figure 12.1) and
the product price.

260 Day 12

FIGURE 12.1
The Account page.

The Account page is created with the help of two ASP pages: account.asp and
showorders.asp. The account.asp page contains a script that checks whether the cus-
tomer can be identified by her username and password. If the customer’s username and
password cannot be retrieved, the customer is forced to log in.

The complete code for account.asp is contained in Listing 12.1. (account.asp is also
included on the CD-ROM that accompanies this book.)

 16 0672318989 ch12 3/30/00 8:24 AM Page 260

Letting Customers Track Their Orders 261

12

LISTING 12.1 The Account Page

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <!-- #INCLUDE FILE=”storefuncs.asp” -->
3 <%
4
5 ‘ Get Login Information
6 username = TRIM(Request(“username”))
7 password = TRIM(Request(“password”))
8 register = TRIM(Request(“register”))
9 error = TRIM(Request(“error”))
10
11 ‘ Open Database Connection
12 Set Con = Server.CreateObject(“ADODB.Connection”)
13 Con.Open “accessDSN”
14
15 ‘ Check For New Registration
16 IF register <> “” AND error = “” THEN
17 addUser
18 END IF
19
20 ‘ Get User ID
21 userID = checkpassword(username, password, Con)
22
23 IF userID > 0 THEN
24 %>
25 <!-- #INCLUDE FILE=”showorders.asp” -->
26 <% ELSE %>
27 <!-- #INCLUDE FILE=”register.asp” -->
28 <%
29 END IF
30 %>

In lines 6 and 7, the username and password items are retrieved from the
Request object. All the collections of the Request object are searched, including

the Form collection and the Cookies collection.

In line 21, the checkpassword() function is called. The checkpassword() function is
contained in the storefuncs.asp file. If the username and password combination does
not exist in the Users table, the checkpassword() function returns a negative number.
Otherwise, the user ID of the customer with the username and password is returned.

Lines 23–29 contain a conditional that displays one or another of two #INCLUDE files. If
the user ID is a negative number, the register.asp page is displayed. This page enables
a customer to log in or register. Otherwise, if the user ID is not a negative number, the
showorders.asp page is displayed.

INPUT

ANALYSIS

 16 0672318989 ch12 3/30/00 8:24 AM Page 261

The showorders.asp page displays all the orders that the current customer has placed.
For each order, the page displays the order ID, the date of the order, the name of the
product ordered, and the status of the order. The complete code for showorders.asp is
included in Listing 12.2. (The showorders.asp is also included on the CD that accompa-
nies this book.)

LISTING 12.2 Display List of Orders

1 <%
2 ‘ Get List of Orders
3 sqlString = “Select orders.*, product_name “ &_
4 “from orders, products “ &_
5 “WHERE order_productID=product_id “ &_
6 “AND order_userid=” & userID & “ “ &_
7 “ORDER BY order_entrydate DESC”
8
9 SET RS = Con.Execute(sqlString)
10 %>
11 <html>
12 <head><title>Account</title></head>
13 <body>
14
15 <center>
16 <%
17 IF RS.EOF THEN
18 %>
19 You have not placed any orders
20 <%
21 ELSE
22 %>
23 <table cellpadding=4 cellspacing=0
24 bgcolor=”lightyellow” border=1>
25 <tr>
26 <th>Order ID</th>
27 <th>Order Date</th>
28 <th>Product Name</th>
29 <th>Order Status</th>
30 </tr>
31 <%
32 WHILE NOT RS.EOF
33 %>
34 <tr>
35 <td>
36 <%=RS(“order_id”)%>
37 </td>
38 <td>
39 <%=RS(“order_entrydate”)%>
40 </td>

262 Day 12

INPUT

 16 0672318989 ch12 3/30/00 8:24 AM Page 262

Letting Customers Track Their Orders 263

12

41 <td>
42 <%=RS(“product_name”)%>
43 </td>
44 <td>
45 <small>
46 <%=showOrderStatus(RS(“order_status”), RS(“order_shipdate”))%>
47 </small>
48 </td>
49 </tr>
50 <%
51 RS.MoveNext
52 WEND
53 %>
54 </table>
55 <%
56 END IF
57 %>
58 <p>
59 <form action=”default.asp”>
60 <input type=”submit” value=”Continue Shopping”>
61 </form>
62
63 </center>
64
65 </body>
66 </html>

The showorders.asp page retrieves all the rows for a customer from the database
table named Orders. The list of orders is retrieved in lines 2–9. In lines 3–7, the

SQL string is constructed. In line 9, the SQL string is executed and the records are
retrieved into a Recordset named RS.

The remainder of the script loops through each record in the Recordset. Each field of the
Recordset is displayed within an HTML table.

Line 46 displays an order’s status. This is accomplished with the showOrderStatus()
function. This function is defined in the storefuncs.asp file. Listing 12.3 contains the
showOrderStatus() function.

LISTING 12.3 Showing an Order’s Status

1 FUNCTION showOrderStatus(theStatus, theShipDate)
2 SELECT CASE theStatus
3 CASE 0
4 showOrderStatus = “Pending”
5 CASE 1

ANALYSIS

INPUT

continues

 16 0672318989 ch12 3/30/00 8:24 AM Page 263

6 showOrderStatus = “Problem with Credit Card”
7 CASE 2
8 showOrderStatus = “Product not in stock”
9 CASE 3
10 showOrderStatus = “Shipped on “ & theShipDate
11 CASE ELSE
12 showOrderStatus = “Unknown”
13 END SELECT
14 END FUNCTION

The showOrderStatus() function takes the order status and order shipping date values as
input, and outputs a string representing the status of the order. The proper string is select-
ed by using a VBScript SELECT CASE statement.

The Account page is updated automatically when you use the processOrders.asp page
to update the status of an order. By using the Account page, a customer can determine
whether his credit card was declined, whether a product is out of stock, or the exact date
and time a product was shipped.

Calculating Shipping Costs
In this section, you’ll learn how to use the iisCARTship component. This component
enables you to calculate the cost of shipping a package and enables you to display this
information in an ASP page.

You’ll discover that this component is very valuable for E-Commerce applications. For
example, assume that customers can select products from your Web site by using a stan-
dard shopping cart. When a customer clicks the Checkout button to complete his order,
you’ll want to present a list of shipping options. You can use the iisCARTship compo-
nent to automatically query each of the major shipping companies—United Parcel
Service, Federal Express, and the United States Postal Service—and display the cost of
shipping the order with each company.

When you use this component, you don’t have to worry about displaying outdated ship-
ping rates. Each time you use the component, it retrieves the latest rate information from
each shipping company. The component retrieves the cost of shipping an order from each
company in real-time.

We’ll begin by discussing the procedure for installing the component. Next, you’ll be
provided with an overview of the component’s methods and properties. Finally, we’ll
build an ASP page that demonstrates how you can use this component in a real-world
application.

264 Day 12

LISTING 12.3 continued

 16 0672318989 ch12 3/30/00 8:24 AM Page 264

Letting Customers Track Their Orders 265

12

Installing the iisCARTship Component
The iisCARTship component isn’t included with Active Server Pages. It’s a commercial
component that you must download and buy. You can purchase it by visiting the follow-
ing Internet address: http://www.iiscart.com.

After you have downloaded and unzipped the component, you’ll need to install it. Before
you can use the component in an ASP page, you must add information about the compo-
nent to your computer’s registry. The component is bundled with two scripts that will
automatically add the correct registry information.

If you are using the component with the Personal Web Server running on Windows 95 or
Windows 98, you’ll need to execute the script named win9x.bat. Otherwise, if you are
using the component with Internet Information Server running on Windows NT or
Windows 2000, execute the script named winNT.bat. If everything goes smoothly, a dia-
log box should pop up reporting that the DLLs were successfully installed.

iisCARTship Properties and Methods
Whenever you use the iisCARTship component, you must complete the following three
steps:

1. Create an instance of the component.

2. Set certain required properties of the component such as the postal code for the ori-
gin and desination of the package.

3. Query the shipping companies.

To create an instance of the iisCARTship component, use the following statement:

Set myShip = Server.CreateObject(“iiscartship.ship”)

The previous statement creates an instance of the iisCARTship component named
myShip. Before you can use the component to query the shipping companies, you must
first set the following properties:

• OrigPostal—The postal code of the sender of the package (must be in the United
States)

• DestPostal—The postal code of the recipeint of the package (can be outside the
United States)

• Weight—The weight of the package (by default, in pounds)

• DestCountry—The country code for the destination of the package

The previous properties must be set when using any of the shipping companies. If you
want to retrieve shipping rates from Federal Express, there are two additional required
properties:

 16 0672318989 ch12 3/30/00 8:24 AM Page 265

• FDXPack—The type of packaging used for the shipment.

• FDXPick—This property indicates whether the package will be dropped off by you
or picked up by Federal Express.

The first property, FDXPack, can have any one of the five values Your Packaging, FedEx
Letter, FedEx Pak, FedEx Box, or FedEx Tube. The second property, FDXPick can have
any one of the three values Will drop-off at FedEx location, Will give to sched-
uled courier at my location, or Will request a courier pickup.

For example, the script in Listing 12.4 uses the two required Federal Express properties
to indicate that the item being shipped will be packaged using a Federal Express letter
envelope, and the item will be brought to a Federal Express drop-off location.

LISTING 12.4 Using Federal Express Properties

1 <%
2 Set myShip = Server.CreateObject(“iiscartship.ship”)
3 myShip.OrigPostal = “02138”
4 myShip.DestPostal = “94108”
5 myShip.DestCountry = “US”
6 myShip.Weight = “2”
7 myShip.FDXPack = “FedEx Letter”
8 myShip.FDXPick = “Will drop-off at FedEx location”
9 %>

After you have set all the required properties, you can query the shipping companies by
calling the ShipCalc() method. When you call this method, you can pass the names of
any of the three shipping companies (“UPS”, “USPS”, “FEDEX”). For example, the
script in Listing 12.5 retrieves shipping rates from both Federal Express and the United
Parcel Service.

LISTING 12.5 Retrieving Shipping Rates

1 <%
2 Set myShip = Server.CreateObject(“iiscartship.ship”)
3 myShip.OrigPostal = “02138”
4 myShip.DestPostal = “94108”
5 myShip.DestCountry = “US”
6 myShip.Weight = “2”
7 myShip.FDXPack = “FedEx Letter”
8 myShip.FDXPick = “Will drop-off at FedEx location”
9 myShip.ShipCalc “FEDEX, UPS”
10 FOR EACH item IN myShip.ShipInfo
11 Response.Write “Service: “ & item.cSingleService & “
”

266 Day 12

 16 0672318989 ch12 3/30/00 8:24 AM Page 266

Letting Customers Track Their Orders 267

12

12 Response.Write “Company: “ & item.cShipCompany & “
”
13 Response.Write “Charge: “ & item.cTotalCharge & “
”
14 Response.Write “Commit Time: “ & item.cShipTime & “
”
15 NEXT
16 %>

Calling the ShipCalc() method returns a collection named ShipInfo that contains the
shipping rates. In the previous script, a VBScript FOR...EACH loop is used to loop
through each item of the ShipInfo collection and display its properties.

All the interesting information is contained in the ShipInfo collection. Each item in this
collection has the following properties:

• cError—Service specific error

• cSingleService—The name of the particular service being offered

• cShipCompany—The name of the company providing the service

• cTotalCharge—Total cost to ship the package (base + add charge)

• cBaseCharge—Base charge to ship the package

• cAddCharge—Any additional charges to ship the package

• cShipTime—When the package is guaranteed to arrive

The most useful properties are the cSingleService, cShipCompany, cTotalCharge, and
cShipTime properties. The cSingleService property contains the name of a particular
service such as Priority Mail or Express Mail. Each of the three companies have different
names for their services.

The cShipCompany property contains the name of the company that offers the service.
This property can have any of the three values FEDEX (Federal Express), UPS (United
Parcel Service), or USPS (United States Postal Service).

The cTotalCharge property contains the actual cost of shipping the package using the
service. Finally, the cShipTime property indicates when the package will arrive. This
property can have values such as 7 DAY(S) or OVERNIGHT TO MOST AREAS. Again, the
specific values depend on the shipping company.

The information that you get back from the United Parcel Service can be a little cryptic.
UPS uses codes for its services like 2DA and GNDCOM. Fortunately, the iisCARTship
component includes a method for converting these codes into a more understandable
form: the UPSproductConversion() method. For example, the script in Listing 12.6
shows all the available UPS services using both the raw UPS code and the UPS code
converted with the UPSproductConversion() method.

 16 0672318989 ch12 3/30/00 8:24 AM Page 267

LISTING 12.6 Converting UPS Codes

1 <%
2 Set myShip = Server.CreateObject(“iiscartship.ship”)
3 myShip.OrigPostal = “02138”
4 myShip.DestPostal = “94108”
5 myShip.DestCountry = “US”
6 myShip.Weight = “2”
7 myShip.ShipCalc “UPS”
8 FOR EACH item IN myShip.ShipInfo
9 Response.Write “Service: “
10 Response.Write item.cSingleService & “ = “
11 Response.Write myShip.UPSproductConversion(item.cSingleService)
12 Response.Write “
”
13 NEXT
14 %>

When displaying shipping options, you might want to display information for only par-
ticular services. For example, you might want to display only the rates for shipping pack-
ages overnight. You can restrict the services retrieved by the iisCARTship using the
LimitServices() method. The script in Listing 12.7 uses the LimitServices() method
to show rates for the Express Mail and One Day Air Saver services.

LISTING 12.7 Limiting Services

1 <%
2 Set myShip = Server.CreateObject(“iiscartship.ship”)
3 myShip.OrigPostal = “02138”
4 myShip.DestPostal = “94108”
5 myShip.DestCountry = “US”
6 myShip.Weight = “2”
7 myShip.LimitServices = “1DP, EXPRESS MAIL”
8 myShip.ShipCalc “UPS, USPS”
9 FOR EACH item IN myShip.ShipInfo
10 Response.Write “Service: “ & item.cSingleService & “
”
11 Response.Write “Company: “ & item.cShipCompany & “
”
12 Response.Write “Charge: “ & item.cTotalCharge & “
”
13 Response.Write “Commit Time: “ & item.cShipTime & “
”
14 NEXT
15 %>

There’s one final method of the iisCARTship component that you should know about. If
you sell products through your Web site to customers outside of the United States, you’ll
need to provide customers with a method of specifying their country. You can use the
iisCARTship component’s CountryList() method to automatically generate an HTML
combo box that contains a list of valid country codes.

268 Day 12

 16 0672318989 ch12 3/30/00 8:24 AM Page 268

Letting Customers Track Their Orders 269

12

The script in Listing 12.8 uses the CountryList() method to display a list of country
codes.

LISTING 12.8 Displaying Country Codes

1 <%
2 Set myShip = Server.CreateObject(“iiscartship.ship”)
3 Response.Write myShip.CountryList(“country”)
4 %>

In the previous script, the CountryList() method is passed one parameter that is used
for the name of the combo box. You can also include a second optional parameter that
specifies the default country for the combo box. If you don’t include this parameter, the
United States is picked by default.

iisCARTship Component Sample Application
In this section, you’ll learn how the iisCARTship component can be used in a real-world
application. We’ll build an ASP page that enables customers to compare the cost of ship-
ping a product using the different shipping services offered by UPS. The ASP page con-
tains an HTML form that enables a customer to enter the weight of the package, the ori-
gin of the package, and the destination of the package. When the Calculate Costs button
is clicked, a list of package shipping options is displayed.

The page is called compareShip.asp and it is contained in Listing 12.9. (It’s also includ-
ed on the CD that accompanies this book.)

LISTING 12.9 Compare Shipping Rates

1 <%
2 ‘ Retrieve Form Variables
3 compareShip = TRIM(Request(“compareShip”))
4 weight = TRIM(Request(“weight”))
5 origPostal = TRIM(Request(“origPostal”))
6 destPostal = TRIM(Request(“destPostal”))
7 destCountry = TRIM(Request(“destCountry”))
8
9 ‘ Set Default Values
10 IF weight = “” OR NOT isNumeric(weight) THEN
11 weight = 5
12 END IF
13 IF origPostal = “” THEN
14 origPostal = “95350”
15 END IF

continues

 16 0672318989 ch12 3/30/00 8:24 AM Page 269

16 IF destPostal = “” THEN
17 destPostal = “95350”
18 END IF
19 IF destCountry = “” THEN
20 destCountry = “US”
21 END IF
22
23 ‘ Query UPS
24 Set myShip = Server.CreateObject(“iiscartship.ship”)
25 myShip.weight = weight
26 myShip.origPostal = origPostal
27 myShip.destPostal = destPostal
28 myShip.destCountry = destCountry
29 myShip.ShipCalc “UPS”
30 %>
31 <HTML>
32 <HEAD>
33 <TITLE>Comparing Shipping Costs</TITLE>
34 </HEAD>
35 <BODY>
36 <h3>Compare Shipping Costs:</h3>
37
38 <table border=1 cellspacing=0 cellpadding=4>
39 <tr bgcolor=”lightyellow”>
40 <td>UPS Service</td>
41 <td>Arrival Time</td>
42 <td>Cost</td>
43 </tr>
44 </tr>
45 <% FOR EACH item IN myShip.ShipInfo %>
46 <tr>
47 <td>
48 <%=myShip.UPSProductConversion(item.cSingleService)%>
49 (<%=item.cSingleService%>)
50 </td>
51 <td><%=item.cShipTime%></td>
52 <td><%=formatCurrency(item.cTotalCharge)%></td>
53 </tr>
54 <% NEXT %>
55 </table>
56
57 <FORM method=”post” ACTION=”compareShip.asp”>
58 <input name=”compareShip” type=”hidden” value=”1”>
59
60 <p>Package Weight:
61
Pounds:
62 <input name=”weight” size=”10”
63 value=”<%=Server.HTMLEncode(weight)%>”>
64

270 Day 12

LISTING 12.9 continued

 16 0672318989 ch12 3/30/00 8:24 AM Page 270

Letting Customers Track Their Orders 271

12

65 <p>Package Origin:
66
Postal Code:
67 <input name=”origPostal” size=”20”
68 value=”<%=Server.HTMLEncode(origPostal)%>”>
69
70 <p>Package Destination:
71
Postal Code:
72 <input name=”destPostal” size=”20”
73 value=”<%=Server.HTMLEncode(destPostal)%>”>
74
Country:
75 <%=myShip.CountryList(“destCountry”, destCountry)%>
76
77 <p><input type=”submit” value=”Calculate Cost”>
78 </FORM>
79
80 </BODY>
81 </HTML>

If you read the previous section, you should find the script in the listing easy to under-
stand. In the first section, labeled “Retrieve Form Variables”, several form variables
are retrieved from the Form collection and assigned to local variables. The variables rep-
resent the weight, origin, and destination of the package.

Next, in the section labeled “Set Default Values”, if any of the variables don’t have a
value, they are assigned default values. We do this to avoid having an error generated
when the page is first opened or when a customer neglects to complete a form field.

In the section labeled “Query UPS”, an instance of the iisCARTship component is used
to retrieve a list of services and their costs from UPS. This information is retrieved into
the ShipInfo collection. The contents of this collection is displayed within an HTML
table using a VBScript FOR...EACH loop.

The remainder of the page contains a normal HTML form. The customer can enter infor-
mation about a package into the form in order to calculate the shipping costs. When a
customer submits the form, the form data is sent back to the same page
(compareShip.asp).

Summary
In today’s lesson, you learned how to enable customers to track their orders through a
Web page. You learned how to create a Web page that displays the status of each order
placed by a particular customer. You also learned how to use the iisCARTship compo-
nent to display the cost of shipping a product order to a customer. You learned how to
use the iisCARTship component to retrieve shipping rates from the United Parcel
Service, the United States Postal Service, and Federal Express.

 16 0672318989 ch12 3/30/00 8:24 AM Page 271

Q&A
Q In today’s lesson, I learned how to use the iisCARTship component to retrieve

shipping rates from the major shipping companies. Is there any way to
retrieve package tracking information as well?

A Yes, the United Parcel Service (www.ups.com), the United States Postal Service
(www.usps.com), and Federal Express (www.fedex.com) all offer tools that you can
use with your Web site to enable customers to track packages as they are shipped
from your store to their home. To find out more about these tools, visit the follow-
ing Web sites:

United Parcel Service:
http://www.ec.ups.com/ecommerce/ontools/index.html

United States Postal Service:
http://www.uspsprioritymail.com/et_tool.html

Federal Express:
http://www.fedex.com/us/software/ecommerce/shipapi.html

Q I’m having trouble with the iisCARTship component. When I use it, I get an
empty Web page. Is there any way to find out what is going wrong?

A You can diagnose errors with the iisCARTship component by using two properties.
You can use the iisCARTship Error property to display general errors. For service
specific errors, you can use the cError property of the ShipInfo collection. For
example, to use the Error property, just add a line to your script like this:

Response.Write myShip.Error

Workshop
The following questions are designed to test your knowledge of the material covered in
this chapter.

Quiz
1. Is the iisCARTship component included with Active Server Pages?

2. What four properties of the iisCARTship component must you set before you can
query rate information from any of the shipping companies?

3. What is the name of the collection returned by the ShipCalc() method that con-
tains the shipping rates?

272 Day 12

 16 0672318989 ch12 3/30/00 8:24 AM Page 272

DAY 13

WEEK 2

Creating a
Subscription-Based Site

In today’s lesson, you’ll learn how to create a subscription Web site. You’ll
learn how to password protect a private area of your Web site so that it is acces-
sible only to registered customers.

There are many examples of successful subscription Web sites on the Internet.
For example, Match.com (www.match.com) requires users to subscribe before
they can browse their listings of potential romantic partners. Both the Wall
Street Journal (www.wsj.com) and the New York Times (www.nyt.com), require
visitors to subscribe before they can read news articles. Finally, the Internet is
overflowing with pornography Web sites, like Playboy.com, that require visitors
to subscribe before they can view images.

In this lesson, you’ll learn several methods of password protecting your Web
site’s content. You’ll learn

• How to password protect Active Server Pages using HTTP Authentication

• How to password protect Active Server Pages using a database.

• How to combine HTTP and database authentication

 17 0672318989 ch13 3/30/00 8:19 AM Page 273

Using HTTP Authentication
The easiest, and least flexible, method of password protecting an ASP page is to use
HTTP Authentication. When HTTP Authentication is enabled, a password dialog box
appears when a visitor first attempts to retrieve a protected page (see Figure 13.1). In
order to view the page, the user must enter a valid Windows username and password. If
the user doesn’t enter a valid username and password, the password dialog box is repeat-
edly displayed.

274 Day 13

FIGURE 13.1
Standard password
dialog box.

You cannot use HTTP Authentication with the Personal Web Server for Windows 95/98.
It only works when you use Internet Information Server with Windows NT or Windows
2000.

The most recent release of Internet Information Server (version 5.0) supports three types
of authentication:

• Basic Authentication—Basic Authentication is part of the HTTP specification, and
it is compatible with all Web browsers. However, when this form of authentication
is used, usernames and passwords are transmitted across the Internet in a lightly
encrypted form. Usernames and passwords are simply base64 encoded. Because
base64 encoded strings are easy to decode (you’ll learn how later in this chapter),
Basic Authentication doesn’t offer a very high level of security.

• Integrated Authentication—Integrated authentication improves upon Basic Auth-
entication by not sending usernames and passwords across the Internet. The major
drawback of Integrated Authentication is that it works only with Microsoft Internet
Explorer (version 2.0 or higher). Also, it doesn’t work over proxy connections. In
previous versions of Internet Information Server, Integrated Authentication was
called Windows NT Challenge/Response Authentication or NTLM Authentication.

• Digest Authentication—This is a new form of authentication introduced with
Internet Information Server 5.0. Like Basic Authentication, Digest Authentication
is part of the public HTTP standard. However, because it is part of the relatively
recent HTTP 1.1 specification, many browsers still don’t support it. To use Digest

 17 0672318989 ch13 3/30/00 8:19 AM Page 274

Creating a Subscription-Based Site 275

13

Authentication, your server must be a directory server in a Windows 2000 domain.
You must also save a copy of the passwords being used in plain encrypted text
(for more information, see the knowledge base article Q222028 at the Microsoft
Web site).

Previous to Internet Information Server 5.0, you could choose only between Basic and
Integrated Authentication. When you wanted to ensure compatibility with any browser, you
would use Basic Authentication. When you needed stronger security—for example, when
performing Web site administration functions—you would use Integrated Authentication.

Digest Authentication offers a useful alternative to Integrated Authentication. It offers the
promise of a non-proprietary authentication mechanism that will be supported by all
browsers. Regrettably, however, this promise hasn’t yet been fulfilled because currently
only Internet Explorer (version 5.0 or greater) supports it.

Enabling HTTP Authentication
You can use HTTP Authentication to password protect a particular file, directory, or a
whole Web site. To enable HTTP Authentication, follow these steps:

1. Launch the Internet Service Manager (this is called the Internet Services Manager
on Windows 2000).

2. Select the file, directory or Web site that you want to password protect.

3. Open the property sheet for the file, directory, or Web site.

4. Select the tab labeled File Security or Directory Security.

5. Click the button labeled Edit in the section entitled Anonymous Access and Auth-
entication Control. Doing this will open the Authentication Methods dialog box
(see Figure 13.2).

6. Select a form of authentication. To force a dialog box to appear, you will also need
to disable anonymous access by deselecting the check box labeled Allow Anony-
mous Access.

FIGURE 13.2
Enabling Directory
Authentication.

 17 0672318989 ch13 3/30/00 8:19 AM Page 275

After you complete these steps, whenever you first attempt to retrieve a file that requires
authentication, a password dialog box will appear. You won’t be able to view the file
until you enter a valid Windows username and password.

276 Day 13

If you are using Windows NT, you can add new Windows accounts by using
the User Manager applet (or User Manager for Domains applet if the com-
puter is a domain controller).

If you are using Windows 2000, you can add new Windows accounts by
using the Computer Management applet. If the computer is a Windows
2000 domain controller, use the Active Directory Users and Computers
applet.

Note

When You Should Use HTTP Authentication
HTTP Authentication is useful when you need to password protect a section of your Web
site so that it can be accessed by a small number of authorized users. For example, if you
have an administration area of your Web site that contains Active Server Pages that are
used to maintain your site, you can use HTTP Authentication to prevent the public from
accessing these pages.

However, it is difficult to setup HTTP Authentication to work with an automated user
registration system. The problem results from the fact that you need to add a Windows
NT account for each authorized user. If you have thousands of registered users at your
Web site, you would need to set up thousands of Windows accounts. If you need to
create an automated user registration system, it is much easier to use database authentica-
tion. You’ll learn how to use database authentication, and create an automated user regis-
tration system, in the next section.

There are third-party components that enable you to add a new Windows
account from an ASP page. See, for example, the AspUser component at
www.aspuser.com. To see an extensive list of third-party components, visit the
software section of superexpert at http://asp.superexpert.com/software.

Note

Using Database Authentication
In this section, you’ll learn how to password protect pages at your Web site by compar-
ing usernames and passwords against columns in a database table. You’ll create a stan-
dard include file that you can include in all the pages that you want to password protect.
When someone attempts to open a page that contains this include file, the person will be

 17 0672318989 ch13 3/30/00 8:19 AM Page 276

Creating a Subscription-Based Site 277

13

required to enter his registered username and password. If the person is a new user, he
can register by using a registration page. This include file can be included in any page
that you want to password protect.

You’ll need to create one new database table and three new Active Server Pages:

• userlist—This table contains all the registered usernames and passwords.

• register.asp—This page contains a simple registration form.

• login.asp—This page contains a simple login form.

• checkpassword.asp—This is an Include file that you must include in every page
that you want password protected.

First, you’ll need to create a new access database named usersDB and add a new table
named userlist. Follow these steps:

1. Launch Microsoft Access, select Blank Access database, and click OK. Enter the
name userDB for the new database.

2. Click the Design icon, and create a new table that contains three fields: user_id,
user_username, and user_password. The user_id field is a AutoNumber field. You’ll
use this field to uniquely identify every user. The user_username and user_password
fields are text fields. They will contain the usernames and passwords.

3. Click Save, and save the new table with the name userlist.

After you create the new database and database table, you will need to configure a new
System Data Source Name (DSN) so that you can connect to the database. Follow these
steps:

Before you create a DSN or work with the new database in an ASP page,
make sure that you close Microsoft Access—or you might receive errors.

Note

1. Go to Start, Settings, Control Panel, and click the ODBC Data sources applet.

2. Choose the tab labeled System DSN.

3. Click the button labeled Add, choose the Microsoft Access Driver, and click Finish.

4. In the section labeled Databases, click the button labeled Select. Next, select the
userDB database on your hard drive.

5. Enter the name userDSN for the Data Source Name and click OK.

After you complete these steps, you will have a new DSN named userDSN that you can
use in your Active Server Pages. Remember, if you ever change the location of your
database, you will need to create a new DSN.

 17 0672318989 ch13 3/30/00 8:19 AM Page 277

The first ASP page that you need to create is named register.asp. This page contains a
registration form for new users. The page is included in Listing 13.1 (it’s also included
on the CD that accompanies this book).

LISTING 13.1 The Registration Page

1 <%
2 nextPage = Request(“nextPage”)
3 newUsername = Request(“newUsername”)
4 newPassword = Request(“newPassword”)
5 %>
6 <HTML>
7 <HEAD><TITLE>Register</TITLE></HEAD>
8 <BODY>
9
10 Register at this Web site by selecting a username and password:
11 <FORM METHOD=”post” ACTION=”<%=nextPage%>”>
12 <INPUT NAME=”newUser” TYPE=”hidden” VALUE=”1”>
13 <P>USERNAME:
14 <INPUT NAME=”newUsername” SIZE=20 MAXLENGTH=”20”
15 VALUE=”<%=Server.HTMLEncode(newUsername)%>”>
16 <P>PASSWORD:
17 <INPUT NAME=”newPassword” SIZE=20 MAXLENGTH=”20”
18 VALUE=”<%=Server.HTMLEncode(newPassword)%>”>
19 <P><INPUT TYPE=”submit” VALUE=”Register!”>
20 </FORM>
21
22 </BODY>
23 </HTML>

There’s nothing tricky going on with this page. This page is used by a new cus-
tomer to register (see Figure 13.3). It contains a simple HTML form that has two

form fields named newUsername and newPassword. The form also contains a hidden
form field named newUser. The register.asp page is never opened directly. A new user
links to the page from the login.asp page.

Next, you need to create a page named login.asp. This page appears when a user
attempts to access a password protected page without the proper authentication informa-
tion. It’s contained in Listing 13.2, and it is also available on the CD that accompanies
this book.

278 Day 13

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 278

Creating a Subscription-Based Site 279

13

LISTING 13.2 The Login Page

1 <HTML>
2 <HEAD><TITLE>Login</TITLE></HEAD>
3 <BODY>
4
5 <%=loginMessage%>
6 <FORM METHOD=”post” ACTION=”<%=nextPage%>”>
7 <P>USERNAME:
8 <INPUT NAME=”username” SIZE=20 MAXLENGTH=”20”
9 VALUE=”<%=Server.HTMLEncode(username)%>”>
10 <P>PASSWORD:
11 <INPUT NAME=”password” SIZE=20 MAXLENGTH=”20”
12 VALUE=”<%=Server.HTMLEncode(password)%>”>
13 <p><INPUT NAME=”addCookie” TYPE=”Checkbox”
14 VALUE=”1”> Remember me with a cookie
15 <P><INPUT TYPE=”submit” VALUE=”Login”>
16 </FORM>
17 <p>
18 <a href=”register.asp?nextpage=<%=Server.URLEncode(nextpage)%>”>
19 Click here to register
20
21 </BODY>
22</HTML>

This page also contains a simple HTML form. The form has three fields named
username, password, and addCookie. The addCookie field is a check box. If the

FIGURE 13.3
The Registration Form.

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 279

customer wants his username and password added to his browser with a cookie, he can
check the box (see Figure 13.4).

280 Day 13

FIGURE 13.4
The Login Page.

All the interesting stuff happens in the file named checkpassword.asp. This file is
included at the top of every page that you want to password protect. You can include the
page by using the ASP #INCLUDE directive like this:

<!-- #INCLUDE FILE=”checkpassword.asp” -->

The checkpassword.asp page is too long to list in this chapter, but you can open the
page from the CD that accompanies this book. We’ll go through the checkpassword.asp
section by section.

First, the checkpassword.asp page retrieves several variables from the Request collection:

‘ Retrieve Form Variables
username = TRIM(Request(“username”))
password = TRIM(Request(“password”))
newUser = TRIM(Request(“newUser”))
newUsername = TRIM(Request(“newUsername”))
newPassword = TRIM(Request(“newPassword”))
addCookie = TRIM(Request(“addCookie”))

If a visitor arrives at this page from the login page, the username and password variables
will have values. If a visitor has just completed the register.asp page, the newUser,
newUsername, and newPassword variables will have values. Finally, if a user checks the

 17 0672318989 ch13 3/30/00 8:19 AM Page 280

Creating a Subscription-Based Site 281

13

check box named addCookie in the login.asp page, then the addCookie variable will
have a value.

Next, the full virtual path of the current page is retrieved from the ServerVariables col-
lection of the Request object and assigned to a variable named nextpage:

‘ Retrieve Current Page
nextPage = Request.ServerVariables(“SCRIPT_NAME”)

Next, a database connection is opened to the userDB database. The connection is opened
with the userDSN Data Source Name.

‘ Ready Database Connection
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “userDSN”

Next, if the newUser form variable has a value, the script attempts to add the username
and password of the new user to the database (see Listing 13.3). The newUser form vari-
able is passed by the register.asp page when the registration form is submitted.

LISTING 13.3 The Add User Script

1 ‘ Add New User
2 IF newUser <> “” THEN
3 IF newUsername = “” THEN
4 showError “You must enter a username”
5 END IF
6 IF newPassword = “” THEN
7 showError “You must enter a password”
8 END IF
9 IF usernameTaken(newUsername) THEN
10 showError “The username you entered has already “ &_
11 “been chosen by a previous user. Please select “ &_
12 “a new username”
13 END IF
14 sqlString = “INSERT INTO userlist (user_username, user_password) “ &_
15 “VALUES (‘“ & newUsername & “‘,’” & newPassword & “‘)”
16 Con.Execute sqlString
17 username = newUsername
18 password = newPassword
19 IF useSession THEN Session(“loggedIn”) = “Yes”
20 END IF

In lines 3–8, the script checks whether either one of the username or password
variables were submitted without values. If a customer registers without entering

a username or a password, an error page is displayed.

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 281

Next, in lines 9–13, a function named usernameTaken() is used to check whether the
username the customer entered has already been claimed by a previous customer.
Because we need to guarantee that each customer is registered with a unique username,
an error page is displayed if the username was, in fact, already taken.

In lines 14–16, the new username and password are added to the userlist database table.
In lines 14–15, the SQL string is constructed. In line 16, the SQL string is executed.

After the new username and password are added to the database, they are assigned to
new variables in lines 17–18. Finally, in line 19, a Session variable named LoggedIn is
given the value 1. The LoggedIn variable indicates that the customer has already logged
in and can access future pages without entering her username and password.

The next section of code in checkpassword.asp is used to authenticate a user who
arrives at the page through the login.asp page. The authentication script is contained in
Listing 13.4.

LISTING 13.4 Authenticating a User

1 ‘ Authenticate User
2 IF Session(“loggedIn”) = “” THEN
3 IF username = “” OR password = “” THEN
4 loginMessage = “You must login before you can view this page.”
5 showLogin
6 END IF
7 result = validateLogin(username, password)
8 IF result = 1 THEN
9 loginMessage = “You entered an unregistered username.”
10 showLogin
11 END IF
12 IF result = 2 THEN
13 loginMessage = “You did not enter a valid password.”
14 showLogin
15 END IF
16 IF useSession THEN Session(“loggedIn”) = “Yes”
17 END IF

The authentication script starts by checking whether the LoggedIn Session vari-
able has a value. If this variable has a value, the customer has already logged in

and the rest of the authentication script is skipped.

Next, in lines 3–6, if either one of the username or password variables do not have a
value, the login.asp page is displayed and the script ends. Otherwise, the username and
password are checked against the userlist database table with the validatelogin()
function. This function returns three possible values:

282 Day 13

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 282

Creating a Subscription-Based Site 283

13

0 If the username and password exist in the userlist database table.

1 If the username doesn’t exist in the userlist database table.

2 If the username exists in the table, but the password is invalid.

If the validatelogin() function returns the value 0, the customer has successfully
logged in. In this case, the Session variable named LoggedIn is given the value 1.

The valiatelogin() function is contained in Listing 13.5.

LISTING 13.5 Validate Username and Password

1 ‘ Check Username and Password
2 FUNCTION validateLogin(theUsername, thePassword)
3 sqlString = “SELECT user_password FROM userlist “ &_
4 “WHERE user_username=’” & fixQuotes(username) & “‘“
5 Set RS = Con.Execute(sqlString)
6 IF RS.EOF THEN
7 validateLogin = 1
8 ELSE
9 IF RS(“user_password”) <> thePassword THEN
10 validateLogin = 2
11 ELSE
12 validateLogin = 0
13 END IF
14 END IF
15 END FUNCTION

The validatelogin() function returns three possible values. First, in lines 3–4, a
SQL query string is constructed, which retrieves the password from the userlist

database table that matches the username the customer entered into the login.asp page.
If no rows are retrieved from the table, you know that the username doesn’t exist, and the
value 1 is returned (line 7). Next, if the username exists in the table, but the password the
customer entered into the login.asp page doesn’t match the password in the database,
the value 2 is returned (line 10). Finally, if both the username and password entered by
the customer exist in the userlist table, the value 0 is returned (line 12).

After a customer’s username and password have been validated against the userlist table,
the checkpassword.asp script performs three more tasks. First, if the customer indicated
that he wants his username and password added to his browser with a cookie, this is
accomplished with the following script:

‘ Add a Cookie
IF addCookie <> “” THEN
Response.Cookies(“username”) = username
Response.Cookies(“username”).Expires = “12/25/2002”

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 283

Response.Cookies(“password”) = password
Response.Cookies(“password”).Expires = “12/25/2002”

END IF

Next, a variable named sq is constructed. This variable is used to pass security informa-
tion (the customer’s username and password in a query string variable). Here is the script
that creates the sq variable:

‘ Create Security Query String Variable
sq = “username=” & Server.HTMLEncode(username) & “&”
sq = sq & “password=” & Server.HTMLEncode(password)

Finally, a variable named sf is constructed. The sf variable is used to pass a customer’s
security information in a hidden form field. Here is the script that creates the sf variable:

‘ Create Security Form Variable
sf = “<input name=””username”” type=””hidden”” “
sf = sf & “value=””” & Server.HTMLEncode(username) & “””>”
sf = sf & “<input name=””password”” type=””hidden”” “
sf = sf & “value=””” & Server.HTMLEncode(password) & “””>”

It’s easy to lose track of how the login.asp, register.asp, and checkpassword.asp
pages interact, so we’ll walk through an example of how a new customer would
encounter each of these pages. Assume that the checkpassword.asp page is included at
the top of a page named test.asp:

1. A customer requests the page named test.asp.

2. The checkpassword.asp script included in test.asp attempts to retrieve the cus-
tomer’s username and password from the Request collection. Because these vari-
ables cannot be retrieved, the login.asp page is displayed.

3. Because the customer has never registered at this Web site, he clicks the link on the
login.asp page to go to the register.asp page.

4. The customer enters a username and password into the register.asp page and
clicks Register.

5. The data in the register.asp page is submitted back to the test.asp page. The
form is submitted with a hidden form field named addUser that has the value 1.

6. In the checkpassword.asp script included in the test.asp page, the addUser hid-
den form field is detected, and the customer’s username and password are added to
the userlist database table.

7. The customer is authenticated, and can view the contents of the test.asp page.

8. The customer is called away from his computer by a strange noise just outside his
window. Investigating, he leaves his house.

9. Three hours later, after many adventures, the customer decides to return to your
Web site. He requests the test.asp page once again.

284 Day 13

 17 0672318989 ch13 3/30/00 8:19 AM Page 284

Creating a Subscription-Based Site 285

13

10. Because the customer’s username and password cannot be retrieved from the
Request collection, the login.asp page is displayed.

11. This time, the customer enters his username and password. He submits the
login.asp page and the data is submitted to the test.asp page.

12. Within the checkpassword.asp script included in test.asp, the customer’s user-
name and password are retrieved from the Request collection.

13. The customer’s username and password are checked against the userlist database
table; the customer is authenticated; and the content of the test.asp page is dis-
played.

Passing Security Information From Page to Page
When a customer has logged in to one page at your Web site, he shouldn’t be bothered
with logging in to each additional page he requests. Entering a username and password
to view each and every page would quickly become tedious. The information should be
passed to each new page automatically.

There are five general mechanisms that you can use to pass information, including secu-
rity information, from one ASP page to another:

• Browser cookies

• Session variables

• Form variables

• Query String variables

• Browser headers

The checkpassword.asp page uses the first four methods to track customer security
information. Why are all these mechanisms of passing authentication information from
page to page necessary?

You’ll learn how to use the last method of passing information from page to
page, browser headers, in the next section.

Note

Each method of passing information has its advantages and disadvantages. The advan-
tage of browser cookies is that they provide a method of storing customer information
over many visits to a Web site. So, if a user enters her username and password once, she
never needs to enter the information again. In theory, the user can be automatically
authenticated every time she requests a page.

 17 0672318989 ch13 3/30/00 8:19 AM Page 285

The disadvantage of cookies is that not all browsers support them. For one reason or
another, cookies tend to fail. So, you should not rely on cookies to authenticate a cus-
tomer across multiple pages.

Because Session variables rely on cookies, they have the same disadvantage as cookies.
However, Session variables have one advantage that cookie lack. Because Session vari-
ables are stored on the server rather than the browser, you can store a username and pass-
word more securely using Session variables. If a username and password are stored in a
Session variable, they won’t be passed back and forth across the Internet every time a
page is requested.

Using Query String and Form variables is more reliable than using either cookies or
Session variables. If you want your Web site to work with any browser, no matter how
old or obscure, you should seriously consider using Query String and Form variables to
pass security information from page to page.

Using Query String or Form variables has a couple of major disadvantages. First, when
you use Query String variables, the variables are clearly visible in the address bar of
your browser. If you are worried about strangers looking over your shoulder and learning
your password, Query String variables present a risk.

More importantly, it takes a lot of work to pass Query String and Form variables from
page to page. You must include the variables within every hypertext link and every form
in a page to pass the variables to other pages.

The checkpassword.asp Include file makes the task of passing Query String and Form
variables slightly easier. The script automatically constructs two variables, named sq and
sf, which contain the username and password. The sq variable contains a Query String
variable and the sf variable contains a hidden Form variable.

For example, suppose that you have a page named page1.asp that contains a hypertext
link to a page named page2.asp. If you want to pass the customer’s username and pass-
word to page2.asp, you would use the sf Query String variable in the way it is used in
Listing 13.6.

LISTING 13.6 Passing Security Information with a Query String

1 <!-- #INCLUDE FILE=”checkpassword.asp” -->
2 <HTML>
3 <HEAD><TITLE>Password Protected</TITLE></HEAD>
4 <BODY>
5
6 This page is password protected!
7 <p>
8 <a href=”test2.asp?<%=sq%>”>Next Page

286 Day 13

 17 0672318989 ch13 3/30/00 8:19 AM Page 286

Creating a Subscription-Based Site 287

13

9
10 </BODY>
11 </HTML>

The checkpassword.asp Include file is added to the page in line 1. The sq vari-
able is constructed in this file. The sq variable is used in line 8 to add the user-

name and password to the hypertext link.

Now, suppose that you have a page that contains an HTML form. In that case, you would
need to add hidden fields to the form that contain the username and password. You can
do this by using the sf variable (see Listing 13.7).

LISTING 13.7 Passing Security Information with Hidden Form Fields

1 <!-- #INCLUDE FILE=”checkpassword.asp” -->
2 <HTML>
3 <HEAD><TITLE>Password Protected</TITLE></HEAD>
4 <BODY>
5
6 This page is password protected!
7 <p>
8 <form method=”post” action=”test2.asp”>
9 <%=sf%>
10 <input type=”submit” value=”Next Page with Hidden Field”>
11 </form>
12
13 </BODY>
14 </HTML>

The sf variable is used in the page contained in Listing 13.7 to add two hidden
form fields named username and password. When the form is submitted, these

two form fields are automatically passed with the form data.

When using Query String and Form variables to pass usernames and passwords from
page to page, you must be careful to add the variables to every form and every link. If a
user clicks on a link that doesn’t contain the Query String, the username and password
won’t be passed, and the user will need to login again.

Using Hybrid Authentication
In this section, you’ll learn how to combine both HTTP Authentication and database
authentication to password protect a Web page. You’ll learn how to force a standard pass-
word dialog box to appear in a Web page and how to check the username and password
that a user enters into the dialog box against a database table.

ANALYSIS

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 287

Understanding How Basic Authentication Works
Before going any further, you need to understand how Basic Authentication works in
more detail. Here’s an overview of what happens when a user requests a page that has
been protected with Basic Authentication.

1. You request a page protected with Basic Authentication.

2. The Web server responds with the status code 401 Not Authorized.

3. The 401 status code forces a password dialog box to appear on your browser. Enter
your username and password and click OK.

4. Your browser sends your username and password in a browser header (a request
header) named AUTHORIZATION. The AUTHORIZATION header contains your
username and password encoded using base64 encoding.

5. The Web server decodes the username and password passed in the AUTHORIZA-
TION header and checks whether they correspond to a valid Windows account.

6. If the username and password are valid, the page is displayed. Otherwise, the Web
server sends a 401 status code and the process starts over again.

After a browser has been authenticated at a Web site, the browser will continue to send
the AUTHORIZATION header with the username and password every time a page is
requested. This is great. This means that you don’t have to worry about passing the user-
name and password from page to page.

As you learned in the first part of this chapter, the major drawback of Basic
Authentication is that Internet Information Server will only validate the usernames and
passwords against Windows accounts. This means that you cannot easily use Basic
Authentication when creating an automated registration system.

In this section, you’ll learn how to work around this problem. You’ll learn how to grab
the username and password from the AUTHORIZATION header and validate the user-
name and password against a database table. In order to do this, you will need to learn
the following:

• How to force a password dialog box to appear on a browser

• How to grab the AUTHORIZATION header from the browser

• How to decode the AUTHORIATION header so that you can extract the username
and password

Forcing a Password Dialog to Appear
You can force a password dialog box to appear by sending a 401 Not Authorized status
code to a browser. The Response object has a property named Status that provides you

288 Day 13

 17 0672318989 ch13 3/30/00 8:19 AM Page 288

Creating a Subscription-Based Site 289

13

with a method of sending a status code. The ASP page in Listing 13.18 forces a pass-
word dialog box to appear (This page is included on the book’s CD with the name
forcepassword.asp).

LISTING 13.8 Forcing a Password Dialog Box

1 <%
2 auth = TRIM(Request.ServerVariables(“HTTP_AUTHORIZATION”))
3 IF auth = “” THEN
4 Response.Status = “401 Not Authorized”
5 Response.AddHeader “WWW-Authenticate”, “Basic realm=””localhost”””
6 Response.End
7 END IF
8 %>
9 <HTML>
10 <HEAD><TITLE>Protected Page</TITLE></HEAD>
11 <BODY>
12
13 The AUTHORIZATION header contains: <%=auth%>
14
15 </BODY>
16 </HTML>

In line 2, the AUTHORIZATION browser header is retrieved from the
ServerVariables collection. If the AUTHORIZATION header doesn’t have a

value, the status code 401 Not Authorized is sent to the browser. This status code
forces a password dialog box to appear. The status code is set in line 4.

In line 5, the AddHeader method of the Response object is used to add a header named
WWW-Authenticate. A browser uses this header to detect what type of authentication to
use. In Listing 13.8, a header is sent that causes the browser to use Basic Authentication.

After a user enters a username and password into the password dialog box, the browser
will send back the AUTHORIZATION header. If the script above can retrieve the
AUTHORIZATION header, it will display the value of the header. For example, if you
enter Bob for the username and yellow for the password, the AUTHORIZATION header
will contain the following value:

Basic Qm9iOnllbGxvdw==

The first part of the header indicates the authentication method being used. The strange
characters that constitute the remainder of the header contain the username and password
in base64 encoded form. You’ll learn how to decode this header and extract the username
and password in the next section.

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 289

Decoding the AUTHORIZATION Header
When a browser sends an AUTHORIZATION header, it sends the header in base64
encoded form. Base64 is an old method of encoding text. It was originally created as part
of the MIME standard for sending email attachments with messages.

To extract the username and password from the header, we’ll need to write a script to
decode base64 encoded text.

290 Day 13

Instead of using a script to decode base64 encoded text, you can use a com-
mercial component. See the AspConv component at www.serverobjects.com.
For an extensive list of third-party Active Server Pages components, visit the
software section at superexpert at http://asp.superexpert.com/software.

Note

The first step in decoding base64 encoded text is to convert the characters from the ANSI
character set to a base 0 character set. We need to map each character to a code from 0
to 65:

• A–Z maps to 0 to 25

• a–z maps to 26 to 51

• 0–9 maps to 52 to 61

• + maps to 62

• / maps to 63

We’ll use a Dictionary object to create a mapping from the ANSI character set to a base
0 character set. See Listing 13.9.

The Dictionary object is an installable component. You can use it to create
a mapping between keys and values. You can enter any type of data that
you please for the keys and values including both strings and integers. For
example, the keys might be words and the values might be definitions. Or,
the keys might be country codes and the values might be full country
names.

Note

Do not use Internet Information Server to enable Basic Authentication for
the directory that contains the page in Listing 13.8. We are forcing the pass-
word dialog box to appear.

Note

 17 0672318989 ch13 3/30/00 8:19 AM Page 290

Creating a Subscription-Based Site 291

13

LISTING 13.9 UUEncoding

1 SET UUEncode = Server.CreateObject(“Scripting.Dictionary”)
2 FOR i=0 TO 63
3 SELECT CASE i
4 CASE 0 offset = 65
5 CASE 26 offset = 71
6 CASE 52 offset = -4
7 END SELECT
8 UUEncode(CHR(i + offset)) = i
9 NEXT

The script in Listing 13.9 creates an instance of the Dictionary object in line 1.
A FOR...NEXT loop is used to loop through the numbers 0 to 63. The

SELECT...CASE statement assigns the proper offsets for ANSI character. The Dictionary
object has ANSI characters for keys and the codes of a base 0 character set as values.

Next, we’ll need to unpack each of the characters. When text is base64 encoded, charac-
ters that are normally represented in four bytes are compressed into three bytes. For
example, the four bytes

00aaaaaa 00bbbbbb 00cccccc 00dddddd

are compressed into

aaaaaabb bbbbcccc ccdddd

To decode the text, we need to unpack each group of three bytes back into four bytes.
This is accomplished with the Decode() function contained in Listing 13.10.

LISTING 13.10 The Decode() Function

1 Function Decode(theString)
2 For byteGroup = 1 To Len(theString) Step 4
3 numBytes = 3
4 groupBytes = 0
5 For CharCounter = 0 To 3
6 thisChar = Mid(theString, byteGroup + CharCounter, 1)
7 If thisChar = “=” Then
8 numBytes = numBytes - 1
9 thisByte = 0
10 Else
11 thisByte = UUEncode(thisChar)
12 End If
13 groupBytes = 64 * groupBytes + thisByte
14 Next
15 For k = 1 To numBytes

ANALYSIS

continues

 17 0672318989 ch13 3/30/00 8:19 AM Page 291

16 Select Case k
17 Case 1: thisChar = groupBytes \ 65536
18 Case 2: thisChar = (groupBytes And 65535) \ 256
19 Case 3: thisChar = (groupBytes And 255)
20 End Select
21 Decode = Decode & Chr(thisChar)
22 Next
23 Next
24 End Function

292 Day 13

LISTING 13.10 continued

I wouldn’t have been able to create the scripts in this section without the
help of two very valuable articles available on the Internet. For a very ele-
gant implementation of a base64 decoding script, visit the PSTRUH Web site
at http://www.pstruh.cz/tips/detpg_Base64.htm.

For general background information on the mechanism of Basic
Authentication, see Kevin Flick’s article on Self-Authenticating Scripts at
http://www.learnasp.com/learn/authenticateself.asp.

Note

Finally, we are ready to extract the username and password from the AUTHORIZATION
header. The script in Listing 13.11 retrieves the username and password from a standard
password dialog box and compares them against the userlist database table (This page is
included on the CD with the name hybrid.asp).

LISTING 13.11 Hybrid Authentication

1 <%
2 SET UUEncode = Server.CreateObject(“Scripting.Dictionary”)
3 FOR i=0 TO 63
4 SELECT CASE i
5 CASE 0 offset = 65
6 CASE 26 offset = 71
7 CASE 52 offset = -4
8 END SELECT
9 UUEncode(CHR(i + offset)) = i
10 NEXT
11
12 Function Decode(theString)
13 For byteGroup = 1 To Len(theString) Step 4
14 numBytes = 3
15 groupBytes = 0
16 For CharCounter = 0 To 3
17 thisChar = Mid(theString, byteGroup + CharCounter, 1)
18 If thisChar = “=” Then
19 numBytes = numBytes - 1

 17 0672318989 ch13 3/30/00 8:19 AM Page 292

Creating a Subscription-Based Site 293

13

20 thisByte = 0
21 Else
22 thisByte = UUEncode(thisChar)
23 End If
24 groupBytes = 64 * groupBytes + thisByte
25 Next
26
27 For k = 1 To numBytes
28 Select Case k
29 Case 1: thisChar = groupBytes \ 65536
30 Case 2: thisChar = (groupBytes And 65535) \ 256
31 Case 3: thisChar = (groupBytes And 255)
32 End Select
33 Decode = Decode & Chr(thisChar)
34 Next
35 Next
36 End Function
37
38 auth = Request(“HTTP_AUTHORIZATION”)
39 IF auth = “” THEN
40 Response.Status = “401 Not Authorized”
41 Response.AddHeader “WWW-Authenticate”, “Basic realm=””localhost”””
42 Response.End
43 END IF
44
45 auth = TRIM(MID(auth, 6))
46 auth = Decode(auth)
47 authSplit = SPLIT(auth, “:”)
48 username = authSplit(0)
49 password = authSplit(1)
50
51 sqlString = “SELECT user_id FROM userlist “ &_
52 “WHERE user_username=’” & username & “‘“ &_
53 “AND user_password=’” & password & “‘“
54 Set Con = Server.CreateObject(“ADODB.Connection”)
55 Con.Open “userDSN”
56 Set RS = Con.Execute(sqlString)
57 IF RS.EOF THEN
58 Response.Status = “401 Not Authorized”
59 Response.AddHeader “WWW-Authenticate”, “Basic realm=””localhost”””
60 Response.End
61 END IF
62 %>
63 <HTML>
64 <HEAD><TITLE>Welcome</TITLE></HEAD>
65 <BODY>
66
67 Welcome <%=username%>!
68
69 </BODY>
70 </HTML>

 17 0672318989 ch13 3/30/00 8:19 AM Page 293

The bulk of Listing 13.11, lines 2–36, is devoted to decoding the username and
password contained in the AUTHORIZATION header. In line 38, the AUTHO-

RIZATION header is retrieved from the Request collection. If the AUTHORIZATION
header contains no information, the status code 401 is sent to the browser to force a pass-
word dialog.

In line 45, the first six characters are stripped from the AUTHORIZATION header. These
first six characters contain the plaintext characters BASIC, which indicate the authoriza-
tion scheme. We already know this, so we get rid of the characters.

In line 46, the AUTHORIZATION header is base64 decoded with the help of the
Decode() function. The decoded header will contain the username and password separat-
ed by a colon. In lines 47–49, the VBScript SPLIT() function is used to extract the user-
name and password from the header.

In lines 51–56, the username and password are compared against the usernames and
passwords contained in the userlist database table. If there are no matches, the status
code 401 is sent to the browser to force the password dialog box to appear. Otherwise,
the user can view the page.

Summary
In today’s lesson, you learned how to create a subscription Web site by implementing
three different types of authentication. In the first section, you learned how to use HTTP
Authentication. You were given an overview of the three types of authentication support-
ed by Internet Information Server and you learned how to enable authentication for a file,
directory, or Web site.

In the next section, you learned how to use database authentication to password protect
areas of your Web site. You created a database table named userlist that contains a list of
usernames and passwords. You also created an Include file that checks usernames and
passwords against the database table.

In the final section, you learned how to create a hybrid authentication system. You
learned how to force a password dialog box to appear from within an ASP script. You
also learned how to retrieve a username and password entered into the dialog box and
compare them against a database table.

294 Day 13

Do not enable any form of authentication for the directory that contains
hybrid.asp. We are forcing Basic Authentication manually. Only Allow
Anonymous Access should be enabled.

Note

ANALYSIS

 17 0672318989 ch13 3/30/00 8:19 AM Page 294

Creating a Subscription-Based Site 295

13

Q&A
Q Three different methods of authentication were discussed in today’s lesson.

Which method of authentication should I use for my Web site?

A If you need to create an automated registration system, you should use either data-
base authentication or hybrid authentication. By using a database to store user-
names and passwords, you can easily create a system that supports hundreds of
thousands of registered users. Storing usernames and passwords in a database also
makes it easier to backup the data.

Because you need to setup individual Windows accounts to use HTTP
Authentication, this form of authentication is more appropriate for password pro-
tecting administrative areas of your Web site. Normally, you will use HTTP
Authentication only when you need to setup a small number of user accounts.

Q Doesn’t database authentication place a heavy load on my database server?

A If every user must be authenticated against the database whenever a page is
requested, database authentication can place a heavy load on your database server.
However, in the database authentication script you created in today’s lesson
(checkpassword.asp), Session variables were also used to authenticate users.
When a user is authenticated against the database after requesting a password pro-
tected page for the first time, a Session variable named LoggedIn is assigned the
value Yes. If the user requests additional pages, the Session variable can be
checked instead of the database. Of course, if someone is using a browser that
doesn’t support Session variables, the database must be accessed every time the
user requests a new page.

Workshop
The Quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. Can you use HTTP Authentication with the Netscape Navigator browser?

2. Why is it considered a security risk to use Basic Authentication?

3. How can I force a password dialog box to appear on a Web browser?

4. When using Basic Authentication, how is a username and password passed from
page to page?

 17 0672318989 ch13 3/30/00 8:19 AM Page 295

 17 0672318989 ch13 3/30/00 8:19 AM Page 296

DAY 14

WEEK 2

Customizing the
Shopping Experience

Today we will customize our customers’ shopping experience based on their
preferences and buying patterns. To make this project more interesting, we also
will allow our customers to review their purchase history with our storefront.
Today, you will learn the following:

• Presenting the user with the choice to change his existing registration set-
tings

• Storing those new registration settings in the user database

• Displaying previous purchases

• Determining layout based on customer preferences

• Advertising items your customers would like

Retrieving the Existing User Settings
A user needs to see his settings before he can modify them. Therefore, you
need to create a new file, mypage.asp to go into the user’s database and retrieve

 18 0672318989 ch14 3/29/00 4:04 PM Page 297

that information. In order to continue, we must create a file to display settings,
mypage.asp.

Creating mypage.asp
The mypage.asp file is relatively unique among the files you’ve created thus far. It can
both read from the database (to display existing settings) and write to the database (to
store the new settings). Generally, the structure thus far has been one file to read and one
file to write. To better understand each of the functions performed by mypage.asp, the
code will be broken into two different listings. The first bit of relevant code deals with
controlling the flow of the site, and is contained in Listing 14.1.

LISTING 14.1 Retrieve Existing User Info

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <!-- #INCLUDE FILE=”storefuncs.asp” -->
3 <%
4 ‘ Get Product ID
5 productID = TRIM(Request(“pid”))
6 ‘ Get Login Information
7 login = TRIM(Request(“login”))
8 IF login <> “” THEN
9 username = TRIM(Request(“username”))
10 password = TRIM(Request(“password”))
11 ELSE
12 username = TRIM(Request(“newusername”))
13 password = TRIM(Request(“newpassword”))
14 END IF
15 mypage = TRIM(Request(“mypage”))
16 error = TRIM(Request(“error”))
17 register = TRIM(Request(“register”))
18 If username = “” then
19 username = request.cookies(“username”)
20 password = request.cookies(“password”)
21 End If
22 ‘ Open Database Connection
23 Set Con = Server.CreateObject(“ADODB.Connection”)
24 Con.Open “accessDSN”
25
26 ‘ Check For Update code
27 IF mypage <> “” AND error = “” THEN
28 updateUser
29 END IF
30 IF register <> “” AND error = “” THEN
31 addUser
32 END IF
33’ Get User ID
34 userID = checkpassword(username, password, Con)

298 Day 14

 18 0672318989 ch14 3/29/00 4:04 PM Page 298

Customizing the Shopping Experience 299

14

35 ‘See if user exists in db, or if user info was ever passed
36 IF userID > 0 THEN
37 SET RS = Con.Execute(“SELECT * FROM users WHERE user_ID = “&userid)
38 ‘Populate string values with existing settings
39 newusername = RS(“user_username”)
40 newpassword = RS(“user_password”)
41 email = RS(“user_email”)
42 street = RS(“user_street”)
43 city = RS(“user_city”)
44 state = RS(“user_state”)
45 zip = RS(“user_zip”)
46 cctype = RS(“user_cctype”)
47 ccnumber = RS(“user_ccnumber”)
48 ccexpires = RS(“user_ccexpires”)
49 ccname = RS(“user_ccname”)
50 %>

This first page is basically the traffic cop of the mypage.asp file. First of all, the
page determines if the user has just logged in, created a new user, or updated his

settings. Each of these options has a monitor value set in the form that passes the infor-
mation. For example, if the user had just registered as a new account, the register moni-
tor variable would not be NULL. If the user had just logged in, the login monitor variable
would not be NULL. By checking these monitor values, we can determine which data
fields we need to plunder in order to get the updated information. If the username is
already in memory, or the user just logged in, the page will display the user’s current set-
tings with the option to update them. If there is no username available, the page will dis-
play the login/register screen. Finally, if the monitor value indicates that the user had
updated his settings, the page stores the new settings in the database.

The code in lines 7–16 traps the login monitor value. When login is not NULL, it means
we can retrieve the user’s settings information and put it in the form for editing.

Next in lines 18–21, we check to see if the username is still empty after trying to get info
from the form. If it is, we try and pull the username value from the cookie, just in case it
got missed somewhere.

Lines 22–24 are the familiar ADO object instantiations we’ve seen several times before.
Moving on to lines 27–28 we encounter another monitor value check. If mypage is not
NULL, that means the user has submitted the update form, and wants his changes added to
the database. To accomplish this, the page calls the updateUser subroutine from the
storefuncs.asp file.

Lines 26–32 contain the last monitor value check, which tests for new account requests.
If register is not NULL, it means that the user has completed the new user form and wants
to be added to the database. The page then calls the addUser subroutine from the
storefuncs.asp file.

ANALYSIS

 18 0672318989 ch14 3/29/00 4:04 PM Page 299

Lines 33–35 compare the username and password against entries in the user’s table.
When both columns match, the query returns the userid of the selected row.

Lines 36–49 do two things. The first two lines check to see if the userid variable is a
valid one (that is, greater than 0). If the userid is valid, the page loads all the current
user’s settings into accessible variable and then loads them into a form, so the user can
modify them. If the userid is invalid, we assume that it is for a new or non-logged in
user and go straight to the register.asp page.

The actual HTML surrounding the user settings form is identical to that found in
register.asp and various other parts of the site, so I won’t repeat it here. However, you
should take a look at Listing 14.2 and see how the form displays the current settings by
inserting variables into the VALUE field of the input tag.

LISTING 14.2 Displaying Current User Information

1 <form method=”post” action=”<%= submitpage%>”>
2 <input name=”mypage” type=”hidden” value=”1”>
3 <input name=”pid” type=”hidden” value=”<%=productID%>”>
5
6 Change the values below and hit ‘Update’ to change your personal settings:
7
8
9 <p>Login Information:
10
11
12
username:
13 <input name=”newusername” size=20 maxlength=20
14 value=”<%=newusername%>”>
15
password:
16 <input name=”newpassword” size=20 maxlength=20
17 value=”<%=newpassword%>”>
18
email address:
19 <input name=”email” size=30 maxlength=75
20 value=”<%=email%>”>
21
22
23 <p>Address Information:
24

300 Day 14

For more information on the addUser subroutine, investigate Day 8,
“Building the Transaction Databases.” updateUser is identical to addUser
except that it updates an existing record instead of creating a new one.

Note

 18 0672318989 ch14 3/29/00 4:04 PM Page 300

Customizing the Shopping Experience 301

14

25
26
street:
27 <input name=”street” size=20 maxlength=50
28 value=”<%=street%>”>
29
city:
30 <input name=”city” size=20 maxlength=50
31 value=”<%=city %>”>
32
state:
33 <input name=”state” size=20 maxlength=2
34 value=”<%=state %>”>
35
zip:
36 <input name=”zip” size=20 maxlength=20
37 value=”<%= zip %>”>
38
39
40 <p>Payment Information:
41
42
43
type of credit card:
44 <select name=”cctype”>
45 <option value=”1”
46 <%=SELECTED(cctype, “1”)%> > VISA
47 <option value=”2”
48 <%=SELECTED(cctype, “2”)%> >MasterCard
49 </select>
50
credit card number:
51 <input name=”ccnumber” size=20 maxlength=20
52 value=”<%=ccnumber%>”>
53
credit card expires:
54 <input name=”ccexpires” size=20 maxlength=20
55 value=”<%=ccexpires%>”>
56
name on credit card:
57 <input name=”ccname” size=20 maxlength=20
58 value=”<%=ccname%>”>
59

<input type=”submit” value=”Update”>
60
61 </form>

This code takes the variables you assigned at the very beginning of the file and then
drops them into input tags. You’ll only see this information when you’ve logged into the
site and want to change your settings (see Figure 14.1 to see how mypage.asp appears in
a Web browser).

 18 0672318989 ch14 3/29/00 4:04 PM Page 301

Showing Past Purchases
In the last few weeks, you have built the basic storefront for your E-Commerce Web site.
You built the Product Catalog in Day 5, “Building Your Product Catalog,” and extended
it with the ability for customers to purchase items from our catalog in Day 8. You also
have built the ability for customers to view their purchase status, such as whether their
item had shipped, for example. Today you will add the ability for your customers to
review their past purchases. This facility will be straightforward and will focus only on
successful purchases that the customer has made.

The purchases that a customer makes are recorded, as you should remember, in the
Orders table of our database. The Orders table is structured as follows:

• order_id—The unique numeric identifier for each order recorded.

• order_productID—The numeric product identifier for the item purchased by the
customer. This identifier is based on a value in the Products table.

• order_quantity—The total number of items (as identified by the previous col-
umn) purchased by the customer.

• order_userID—The numeric identifier that represents the customer, as determined
from the Users table.

• order_entrydate—The date and time that the purchase order was made on our
Web site.

302 Day 14

FIGURE 14.1
Changing your user
information—
mypage.asp.

 18 0672318989 ch14 3/29/00 4:04 PM Page 302

Customizing the Shopping Experience 303

14

• order_status—A numeric status identifier that indicates the state of the cus-
tomer’s order.

• order_shipdate—the date and time that the customer’s purchase order was
shipped.

To review, the numeric status codes found in the order_status column are

• 0—Pending

• 1—Credit Card Declined

• 2—Not in Stock

• 3—Shipped

When looking to display previous purchases to our customers, we can assume that any
item identified as Shipped and has a date and time specified in the order_shipdate col-
umn as a complete order. (After all, we’re not going to charge someone for something
that isn’t in stock, are we?) Creating a page to display only items that have been shipped
to the customer will prove to be very easy, by adapting the code we created in Day 11,
“Working with Credit Cards,” to allow customers to view their order’s status. Listing
14.3 contains the code for a new page that we will add to our site, pastpurchases.asp.
We will link to this page from the showorders.asp page.

LISTING 14.3 Display List of Previous Orders

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <!-- #INCLUDE FILE=”storefuncs.asp” -->
3 <%
4 ‘ Get Login Information
5 username = TRIM(Request(“username”))
6 password = TRIM(Request(“password”))
7 ‘ Open Database Connection
8 Set Con = Server.CreateObject(“ADODB.Connection”)
9 Con.Open “accessDSN”
10 ‘ Get User ID
11 userID = checkpassword(username, password, Con)
12 sqlString = “Select orders.*, product_name, product_price “ &_
13 “from orders, products “ &_
14 “WHERE order_productid=product_id “ &_
15 “AND order_userid=” & userID & “ “ &_
16 “AND order_status=3 “ &_
17 “ORDER BY order_entrydate DESC”
18 SET RS = Con.Execute(sqlString)
19 %>
20 <html>
21 <head><title>Your Past Purchases</title></head>

continues

 18 0672318989 ch14 3/29/00 4:04 PM Page 303

22 <body>
23 <center>
24
25 <%= username %>’s past purchases:
26
27

28 <%
29 IF RS.EOF THEN
30 %>
31 You have not placed any orders
32 <%
33 ELSE
34 %>
35 <table cellpadding=4 cellspacing=0
36 bgcolor=”lightyellow” border=1>
37 <tr>
38 <th>Order ID</th>
39 <th>Order Date</th>
40 <th>Product Name</th>
41 <th>Order Total</th>
42 <th>Order Shipped Date</th>
43 </tr>
44 <%
45 WHILE NOT RS.EOF
46 %>
47 <tr>
48 <td>
49 <%=RS(“order_id”)%>
50 </td>
51 <td>
52 <%=RS(“order_entrydate”)%>
53 </td>
54 <td>
55 <%=RS(“product_name”)%>
56 </td>
57 <td>
58 $ <%= (RS(“order_quantity”) * RS(“product_price”))%>
59 </td>
60 <td>
61 <small>
62 <%=showOrderStatus(RS(“order_status”), RS(“order_shipdate”))%>
63 </small>
64 </td>
65 </tr>
66 <%
67 RS.MoveNext
68 WEND
69 %>
70 </table>
71 <%

304 Day 14

LISTING 14.3 continued

 18 0672318989 ch14 3/29/00 4:04 PM Page 304

Customizing the Shopping Experience 305

14

72 END IF
73 %>
74 <p>
75 <form action=”account.asp” id=form1 name=form1>
76 <input type=”submit” value=”View Current Order Status”

➥ id=submit1 name=submit1>
77 </form>
78 <form action=”default.asp” id=form1 name=form1>
79 <input type=”submit” value=”Continue Shopping” id=submit1 name=submit1>
80 </form>
81 </center>
82 </body>
83 </html>

This page operates almost identically to the showorders.asp page. On lines 1
and 2, we use the #INCLUDE directive to insert the adovbs.inc file (which contains

the standard ADO constants) and the storefuncs.asp file (which contains the standard
functions that we have been using throughout our site). On lines 5 and 6, we retrieve the
customer’s username and password. Next, we ensure that we are retrieving information
for the correct user by executing the checkpassword function on line 11.

On lines 12–17, we build the SQL query to retrieve any records from the Orders table
where the order_status is equal to 3 (indicating a Shipped Order) and the
order_userid is equal to the current user. We also query the Products table for the prod-
uct_name and product_price for each item that the customer has purchased. To ensure
that the list makes chronological sense to the customer, we set an ORDER BY clause on
line 16 stipulating that we want the records displayed in a descending fashion based on
the order_entrydate column.

After executing the query on line 18, we’re ready to determine if any records were
returned by the query on line 29. Testing to see if the EOF property of the recordset is
TRUE, indicating no results, line 29 starts an IF..THEN statement. The possible actions are

• If no results are returned (EOF returns TRUE), a message is displayed to the cus-
tomer indicating that he hasn’t placed any orders (line 31).

• If records are returned, a table is built containing rows that represent each order
(lines 35–70)

On line 45, we open a WHILE..WEND statement that will loop through each record in the
recordset and build a table row. Of note in building the rows are lines 58 and 62. On
line 58, we calculate the total cost of the order to the customer by multiplying the
order_quantity column value found in the Orders table against the product_price
column value found in the Products table. On Line 62, just as we did with the
showorders.asp page, we call upon the showOrderStatus subroutine to display the
order’s status (which should always be “Shipped on ...”) with the shipping date.

ANALYSIS

 18 0672318989 ch14 3/29/00 4:04 PM Page 305

Finally, on lines 75–77, we build a new form button that allows our customers to switch
from viewing their shipped orders to their current order’s status, via the account.asp
page.

Now that we have built the pastpurchases.asp page, we need to provide a link for cus-
tomers to view it. In this example, we will provide a link on the showorders.asp page,
allowing customers to switch between their previously shipped orders and their current
pending orders. To do so, follow these steps:

1. Open the showorders.asp page in your editor.

2. In the showorders.asp page, locate the following lines:
<form action=”default.asp”>
<input type=”submit” value=”Continue Shopping”>
</form>

3. Insert the following code above the indicated lines:
<form action=”pastpurchases.asp”>
<input name=”username” type=”hidden” value=”<%=username%>”>
<input name=”password” type=”hidden” value=”<%=password%>”>
<input type=”submit” value=”View Past Purchases”>
</form>

4. Save your changes to this page.

Your customers can now alternate back and forth between their current orders status and
their past purchases. The pastpurchases.asp page is illustrated in Figure 14.2.

306 Day 14

FIGURE 14.2
The
pastpurchases.asp

page.

 18 0672318989 ch14 3/29/00 4:04 PM Page 306

Customizing the Shopping Experience 307

14

Advertising Items Your Customers Would Like
The next step in souping up our site is to advertise products that are of interest to our
customers. Targeted advertising is of immense value to your business because items of
interest to your customers will be displayed when they visit your site. You can also build
an advertising system that displays certain products based on the customer’s purchase
history; however, today we’re going to allow the customers to select what categories are
of interest to them from our catalog, and we will use that information to determine what
will be advertised to them.

Our method of determining what to feature to our customers requires the completion of
following tasks:

• Update the Users table to store the customer’s favorite categories.

• Build a new page, favorites.asp, that will be used for customers to select what
types of products they are interested in (Novelties versus Chocolate Solids, for
example).

• Build a second page, savefavorites.asp, that will store the favorites for the cus-
tomer after they are submitted from the favorites.asp page.

• Update the features.asp inclusion file that will be used to target what products
are featured for the customers based on their selected favorite categories.

• Update the default.asp page to personalize its content according to who is visiting.

Updating the Users Table for Favorites
Before we can build any pages for our customers, we need to update the Users table to
store their favorites. To store the customer’s preferences, we will add one new column to
the Users table:

• user_favorites—a text column that will store a comma separated list of cate-
gories that the customer has identified as her favorites. You should provide this col-
umn with a default value of “NONE”. (Remember to add this default value for all the
existing rows in the users database table.) You will also need to assign the field size
of this column the value 255.

Using Microsoft Access, add this new column to the User table. The user_favorites
column will store the full-text name of the category, as it is found in the Products table.
This allows us to quickly retrieve the categories for our products without converting from
a numeric identifier. This structure also allows us to add new categories without adverse
effect to our code.

 18 0672318989 ch14 3/29/00 4:04 PM Page 307

Building the favorites.asp Page
Our next step is to build the page that customers will use to alter their favorite categories
of products. This page will query the Products table to determine the available product
categories and present them to the customer as selectable checkboxes. The customer will
be able to select (or deselect) each category as they prefer. The favorites.asp page will
also retrieve the customer’s current favorites each time it is loaded to improve usability.
The code that comprises the favorites.asp page can be found in Listing 14.4 (It’s also
included with the CD that accompanies this book.)

LISTING 14.4 The favorites.asp Page

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <!-- #INCLUDE FILE=”storefuncs.asp” -->
3 <%
4 ‘ Get Login Information
5 username = TRIM(Request(“username”))
6 password = TRIM(Request(“password”))
7 ‘ Open Database Connection
8 Set Con = Server.CreateObject(“ADODB.Connection”)
9 Con.Open “accessDSN”
10 ‘ Get User ID
11 userID = checkpassword(username, password, Con)
12 ‘ Retrieve the existing user favorites and split them into an array
13 arrFavorites = retrieveFavorites
14 arrFavorites = split(arrFavorites, “,”)
15 %>
16 <html>
17 <head><title>Pick Your Favorites</title></head>
18 <body>
19 <center>
20
21 <%= username %>, pick your favorites:
22
23

24 <table cellpadding=4 cellspacing=0
25 bgcolor=”lightyellow” border=1>
26 <tr>
27 <td>
28
29 </td>
30 <td>
31 Category
32 </td>
33 </tr>
34 <form action=”savefavorites.asp” name=frmFavorites method=Post>
35 <input name=”username” type=”hidden” value=”<%=username%>”>
36 <input name=”password” type=”hidden” value=”<%=password%>”>

308 Day 14

 18 0672318989 ch14 3/29/00 4:04 PM Page 308

Customizing the Shopping Experience 309

14

37 <%
38 Set catRS = Server.CreateObject(“ADODB.Recordset”)
39 catRS.ActiveConnection = Con
40 sqlString = “SELECT DISTINCT product_category FROM Products “
41 sqlString = sqlString & “WHERE product_status=1 “
42 sqlString = sqlString & “ORDER BY product_category”
43 catRS.Open sqlString
44 %>
45 <% WHILE NOT catRS.EOF %>
46 <tr>
47 <td>
48 <INPUT type=”checkbox”
49 <%
50 ‘ Check to see if the current item is already a favorite
51 ‘ If so, set the checkbox to CHECKED
52 If UBound(arrFavorites) > 0 Then
53 For i = 0 to (UBound(arrFavorites) - 1)
54 If arrFavorites(i) = catRS(“product_category”) Then
55 Response.Write(“ CHECKED “)
56 End If
57 Next
58 End If
59 %>
60 name=”<%=catRS(“product_category”)%>”>
61 </td>
62 <td>
63 <%=catRS(“product_category”)%>
64 </td>
65 </tr>
66 <%
67 catRS.MoveNext
68 WEND
69 %>
70 </table>
71 <% catRS.Close %>
72 <p>
73 <input type=”submit” value=”Save Your Favorites” name=submit1>
74 </form>
75 </center>
76 </body>
77 </html>

Lines 1–9 should look familiar from our other pages in the site. As usual, we are
including our standard function include files and then retrieving the current cus-

tomer’s username and password for validation on line 11. On line 13, we call a new
function that we will build in just a moment, retrieveFavorites. This function will
retrieve the current customer’s favorites from the database as a comma separated list of
categories (that is, “category1, category2, category3”). We then use the Split function
on line 14 to turn the comma separated string into an array named arrFavorites.

ANALYSIS

 18 0672318989 ch14 3/29/00 4:04 PM Page 309

Lines 38–43 execute a SQL query against the Products table to retrieve a distinct list of
the product categories available. This recordset will be used to build our form elements.
On line 45 we test to see if any results were returned using the EOF property. If results
are returned from the query (as they should), we then begin to build the rows for each
product category on lines 46–65.

Each row is comprised of two cells—the first is an INPUT field for the check box. Using
the arrFavorites array, lines 52–58 loop through each element in the array to see if the
category in the array element matches the current category in the recordset. If they
match, we use the Response.Write method on line 55 to add a CHECKED attribute to the
checkbox field, indicating that the customer has previously identified this category as a
favorite category. The name attribute of the check box is set to the category name, on line
60, and will be used by the savefavorites.asp page to determine which check boxes
the user selected.

This process repeats itself for each category returned by the query, providing the cus-
tomer with a real-time list of categories within the Products table. On line 73, we provide
a Submit button that will submit the form to the savefavorites.asp page that was spec-
ified by the <FORM> tag on line 34.

Before we move on to the savefavorites.asp page, we need to add the
retrieveFavorites function used on line 13. Without doing so, any attempt to open this
page will result in an error. The retrieveFavorites function is a simple set of code that
you should add to the storefuncs.asp file. The code for this function is shown in
Listing 14.5.

LISTING 14.5 The retrieveFavorites Function

1 FUNCTION retrieveFavorites
2 sqlString = “SELECT user_Favorites FROM users “ &_
3 “WHERE user_username=’” & Request(“username”) & “‘“
4 SET RS = Con.Execute(sqlString)
5 IF RS.EOF THEN
6 strFavorites = “NONE”
7 ELSE
8 strFavorites = RS(“user_favorites”)
9 END IF
10 retrieveFavorites = strFavorites
11 END FUNCTION

This 11 line function executes a simple SELECT query against the User table to
retrieve the user_favorites column for the current user. The value is stored to a

temporary variable (strFavorites) and is returned to the originating statement (in this
case, line 13 of Listing 14.4). Notice that if the username of the current user cannot be

310 Day 14

ANALYSIS

 18 0672318989 ch14 3/29/00 4:04 PM Page 310

Customizing the Shopping Experience 311

14

retrieved from the Request collection (which includes the Cookies collection), the SQL
statement will not retrieve any rows. In that case, the strFavorites variable will have
the value NONE. The favorites.asp page is shown in Figure 14.3.

FIGURE 14.3
The favorites.asp
page.

Building the savefavorites.asp Page
The second step in allowing our customers to assign their preference to our product
categories is to store their selections. After completing the form provided in the
favorites.asp page, the savefavorites.asp page is called to deal with the checkboxes
that were selected. The code for savefavorites.asp can be found in Listing 14.6.

LISTING 14.6 The savefavorites.asp Page

1 <!-- #INCLUDE FILE=”adovbs.inc” -->
2 <!-- #INCLUDE FILE=”storefuncs.asp” -->
3 <%
4 ‘ Retrieve the selected items
5 For i = 3 to (Request.Form.Count - 1)
6 arrItems = arrItems & Request.Form.Key(i) & “,”
7 Next
8
9 ‘ Provide Default Value
10 IF TRIM(arrItems) = “” THEN arrItems = “NONE”
11

continues

 18 0672318989 ch14 3/29/00 4:04 PM Page 311

12 ‘ Get Login Information
13 username = TRIM(Request(“username”))
14 password = TRIM(Request(“password”))
15 ‘ Open Database Connection
16 Set Con = Server.CreateObject(“ADODB.Connection”)
17 Con.Open “accessDSN”
18 ‘ Get User ID
19 userID = checkpassword(username, password, Con)
20 ‘ Update the user’s favorites
21 updateFavorites(arrItems)
22 Response.Redirect(“default.asp”)
23 %>

On line 5 of Listing 14.6, we begin a For..Next loop through the number of form
items (checkboxes) returned from the previous page. The Request.Form.Count

method returns the total number of form elements passed from the favorites.asp page.
However, this also includes the Submit button, the username, and password fields as part
of the form, thus we remove 3 from the count to only include the checkboxes from the
form. The For..Next statement builds a comma separated list for the selected categories,
which are then stored into the database using the updateFavorites subroutine on line 21.
We will create this subroutine in just a moment. Finally, on line 22 we redirect the cus-
tomer back to the default.asp page after storing the values, thereby never displaying the
savefavorites.asp page to the customer’s browser.

The updateFavorites subroutine needs to be added to the storefuncs.asp function file
before the savefavorites.asp page will function. The code for the updateFavorites
subroutine can be found in Listing 14.7.

LISTING 14.7 The updateFavorites Subroutine

1 SUB updateFavorites(strFavorites)
2 ‘ Update user information in the database
3 sqlString = “UPDATE users SET “ &_
4 “user_favorites=’” & fixQuotes(strFavorites) & “‘ “ &_
5 “WHERE user_id=” & userID
6 Con.Execute sqlString
7 END SUB

On lines 3–5, we build the UPDATE SQL query that is used to update the current
user’s Users table record with an up-to-date user_favorites column that repre-

sents their selections on the previous page. The SQL query is then executed on line 6,
and the subroutine returns to line 22 of Listing 14.6.

312 Day 14

LISTING 14.6 continued

ANALYSIS

ANALYSIS

 18 0672318989 ch14 3/29/00 4:04 PM Page 312

Customizing the Shopping Experience 313

14

Updating the featured.asp Page
In our existing default.asp page, we call on the featured.asp page to randomly display
featured items on our site’s main page. To personalize this for the customer’s favorite
product categories, we need to update the featured.asp page to display random items
from the customer’s selected categories. If the customer hasn’t selected any categories,
however, we still want to use the existing method of a random selection of products.

Open the featured.asp page in your editor and locate the following line of code:

SET Featured = Con.Execute(sqlString)

We’ll replace every line of code above the indicted line. The complete code for the modi-
fied version of featured.asp is contained in Listing 14.8.

LISTING 14.8 The Updated featured.asp Code

1 <%
2 Randomize
3 CONST numFeatured = 3
4 ‘ Retrieve the customer’s favorites and split them into an array
5 arrFavorites = retrieveFavorites
6 arrFavorites = Left(arrFavorites, Len(arrFavorites) - 1)
7 arrFavorites = split(arrFavorites, “,”)
8
9 ‘ If the customer has favorites, randomly choose one category
10 ‘ to feature from
11 If UBound(arrFavorites) > 0 Then
12 intCategory = Int(((UBound(arrFavorites)) * Rnd) + 1)
13 strCategory = arrFavorites(intCategory)
14 Response.Write(“Now featured from our <I>” & strCategory &
➥ “</I> selection:</p>”)
15 ‘ Build the featured products query with the category
16 sqlString = “SELECT product_id, product_picture, product_name,
➥ product_briefDesc “ &_
17 “FROM Products WHERE product_featured = 1 “ &_
18 “AND product_status=1 “ &_
19 “AND product_category=’” & Trim(strCategory) & “‘ “ & _
20 “ORDER BY product_name “
21 Else
22 ‘ Build the featured products query to query all categories
23 sqlString = “SELECT product_id, product_picture, product_name,
➥product_briefDesc “ &_
24 “FROM Products WHERE product_featured = 1 “ &_
25 “AND product_status=1 “ &_
26 “ORDER BY product_name “
27 End If
28 SET Featured = Con.Execute(sqlString)

continues

 18 0672318989 ch14 3/29/00 4:04 PM Page 313

29 IF NOT Featured.EOF THEN
30 featuredArray = Featured.GetRows()
31 Featured.Close
32
33 ‘ Display Featured Products
34 topFeatured = UBOUND(featuredArray, 2) + 1
35 skip = topFeatured / numFeatured
36 IF topFeatured <= numFeatured THEN skip = 1
37 %>
38 <table width=”350” border=0
39 cellpadding=5 cellspacing=0>
40 <%
41 FOR i = 0 TO topFeatured - 1 STEP skip
42 offset = RND * (skip - 1)
43 productID = featuredArray(0, i + offset)
44 productPicture = featuredArray(1, i + offset)
45 productName = featuredArray(2, i + offset)
46 productBriefDesc = featuredArray(3, i + offset)
47 %>
48 <tr>
49 <td>
50 <% IF productPicture <> “?????” THEN %>
51 <IMG SRC=”<%=productPicture%>”
52 HSPACE=4 VSPACE=4 BORDER=0 align=”center”>
53 <% END IF %>
54 </td>
55 <td>
56 <a href=”product.asp?pid=<%=productID%>”>
57 <%=productName%>
58
<%=productBriefDesc%>
59
<a href=”product.asp?pid=<%=productID%>”>
60 get more information
61 </td>
62 </tr>
63 <tr>
64 <td colspan=2 align=”center”>
65
66 </td>
67 </tr>
68 <%
69 NEXT
70 %>
71 </table>
72 <%
73 END IF
74 %>

314 Day 14

LISTING 14.8 continued

 18 0672318989 ch14 3/29/00 4:04 PM Page 314

Customizing the Shopping Experience 315

14

This code is not all that dissimilar from the original featured.asp page. The
new additions all pertain to retrieving and acting on the current user’s favorite

categories. On line 5, we use our retrieveFavorites function again to determine the
current user’s favorite categories. We store the categories as a comma separated list in the
database, so on line 6 we remove the trailing comma from the string. The string is then
converted into an array (arrFavorites) on line 7 using the VBScript Split function.

On line 11 we test to see if the current user has selected any favorites by determining the
size of the arrFavorites array. If the array contains at least one value, a random catego-
ry is selected from the array on lines 12–13. The category is then displayed on line 14,
and then used to populate the SQL SELECT query that will retrieve items from the
Products table on lines 16–20.

If the customer hasn’t specified any favorites, a separate SQL query is generated on lines
23–26 that carries out a general query against the Products table for featured items, just
as with our original featured.asp page.

The rest of our featured.asp page is untouched, lines 28–74, leaving the functionality
the same as before.

Updating the default.asp Page
Before we can put our updated featured.asp to use, we need to update the default.asp
page to set the stage for our changes in the featured.asp file. Our changes to the
default.asp page will be minor cosmetic changes, such as a greeting to our customer,
and the current date and time. Locate the following line in the default.asp page:

<% IF cat = “Home” THEN %>

Just above the identified line, insert the following line of code:

<%= formatDateTime(now(), vbLongDate) %> - Welcome Back <%= username
➥%>!

This displays the current date and time and welcomes the customer back by name just
above the featured items.

The next step is for us to provide a link to the favorites.asp page, allowing customers
to select their favorite categories. Locate the following lines in the default.asp page:

<!-- #INCLUDE FILE=”ProductList.asp” -->
<% END IF %>

Just below that line, add the following code:

<% IF Request.Cookies(“username”) <> “” THEN %>
Pick your favorite kind of candies!
<% END IF %>

ANALYSIS

 18 0672318989 ch14 3/29/00 4:04 PM Page 315

Finally, you’ll need to check whether the storefuncs.asp file is included in the
default.asp page. If not, add the following line to the top of the default.asp file:

<!-- #INCLUDE FILE=”storefuncs.asp” -->

The new default.asp page can be seen in Figure 14.4.

316 Day 14

FIGURE 14.4
The updated main
page—default.asp.

Summary
Today we outlined how to enhance the Web site with some useful features to improve its
usability for your customers. First, we created a page that allows customers to review
their past purchases. This page built off of the functionality that was created to allow cus-
tomers to check on the status of their existing orders. Secondly, we added the ability to
target the advertisement of items based on a customer’s preferences. Using these prefer-
ences, the site can then determine what is of interest to the customer and ensure that the
items that are most likely to sell to that customer are displayed first.

Q&A
Q Why does the default.asp page sometimes not display any featured items?

A This is based on the product_featured column in the Products table and the
featured.asp file. By default, the featured.asp file only queries for items in
the Products table that have been identified as items that you want to promote or

 18 0672318989 ch14 3/29/00 4:04 PM Page 316

Customizing the Shopping Experience 317

14

feature. This is done by specifying a value of 1 in the product_featured column.
You need to be sure that there are featured items for each product category, or you
potentially won’t be displaying anything to the customer.

Another option is to assume that you want to promote any item that is of interest to
a customer based on the favorite categories. To do so, you could remove the prod-
uct_featured=1 qualification in the SQL query.

Q What happens if I remove a product category from the Products table, but a
customer has marked it as a favorite?

A Nothing, really. When the customer visits the site, he might attempt to query for
products in a category that doesn’t exist. In that case, no items would be returned
and nothing would be displayed to the customer. If the customer returns to the
favorites.asp page, the category will be gone as well.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What purpose does the retrieveFavorites function serve?

2. Why don’t we store product categories as numeric identifiers in our example?

Exercise
Currently, our site only features items that are of interest to a customer based on
their favorite selections. Try adding to our site a display of favorites based on the
past purchases of our customer.

 18 0672318989 ch14 3/29/00 4:04 PM Page 317

 18 0672318989 ch14 3/29/00 4:04 PM Page 318

WEEK 2

In Review
This week, you finished building your online store. In the beginning of the
week, on Days 8 and 9, you learned two methods of creating a virtual shopping
cart. Next, on Day 10, you learned how to enable a customer to check out the
products in their shopping cart and complete an order.

Later in the week, on Day 11, you learned how to process credit card transac-
tions with ASP scripts. You learned how to use CyberCash to authorize and set-
tle credit card transactions.

Next, you learned how to enable customers to track their orders. You created a
Web page that customers can use to check the status of their orders. You also
learned how to enable customers to compare shipping rates for shipping pack-
ages from your store to their home.

Finally, at the end of the week, you learned how to create a subscription Web
site. You learned how to create a user registration system and password protect
pages on your Web site so that the pages can be viewed only by paying cus-
tomers.

 19 0672318989 w2 in review 3/30/00 8:11 AM Page 319

Bonus Project
Creating a Transactional Customer Feedback Form
In this week’s bonus project, you’ll modify the customer feedback form that you created
in last week’s bonus project so that it uses an Active Server Pages transaction. In the les-
son on Day 10, “Checking Out”, you learned about the advantages of using an Active
Server Pages transaction. By using a transaction, you can create a subroutine that auto-
matically executes if any errors are encountered in an ASP page.

If a customer submits his feedback through the customer feedback form and an error is
encountered, an emergency customer support phone number will be displayed. The idea
is that if your Web server is in such a sorry state that a customer cannot even leave feed-
back, you’ll want to know this as quickly as possible. The emergency customer support
phone number is displayed only if something goes seriously wrong.

You’ll remember from last week’s bonus project that the customer feedback pages rely
on the following database table (named feedback):

• feedback_id—an AutoNumber field that uniquely identifies each row in the table.

• feedback_email—a Text field that contains the customer’s email address.

• feedback_comment—a Memo field that contains the text of the customer’s feed-
back.

• feedback_entrydate—a Date/Time field that automatically contains the date the
feedback is entered. This field should have a default value of NOW().

A customer submits his feedback through an ASP page named feedback.asp. This page
contains a simple HTML form with no ASP scripts. The customer feedback form is con-
tained in Listing BP2.1 (It’s the same page as used in last week’s bonus project).

LISTING BP2.1 The Customer Feedback Form

1 <HTML>
2 <HEAD><TITLE>Customer Feedback</TITLE></HEAD>
3 <BODY>
4
5 Thank you for leaving customer feedback on our Web site.
6
Please enter your feedback in the form below:
7
8
9 <FORM METHOD=”post” ACTION=”saveFeedback.asp”>
10 <P>Your Email Address:
11
<INPUT NAME=”email” size=”50” maxlength=”255”>
12 <P>Your Feedback:

320 Week 2

 19 0672318989 w2 in review 3/30/00 8:11 AM Page 320

In Review 321

13
<TEXTAREA NAME=”comment” COLS=50 ROWS=4
14 WRAP=”Virtual”></TEXTAREA>
15 <P><INPUT TYPE=”submit” VALUE=”Submit Feedback”>
16 </FORM>
17
18 </BODY>
19 </HTML>

When a customer submits the customer feedback form, the data is submitted to the save-
feedback.asp page. The savefeedback.asp page has been modified in this bonus pro-
ject to use an Active Server Pages transaction. The new version of the savefeedback.asp
page is contained in Listing BP2.2.

LISTING BP2.2 The Transactional Save Feedback Page

1 <%@ TRANSACTION=REQUIRED %>
2 <%
3 Response.Buffer = TRUE
4
5 SUB OnTransactionAbort
6 Response.Clear
7 %>
8 <HTML>
9 <HEAD><TITLE>Problem</TITLE></HEAD>
10 <BODY>
11
12 An error was encountered while submitting your feedback.
13
Please call our customer support number at:
14 <BLOCKQUOTE>
15 (555) 555-8989
16 </BLOCKQUOTE>
17
18 </BODY>
19 </HTML>
20 <%
21 END SUB
22
23 FUNCTION fixQuotes(theString)
24 fixQuotes = REPLACE(theString, “‘“, “‘’”)
25 END FUNCTION
26
27 email = TRIM(Request(“email”))
28 comment = TRIM(Request(“comment”))
29 IF email <> “” AND comment <> “” THEN
30 Set Con = Server.CreateObject(“ADODB.Connection”)
31 Con.Open “accessDSN”
32 sqlString = “INSERT INTO feedback (feedback_email, feedback_comment) “ &_

continues

 19 0672318989 w2 in review 3/30/00 8:11 AM Page 321

33 “VALUES (‘“ & fixQuotes(email) & “‘,’” & fixQuotes(comment) & “‘)”
34 Con.Execute sqlString
35 END IF
36 %>
36 <HTML>
37 <HEAD><TITLE>Save Feedback</TITLE></HEAD>
38 <BODY>
39
40 Thank you for submitting your feedback!
41
42 </BODY>
43 </HTML>

Several changes have been made to the savefeedback.asp page to support a
transaction. In line 1, the @TRANSACTION directive has been added to the script.

Next, in line 3, page buffering is enabled. Buffering the page is necessary because we
don’t want an error message displayed if an error is encountered. Instead, the contents of
the page will be cleared, and the customer support phone number will be displayed.

Lines 5–21 contain the subroutine that is triggered if an error occurs. The
OnTransactionAbort subroutine clears the error message with the Clear method of the
Response object and displays the customer support phone number.

You can test the savefeedback.asp by introducing an error into the script. Just stick
blah.blah within a script in the page and attempt to submit the customer feedback form.
The customer support phone number should be displayed.

322 Week 2

LISTING BP2.2 continued

ANALYSIS

 19 0672318989 w2 in review 3/30/00 8:11 AM Page 322

At A Glance
In this final week, you’ll learn several methods of maintaining
and promoting your commercial Web site. You’ll begin by
learning how to safeguard your Web site from malicious users.
You’ll learn how to use the security features of the Web server
and operating system to secure your Web site from anonymous
hackers.

Next, you’ll learn how to maintain your Web site by taking ad-
vantage of several debugging techniques. You’ll learn how to
use Microsoft Visual InterDev’s integrated debugger. You’ll
also learn how to create a standard library of debugging func-
tions that you can use to monitor and maintain your Active
Server Pages.

Later in the week, you’ll learn how to administer your Web
site over the Internet. You’ll learn how to use a Web browser
to administer your Web server. You’ll also learn how to use
the FTP service to manage your Web site’s files remotely.

Next, you’ll learn how to promote your Web site through email
marketing. You’ll learn how to use the Collaboration Data
Objects for Windows NT Server (CDO for NTS) to send email
from an ASP script. You’ll learn how to use the CDO for NTS
to send batches of personalized email to promote your site.

You’ll also learn how to maintain your Web site by analyzing
your Web server’s log files. An overview of the different log
file formats will be presented. You’ll learn how to extract and
analyze the information from the log files to monitor the per-
formance of your Web site.

Finally, you’ll learn how to display banner advertisements at
your Web site and generate revenue. You’ll learn how to pro-
mote your Web site and use the Ad Rotator component to dis-
play advertisements.

WEEK 3 15

16

17

18

19

20

21

 20 0672318989 part 03 3/30/00 8:11 AM Page 323

 20 0672318989 part 03 3/30/00 8:11 AM Page 324

DAY 15

WEEK 3

Securing Your Store
With a physical store, gaining a customer’s trust is a primary step to a success-
ful business, and one key way to earn this is by showing your customer that
you have maximized store security. You do that by establishing your business in
fixed locations, hiring trustworthy people, posting (and honoring) store hours,
and keeping private information locked up. Businesses that don’t demonstrate
their store security might find that people trust them less—for example, con-
sumers typically don’t buy expensive diamond rings from traveling vendors at
flea markets.

When you visit other E-Commerce Web sites, claims about security often figure
prominently. You can use similar security cues to help give your customers con-
fidence in you and your site. Without that confidence, customers cannot submit
personal information, such as their credit card number, address, or telephone
number. Today you will learn the following ways to add security features and
security cues to your Web site:

• Registering your own domain

• Making your server more secure

• Protecting your users’ private information with SSL

 21 0672318989 ch15 3/30/00 8:15 AM Page 325

• Protecting your database

• Registering with the Better Business Bureau Reliability program

• Establishing a privacy policy and joining a privacy seal program

• Reviewing the Better Business Bureau’s Children’s Advertising Review Unit guide-
lines

Registering Your Own Domain
Many companies offer free Web hosting with a complicated domain name like http://
www.hostingservice.com/Neighborhood/WallaWalla/~yourplace. Just as a physical
store has its own address, your Web store should have its own Web address. As you most
likely know by now, you can choose the part of your address that’s to the left of the .com
by registering a domain.

Domain Names and Marketing
When you open a retail business, you usually try to put it on a heavily trafficked street.
The cyberspace equivalent of a good retail location is a domain name that clearly
describes your business. You’ve probably read a lot lately about the land rush for domain
names. Unlike the physical world, regardless of the quality of the location, registering a
domain name for the first time is the same, inexpensive price. So in the last few years,
folks have been registering as many domain names as they can think of. Because of this,
you might find that all the domain names you prefer are taken.

One solution to this problem is to register your Web site in another country. The domain
that ends in .com belongs to the United States; other countries have their own domains
that end in their two-letter country abbreviation (for example, domains registered in
Canada end in .ca, and those registered in Great Britain end in .uk). Larger countries
usually require companies registering in their country domains to have an office in their
country; however, many smaller, poorer countries have made their domains available for
companies located anywhere in the world.

Technically, these foreign domain names are just as good as the domains that end in
.com; unfortunately, they often aren’t considered as prestigious. If you can’t get your first
choice of domain name, you’ll have to decide for yourself whether it’s better to have a
.com domain name that’s harder to remember, or a foreign domain name that’s easier to
remember. If you decide that you want to use a foreign domain name, you can register it
by visiting international Web registrars like one of the following:

http://www.alldomains.com

http://www.register.com

326 Day 15

 21 0672318989 ch15 3/30/00 8:15 AM Page 326

Securing Your Store 327

15
If you decide you’d rather have one of your first choices in .com, and it’s registered to
someone else, you can try to buy your domain name of choice. You can do this by send-
ing an email directly to the owner of the domain or by going through a domain name
brokerage. Finding the email address of a domain name owner can be a bit complicated.
A good place to start is http://www.internic.net/whois.html. Remember, though—
just like good real estate, good domain names vary widely in price on the secondary
market. Prices for domain names in the secondary market have recently ranged from
hundreds to millions of dollars.

You can register your domain name directly through most good Internet service pro-
viders. You will want to ask your ISP to point at least two domain names to your Web
server’s IP address: yourdomain.com and www.yourdomain.com.

We are using yourdomain.com as a placeholder for the domain name you
actually choose for your Web site.

Note

Registering Your Domain Name Yourself
If you’re a committed do-it-yourselfer, you can register a domain name by visiting a
domain name registrar, an organization that keeps track of which domain names go with
which Web addresses. Recent changes to the domain naming policy have deregulated the
price of domain names, so it can pay to shop around. The current list of domain name
registrars is available at http://www.internic.net/alpha.html. The steps involved in
registering and implementing a domain name are quite complicated, and beyond the
scope of this book.

When asking your ISP to register your domain, ask them to point the DNS
for the email for your new domain to your email server. If you don’t already
have an email server, a good ISP can forward all the email sent to any
address in your domain to a single email address.

Your domain name will become your company’s identity, so you want to
make sure that when people send mail to you@yourdomain.com, it can be
delivered and answered.

Caution

After your ISP has registered your DNS entries, you will want to change the name of
your Web server to match by following these steps:

1. Bring up the Control Panel by selecting Start, Settings, Control Panel.

 21 0672318989 ch15 3/30/00 8:15 AM Page 327

2. The system will open the Control Panel. Double-click the icon labeled Network.

3. Click the Protocols tab (see Figure 15.1).

328 Day 15

FIGURE 15.1
The Network Protocols
control panel.

4. Double-click the line labeled TCP/IP Protocol.

5. Click the DNS tab.

6. Change the Host Name to www and the Domain to yourdomain.com (see Figure 15.2).

FIGURE 15.2
Changing the host
name and domain.

 21 0672318989 ch15 3/30/00 8:15 AM Page 328

Securing Your Store 329

15
Making Your Server More Secure

Operating system security is an extremely complex and detailed subject that is, for the
most part, beyond the scope of this book. There are, however, a few simple things you
can do to help make your Web server more resilient.

Outsourcing Your Operations

A much easier way to make keeping your Web server secure and reliable is to outsource
your Web server operations to your ISP. Many ISPs are now offering complete, all-inclu-
sive Web server hosting packages. When shopping for a Web server hosting service, look
for the following services as a minimum:

1. Use of name-brand hardware with extensive fault-tolerance. Fault-tolerance features
can keep your server from going down even if a single piece of hardware inside of it
fails.

2. Hardware and software maintenance.

3. Facility security, network security, and firewall services.

4. Continuous (24x7) monitoring.

5. Guaranteed service level agreements. Remember to insist on the highest level of ser-
vice available—99% availability might seem great, but it means that your server
might be down for more than three days a year.

6. Battery and generator power.

7. Tape backups. Your ISP should be offering to back up your entire server every week,
and it should be performing a differential backup every day.

ISPs are competing furiously in this market, and are offering many additional value-
added services on top of the ones previously mentioned. Choose your outsourced opera-
tions partner as carefully as you’d choose any other vendor. They will be responsible for
making sure that your E-Commerce site is always available.

Use NT Server or Windows 2000 Server, not NT
Workstation or Windows 2000 Professional
There are many reasons to use the server versions of Microsoft’s advanced operating sys-
tems for your Web site, but one of the most important reasons is security. When you
install Windows NT Server or Windows 2000 Server, the default security levels that it
chooses are much higher than the default levels of Windows NT Workstation or Windows
2000 Professional. Even though the workstation versions of these operating systems are
cheaper, resist the urge to run an E-Commerce site on one of them.

 21 0672318989 ch15 3/30/00 8:15 AM Page 329

Make Sure That the Latest Service Packs and Hotfixes
Are Applied to Your System
In general, Windows NT and Windows 2000 are very secure operating systems; however,
Microsoft and computer hackers are in a constant battle. As a result, Microsoft constantly
releases fixes that cure security problems discovered by hackers. These fixes are released
as service packs and hotfixes.

You can download or order the latest NT Service Packs and hotfixes from Microsoft’s
NT Server Web site, http://www.microsoft.com/NTServer/all/downloads.asp. The
corresponding files for Windows 2000 are available from http://www.microsoft.com/
windows2000/downloads/. If you are in the United States or Canada, when downloading
or ordering a Service Pack or hotfix, you should choose the high encryption version
whenever one is available.

Whether you download an NT Service Pack or receive it on CD, it comes as a program
named MSNT128.EXE. To install the service pack, simply run the program, choose to
Accept the License Agreement and Backup files, and then press Install. The Service Pack
installer will spend the next few minutes installing new files, and then it will prompt you
to reboot your server. The installation process for NT hotfixes is similar. As of the writ-
ing of this book, Microsoft had not released any service packs for Windows 2000; how-
ever, it is likely that the installation process for that operating system will be similar.

330 Day 15

When you install Windows NT Server, the installation program will ask you
whether you want your computer to be a Primary Domain Controller,
Backup Domain Controller, or Stand-alone Server. Web servers should always
be installed as Stand-alone servers. For security reasons, under no circum-
stances should you make your Web server a Primary Domain Controller or
Backup Domain Controller.

When you install Windows 2000 Server, the installation program will ask you
various questions about Active Directory. Active Directory is an extremely
powerful and complex way to manage system resources and permissions;
needless to say, a detailed discussion of Active Directory is beyond the scope
of this book. In most cases, it will be OK to accept the default settings for
Active Directory.

Caution

 21 0672318989 ch15 3/30/00 8:15 AM Page 330

Securing Your Store 331

15

Microsoft offers a free email service that will notify you when new security-related
Service Packs and hotfixes are available. You can get more information by visiting
http://www.microsoft.com/security/services/subscribe.asp.

Change the Name and Password of Your System’s
Administrator Account
The Administrator account on Windows NT and Windows 2000 is the most powerful
account on the machine. To prevent hackers from trying to guess the password on that
account, change the name of the account.

In order to change the name of the Administrator account on your Windows NT Server,
perform the following steps:

1. Log in as a user who has Administrative rights on your NT Server.

2. Run User Manager for Domains by selecting Start, Programs, Administrative Tools
(Common), User Manager for Domains.

3. Select User, Domain. Enter the NT name of your Web server into the box labeled
Domain (see Figure 15.3).

You should see the title bar of the User Manager change to User Manager—
\\COMPUTERNAME.

Before and after installing any service pack or hotfix on Windows NT, you
should make sure to create a before and after Emergency Recovery Disk by
running RDISK.EXE. These disks can be used to reconstruct your Windows NT
system files in the unlikely event that something goes wrong during the
Service Pack or hotfix installation process.

Caution

FIGURE 15.3
Changing the domain
to the Web server
computer.

 21 0672318989 ch15 3/30/00 8:15 AM Page 331

4. Click on the User named Administrator.

5. Select User, Rename. Enter a name for the Administrator account that will be hard
for someone else to guess but easy for you to remember (see Figure 15.4).

332 Day 15

We are using COMPUTERNAME as a placeholder for the actual NT name of
your Web server.

Note

FIGURE 15.4
Changing the adminis-
trator account.

Make sure that you write down the new name of the Administrator account
and keep it in a safe place. If you can’t remember the Administrator account
name, you won’t be able to administer your system in the future.

Caution

In Windows 2000, there is a similar process for changing the name of the Administrator
account. It is as follows:

1. Log in as a user who has Administrative rights on your NT Server.

2. Run Computer Management by selecting Start, Settings, Control Panel.

3. Double-click Administrative Tools, and then double-click Computer Management.

4. In the console tree, in Local Users and Groups, click Users.

5. Click on the Administrator account, and then click Action and select Rename.

Use NTFS
NTFS stands for NT File System, Microsoft’s more advanced file system for NT and
Windows 2000. NTFS allows you to restrict access to specific files on your Web server.
If you aren’t sure whether your system uses NTFS, you can check by running Disk
Administrator in Windows NT, or Disk Management in Windows 2000 to check. Each of
these tools displays each disk graphically (see Figure 15.5).

 21 0672318989 ch15 3/30/00 8:15 AM Page 332

Securing Your Store 333

15

All the disk graphics should read NTFS. If any of them read FAT, you should convert
each of them by selecting Start, Run and typing CONVERT drive /FS:NTFS into the Open
dialog box (see Figure 15.6).

FIGURE 15.5
Examining your
drives with Disk
Administrator.

Converting a file system from FAT to NTFS might require you to reboot your
server.

Note

FIGURE 15.6
Converting the C:
drive to NTFS.

After your drives are converted, you can change the level of security on individual direc-
tories and files by using the Permissions dialog in the File Manager. To access the
Permissions dialog, perform the following steps:

1. Navigate to the file or folder you want to protect, right-click on it, and select
Properties.

2. Select the Security tab.

3. Click the Permissions button.

See the section “Protecting your Database” for more information on using NTFS to pro-
tect your store’s database.

 21 0672318989 ch15 3/30/00 8:15 AM Page 333

Use a Firewall
Although running IIS on Windows NT or Windows 2000 Server can make for a very
secure Web server, Microsoft doesn’t recommend placing machines running Windows
NT directly on the Internet. Instead, it’s far safer to use a device called a firewall that
will sit between your Web server and your Internet connection and block malicious
Internet traffic from reaching your Web server.

Detailed evaluations of firewall strategies are beyond the scope of this book; however,
you can implement one of the following two ways to protect your Web server:

• Purchase a firewall appliance.

• Outsource your firewall protection to your ISP as described earlier in “Outsourcing
Your Operations.”

Assuming that your ISP can assure you of the competence of its security staff, it’s proba-
bly safer to outsource your operations. Questions to ask your ISP include

• What kind of firewall do they use? Some of the better brands are PIX, Checkpoint,
and Nokia.

• What ports do they allow through the firewall? (Ports should be limited to only 80
and 443.)

• How often do they review the firewall logs? (Logs should be reviewed at least
daily; monthly if they have automated intrusion detection.)

If you decide you would rather operate your own firewall appliance, SonicWALL
(http://www.sonicwall.com) makes an inexpensive, highly regarded firewall device. It
will probably be necessary for you to discuss installation of the device with your ISP,
and they might be able to give you other equipment recommendations.

334 Day 15

If you decide to operate your own firewall, be sure to update the firewall
software and review the firewall logs on a regular basis. Information on
how to do this will be in the documentation that comes with your firewall.

Caution

Keep Your Server Locked Up
Many people make their networks and operating systems secure but forget to restrict
physical access to their servers. Think of your server as a filing cabinet that contains sen-
sitive files. Make sure that it’s in a room with a door that locks, and when you aren’t
using the server, make sure that you log off and lock the door to the room.

 21 0672318989 ch15 3/30/00 8:15 AM Page 334

Securing Your Store 335

15
Keep Your Server Running
One of the worst impressions you can make on a potential customer is for them to visit
your Web site and find it down. Now that you are operating an e-business, it’s important
for you to do your best to always keep your e-business open.

The easiest way to do this is to outsource your Web server operations to your ISP (see
the previous section, “Outsourcing Your Operations”). If you decide not to do this, you
can do the following simple things to make your Web server more reliable:

• Plug your Web server into an Uninterruptible Power Supply (UPS).

• Take regular (preferably daily) backups of your Web server.

• Make sure that your Web server is running on a machine with brand-name hard-
ware and plenty of processor, memory, and disk space. Also, many manufacturers
now offer somewhat more expensive server machines that have advanced high-
availability features. These features are usually worth it.

• Choose an ISP with a reputation for high reliability.

As more people use your server, you should also consider the following:

• Using a client-server database (like Microsoft SQL Server) and installing the data-
base server on a separate machine.

• Adding more machines to run your Web site, and using Windows Load Balancing
Services or another load balancing product to distribute the user load between
machines that run your Web site.

Protecting Your Users’ Private Information
with SSL

You already know that the power of the Internet is that it makes every computer connect-
ed to it appear to be connected to every other computer. If two computers aren’t actually
connected, software on those computers automatically exchanges information by for-
warding the information through other computers. This is an extremely powerful, flexi-
ble, and easy-to-use system, but it leaves you and your customers open to risks when
accessing your E-Commerce site. The major risks are Spoofing, Unauthorized
Disclosure, and Data Alteration.

 21 0672318989 ch15 3/30/00 8:15 AM Page 335

As described in Chapter 8, “Building the Transaction Databases,” you can reduce these
risks by installing a secure certificate on your Web server. The secure certificate prevents
spoofing by identifying your Web site to your customers through a third party known as
a Certification Authority. The certificate also prevents unauthorized disclosure and data
alteration by activating the encryption feature of IIS.

Server certificates are available for purchase from a large variety of certification authori-
ties around the world. Certificates from any certification authority will enable the encryp-
tion features of IIS; however, the procedures that each Certification Authority follows to
ensure the identity of your company can vary. The prices also vary, so it can pay to shop
around. The Certification Authorities that issue server certificates at the time this book
was written are listed in Table 15.1. The largest Certification Authority is VeriSign, and
the instructions in Chapter 8 cover purchasing a certificate from VeriSign. The proce-
dures for obtaining certificates from other Certification Authorities are similar; however,
be sure to contact the specific Certification Authority you plan to use for details.

TABLE 15.1 Certification Authorities

Certification
Authority Location URL

Asociacion Nacional del Mexico http://www.notariadomexicano.org.mx

Notariado Mexicano

Belgacom e-trust Belgium http://www.e-trust.be

Certiposte France http://www.laposte.fr

Certisign Brazil http://www.certisign.com.br

Certplus France http://www.certplus.fr

Correo Uruguay http://www.correo.com.uy

Deutsche Telekom German http://www.deutschetelekom.de

Digital Signature Trust Washington, DC http://www.digsigtrust.com

Entrust Plano, TX http://www.entrust.net

Equifax Atlanta, GA http://www.equifaxsecure.com

336 Day 15

Spoofing is when a hacker or con artist copies your Web site in order to con-
vince your customers to enter private information like credit card numbers.

Unauthorized Disclosure and Data Alteration can occur when private infor-
mation is sent unencrypted. A hacker might be able to intercept or change
private information as it passes between a customer’s computer and your
own.

Note

 21 0672318989 ch15 3/30/00 8:15 AM Page 336

Securing Your Store 337

15
FNMT Spain http://www.fnmt.es

Fundacion FESTE Spain http://www.feste.com

Hong Kong Telecom Hong Kong http://www.hkt.com

GlobalSign Belgium http://www.globalsign.com

GTE Cybertrust Irving, TX http://www.cybertrust.com

Internet Publishing Services Spain http://seguridad.ips.es

Netlock Hungary http://www.netlock.net

PTT Post Netherlands http://www.ptt-post.nl

Saunalahti.fi Finland http://saunalahti.fi

SIA Italy http://www.sia.it

Swisskey Switzerland http://www.swisskey.com

Thawte South Africa http://www.thawte.com

TrustCenter Germany http://www.trustcenter.de

Usertrust Salt Lake City, UT http://www.usertrust.com

ValiCert Mountain View, CA http://www.valicert.com

VeriSign Mountain View, CA http://www.verisign.com

Protecting Your Database
In contrast with securing your Windows NT Server and installing a server certificate,
basic protection for your database is relatively simpler, especially if you’ve changed your
server’s file system to NTFS. To be sure that your database is secure, follow these guide-
lines:

1. Don’t keep your Access databases (*.mdb) in the same directory as your Web site.

2. Make sure that you keep your server logged off and physically locked up when you
aren’t using it.

3. Keep your Access database in a directory that isn’t shared on your network. You
can use the Windows NT Explorer to specify that disks and directories are not
shared by clicking on any directory with a hand icon (see Figure 15.12), selecting
File, Properties, going to the Sharing tab, and specifying Not Shared.

Certification
Authority Location URL

 21 0672318989 ch15 3/30/00 8:15 AM Page 337

4. Use NTFS security to further restrict access to your database.

You can use the NTFS Permissions dialog (see the section “Use NTFS”) to further protect
your users’ sensitive information by changing the protections on the folder that contains
your store’s Microsoft Access database, or by changing the protections on the Access
database itself. By default, anyone who has login access to the Web server will have
access to the store’s Access database. You can safely limit access to your own account and
the Internet Guest Account. The name of the Guest Account begins with IUSR_.

338 Day 15

If a directory is shared, all its sub-directories will also be shared. If your
Access .mdb file is in a subdirectory, make sure that you have specified Not
Shared for all directories above it.

Caution

FIGURE 15.7
Shared directories.

Unfortunately, because Microsoft Access is a file-based database, it is diffi-
cult to provide adequate protection for information stored in the database.
For increased security, consider using a client-server database like Microsoft
SQL Server. Client-server databases like SQL Server provide finer-grained per-
missions mechanisms that allow you to protect particular database tables
and columns. Detailed descriptions of these security features are beyond the
scope of this book.

Caution

Registering with the Better Business Bureau
Reliability Program

The Better Business Bureau offers two programs to help online businesses reassure their
customers—a reliability program and a privacy program. The BBBOnLine Reliability
Program requires that you

• Become a member of your local Better Business Bureau.

 21 0672318989 ch15 3/30/00 8:16 AM Page 338

Securing Your Store 339

15
• Allow the local BBB to verify information about your physical business, including

your street address, telephone number, and names of owners and managers.

• Be in business for at least one year.

• Agree to respond promptly to consumer complaints, and have a satisfactory com-
plaint record with the BBB.

• Agree to participate in binding arbitration for unresolved disputes involving the
products and services you offer online.

• Agree to conform to the BBB’s guidelines for online advertising, and to change
your advertising when necessary to conform to those guidelines.

You can apply for this program by visiting the BBBOnLine Web site at http://
www.bbbonline.org. Participating businesses can display the Better Business Bureau’s
Reliability Program graphic on their home page (see Figure 15.8).

FIGURE 15.8
The BBBOnLine
Reliability Program
logo.

Establishing a Privacy Policy and Joining a
Privacy Seal Program

A 1998 BusinessWeek/Harris Poll identified Web privacy as the number one concern of
Web users. A way to allay that concern and promote trust in your Web site and your
company is to assure your users that the information they disclose to you will remain
private. The best way to do this is to develop and articulate a strong privacy policy and to
join and publicize participation in a privacy seal program.

Similar to the Underwriters’ Laboratories and Good Housekeeping seals, Internet privacy
seal programs are administered by third-party organizations to provide a trustworthy
means of communication between consumers and businesses. These organizations

• Guide online businesses in developing comprehensive privacy policies.

• Monitor business compliance with these policies.

• Educate consumers on the Internet privacy.

• Provide recourse for consumers who feel their privacy has been violated.

As of the writing of this book, there were three major online privacy programs: TRUSTe,
CPA WebTrust, and the BBBOnLine Privacy Program. Each program is similar in that it

 21 0672318989 ch15 3/30/00 8:16 AM Page 339

requires members to establish, publicize, and adhere to a privacy policy. Each provides a
graphic that participants display on their home pages (see Figure 15.9), but each varies in
cost and level of oversight.

340 Day 15

FIGURE 15.9
Various privacy seal
graphics.

Sample Privacy Policy

The following sample privacy policy is provided as a starting point for you in building
your own site privacy policy.

Privacy statement for www.yoursite.com

Yoursite Industries has created this privacy statement in order to demonstrate our strong
commitment to privacy. This statement discloses how we collect and disseminate informa-
tion on www.yoursite.com.

We use your IP address to help diagnose problems with our Web server and to administer
our Web site. Your IP address can also be used to help identify you and keep track of the
items in your shopping cart.

This site contains links to other sites. www.yoursite.com isn’t responsible for the privacy
practices or the content of such Web sites.

Our site has an order form for customers to request information, products, and services.
We collect contact information (like email addresses) and financial information (like cred-
it card numbers). We use contact information to send orders and information about
orders to our customers, as well as to communicate special offers from us or our partners.
Users can opt not to receive these special offers by sending us email.

Our site has security measures in place to prevent the loss, misuse, and alteration of cus-
tomer information. These include securing forms with SSL and digital certificates, physical
security, network firewalls, and regular data backups.

If you have any questions about this privacy statement or the practices of this site, con-
tact John Smith, 1 First Street, My Town, USA, or send email to jsmith@yourdomain.com.

The BBBOnLine is the simplest and lowest cost privacy program. First, you submit an
online application, which includes a detailed questionnaire about how you collect, use,
and store data; your privacy policy; and whether your site is directed toward children.
Next, you pay the first year of an annual fee (scaled by the annual revenues of your busi-
ness), which covers a Compliance Analyst’s review of your site. Third, you submit a
signed copy of the BBBOnLine license agreement. Finally, the BBB will send you some

 21 0672318989 ch15 3/30/00 8:16 AM Page 340

Securing Your Store 341

15
HTML that will allow you to post the BBBOnLine Privacy Seal on your home page.
More information about this program is available at http://www.bbbonline.org.

The TRUSTe program is intermediate in cost and oversight. TRUSTe allows you to build
a privacy statement by completing a privacy statement wizard. You then sign and submit
a license agreement, a self-assessment form, and the first year of an annual fee (which is
scaled by the annual revenues of your business). Next, a TRUSTe account executive
reviews the policy with you and sends you HTML that allows you to post the TRUSTe
trustmark on your site. Periodically thereafter, representatives review your site and seed
your site with user information. Seeding is the process of entering traceable user infor-
mation in order to verify that you are conforming with your stated privacy policy. What
this means is that periodically a TRUSTe representative will pretend to be a user of your
site, enter information about themselves, and then verify that you aren’t using that
information in a way that conflicts with your privacy statement. Information about the
TRUSTe program is available at http://www.truste.org.

The CPA WebTrust program is the most expensive and most thorough. The program
requires you to enlist a specially licensed and trained CPA who helps you build a privacy
policy; then quarterly privacy and security audits of your site are conducted. As with the
other programs, after you meet the CPA WebTrust requirements, you will be given
HTML to allow you to post the CPA WebTrust Seal on your Web site. More information
is available at http://www.cpawebtrust.org.

The Better Business Bureau’s Children’s
Advertising Review Unit Guidelines

As more children have been gaining unsupervised access to the Internet through their
schools, libraries, and home computers, some of the same social forces that changed tele-
vision advertising have come to bear on the Web. The Better Business Bureau’s
Children’s Advertising Review Unit was originally formed to allow television broadcast-
ers and advertisers to regulate themselves; the unit has recently become involved in writ-
ing guidelines for Web sites directed toward children thirteen years old or younger.

The CARU guidelines ask Web site designers to

1. Take into account the limited sophistication and maturity of their audience. Young
children are often unable to evaluate the credibility of information they read or
hear, and advertisers and web site designers shouldn’t try to exploit children’s
limitations.

 21 0672318989 ch15 3/30/00 8:16 AM Page 341

2. Not foster unreasonable expectations of product quality or performance through the
use of imagination or make-believe.

3. Communicate information in a truthful and accurate manner.

4. Promote positive and beneficial social behavior.

5. Provide positive minority role models and avoid stereotyping and appeals to preju-
dice.

6. Contribute to the parent-child relationship in a constructive manner.

In designing an E-Commerce site for children, it’s important to avoid encouraging the
child to ask his parents to buy products for him, and not to create a sense of urgency or
exclusivity around products. Auctions are especially inappropriate for children. Also,
whenever you have to present a disclosure or disclaimer to a child, make sure that it’s
worded in a way that the child can understand. In addition, if your site mixes content and
commerce, it’s important to provide a clear separation between these sections. Finally,
when you give children an opportunity to enter into a transaction, you must make it clear
to them that they need a parent or guardian’s permission before proceeding, and there
should be a clear way for the child or the parent to cancel the order. This last item is also
for your own protection—under existing laws, parents usually aren’t obligated to fulfill
sales contracts that their children enter into.

Another concern of the CARU, and indeed of the U.S. government, is the collection and
use of Web site data about children. The Children’s Online Privacy Protection Act of
1998 requires parental permission before collecting personal data from children under
thirteen. In order to conform to the law and the CARU guidelines, be sure to remind chil-
dren that they need their parents’ permission before providing any personal data. If you
intend to collect any real-world information about a child (such as an address or
phone number), you must first have verifiable consent from the child’s parent or
guardian.

Summary
In this chapter, we discussed how to foster confidence in your company and your E-
Commerce site. You learned how to registering your own domain, request and install a
server certificate, and protect your users’ private information with SSL. You also learned
how to make your servers and databases more secure. Finally, you learned about privacy
issues, how to write a privacy statement, and how to register with third-party privacy and
reliability monitoring organizations.

342 Day 15

 21 0672318989 ch15 3/30/00 8:16 AM Page 342

Securing Your Store 343

15
Q&A

Q When I try to install my server certificate, I get an error message. What can
I do?

A Installing a server certificate can be tricky. Make sure that you are entering the
password for your certificate signing request correctly, and that the certificate file
you are installing matches the certificate signing request you created. If all else
fails, VeriSign technical support often is helpful in diagnosing these sorts of prob-
lems.

Q Is NT secure and reliable enough to run a commerce site?

A Security and reliability are usually more a matter of how well your site is put
together and maintained than what operating system you use. There are many
secure, reliable commerce sites running NT. Following the guidelines in this chap-
ter is a good start at keeping your E-Commerce site secure and reliable.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What version of Windows NT should you be using for your E-Commerce Web

server?

2. What ports need to be allowed through your firewall?

3. What is Spoofing?

4. How large of a key should you use for a certificate signing request?

5. What are three ways to improve the security of your web site’s Access database?

Exercise
Write a privacy statement for your E-Commerce site. Be sure to take into account
whether your site will target children.

 21 0672318989 ch15 3/30/00 8:16 AM Page 343

 21 0672318989 ch15 3/30/00 8:16 AM Page 344

DAY 16

WEEK 3

Debugging Your
E-Commerce Applications

Active Server Pages is now a few years old, and is certainly more robust than
they were in the days of IIS 3.0; however, like any newer computer technology,
diagnostics and debugging in Active Server Pages is still much less mature than
it is in the more mature Visual C++ and Visual Basic. Finding problems in
Active Server Pages is made more difficult by the transactional nature of the
Web—programming errors on the server are revealed only by actions on a
client, and it is sometimes difficult to relate the client action to the server error.
Further complicating the problem is the fact that some errors aren’t encountered
unless the server is under a large amount of load or unless many clients are
submitting particular requests in a particular order.

Today, you will learn the following:

• How to keep a development system that’s separate from your production
system (and why that’s important)

• How to debug your application using Visual InterDev’s integrated de-
bugger

 22 0672318989 ch16 3/30/00 8:12 AM Page 345

• How to debug your application on a production server

• How to capture errors into a log file

• Testing for scalability

Keeping Your Development and Production
Systems Separate

An old axiom of software development is that every piece of software has bugs. When
you develop your system for the first time, you will be the only person using it, which
will make finding and fixing problems easier. After you put your site up for business,
however, your customers will expect it to run 24 hours a day, 7 days a week. Making
changes to a Web site as it is running isn’t compatible with the goal of 24x7 operations—
any change you make on a production system runs the risk of interrupting the service for
anyone currently using the system.

346 Day 16

Web programmers use the term production system to refer to the Web site
that their customers actually use.

A Web site used only by a company’s Web programmers for development
and testing is referred to as a development system.

Note

One example of a change that could interrupt service is altering a database schema.
Changing the structure of a database often “breaks” your SQL queries; if you do this on
your production system, your users will see the error, and it might take some time for
you to restore the database, during which time your site might seem to have stopped
working to your customers. Similarly, when you place a breakpoint in Visual InterDev
(see the following section, “Debugging Your Application Using Visual InterDev’s
Integrated Debugger”), the breakpoint is global, meaning that any user of the system
who causes a script to hit your breakpoint will bring up the debugger and wait for you to
start debugging.

To prevent conflicts like these, professional developers work around this problem by
keeping two Web servers—one for debugging, and a second one for actual operations.
Now that PCs are so cheap, this is practical for even the smallest installations. A low-end
Celeron (running Windows NT Server, of course) should be adequate for developing and
testing most E-Commerce applications. An added bonus of using a lower powered sys-
tem is that you’ll be able to recreate scalability problems more easily on a system with a
slower processor and a slower, smaller hard disk. If you decide to pursue a separate

 22 0672318989 ch16 3/30/00 8:12 AM Page 346

Debugging Your E-Commerce Applications 347

16

development system, get your new system ready and skip to the section “Creating a
Second Web Site.”

Although you can use Windows NT Workstation or even Windows 95 or
Windows 98 to run a Web server and Visual InterDev, running Windows NT
Server will provide a more realistic environment for testing.

Caution

Should you choose not to keep a separate development machine, you can “fake it” by
using multihoming to create a second IP address for your machine, and then creating a
separate Web site for development that uses the same IP address.

Before you start, you should be sure that your NT username has Administra-
tor privileges on your production server. If you choose to keep a separate
development server, your NT username will need to have Administrator priv-
ileges on the development server.

Note

Creating a Second IP Address
You can create a second IP address for your computer via the Network control panel by
implementing the following steps:

1. Go to the Start menu and select Settings, Control Panel.

2. Double-click the Network icon.

3. After the Network dialog comes up, click the Protocols tab.

4. Select TCP/IP Protocol, and then click Properties.

5. When the Microsoft TCP/IP Properties dialog appears (see Figure 16.1), click the
Advanced button.

6. When the Advanced IP Addressing dialog appears (see Figure 16.2), click the Add
button.

7. When the TCP/IP Address dialog appears, enter another IP address, and then click
the Add button to dismiss the dialog.

 22 0672318989 ch16 3/30/00 8:12 AM Page 347

348 Day 16

FIGURE 16.1
Microsoft TCP/IP
Properties.

FIGURE 16.2
Advanced IP
Addressing.

Be sure that the IP address you enter isn’t being used already by another
machine on your network.

Caution

8. Observe that your new IP address now appears in the IP Addresses list of the
Advanced IP Addressing dialog. Click OK in this dialog, and OK in the TCP/IP
Properties dialog. Click Close in the Network dialog.

9. You will be prompted to reboot your machine.

 22 0672318989 ch16 3/30/00 8:12 AM Page 348

Debugging Your E-Commerce Applications 349

16

After you have created your second IP address, you can create a new Web site to corre-
spond to it.

Creating a Second Web Site
Now that you’ve either created a second home IP address for your Web server, or
installed Windows NT Server and IIS on a new machine, you are ready to create your
development Web site. To do this, implement the following steps:

1. Copy your production Web site to a new directory on the machine you will be
using for development (for example, C:\Dev_Store).

2. Go to the Start menu and select Programs, Windows NT 4.0 Option Pack,
Microsoft Internet Information Server, Internet Service Manager.

3. When the management console appears, in the left panel, select the folder labeled
Internet Information Server. In the right panel, select your computer (see Figure 16.3).

FIGURE 16.3
The IIS Management
Console.

4. Select Action, New, Web Site. You will see the New Web Site Wizard.

5. In the Web Site Description box, type Dev_store. Click Next.

6. The next page prompts you to select the IP address and TCP ports to use for this
Web server. If you are using a single machine for development and production,
select the IP address you created in Advanced IP Addressing (see Figure 16.4). If
you are using separate machines for development or deployment, don’t change the
IP address. In either case, leave the other settings the same and click Next.

7. The next page prompts you to enter a directory for your new Web site. Enter the
directory from step 1 and click Next. When the next page appears, click Finish.

 22 0672318989 ch16 3/30/00 8:12 AM Page 349

You can now make changes to your development Web site without affecting your produc-
tion site. When you want to test, point your browser to the IP address of the development
site (for a single machine, the IP address you created previously; for separate machines,
the IP address of your development machine). When you are satisfied with the changes
you make, you can use Explorer to copy the pages from the development directory to the
production directory in order to deploy them, or you can use the deployment feature of
Visual InterDev.

350 Day 16

FIGURE 16.4
Selecting a new IP
address.

The word deploy refers to the process of moving software from a develop-
ment and testing system to a production system.

Note

Deploying Your Application Using Visual InterDev
Visual InterDev includes a deployment feature that makes moving Web pages from a
development system to a production system simpler. To use the feature, implement the
following:

1. If you haven’t already, install either the Microsoft Posting Acceptor or the
FrontPage server extensions on your development and production servers.

2. Set write permissions on your development and production deployment directories.

3. Confirm that your IIS Scripts folders have their permissions set to Execute (includ-
ing script).

4. Create a Visual InterDev Project for your development Web site.

You can install Posting Acceptor from the Visual Studio installation program, or by run-
ning pasetup.exe, which is located in the Deploy directory. You can then set the write
permissions on your development and production deployment directories by implement-
ing the following:

 22 0672318989 ch16 3/30/00 8:12 AM Page 350

Debugging Your E-Commerce Applications 351

16

1. Returning to the IIS Management Console on your development machine.

2. Opening the node for your production Web server, and clicking your development
Web site.

3. Selecting Action, Properties.

4. Selecting the Home Directory tab, and then checking the Write check box (under
Access Permissions—see Figure 16.5).

FIGURE 16.5
Allowing Write permis-
sions for your deploy-
ment directory.

5. Repeating this process for your production Web server.

To confirm that your Scripts folder has its permissions set to Execute (including script),

1. Return to the IIS Management Console on your development machine.

2. In the left pane, open the node for your development Web server and select the
Default Web Site.

3. In the right pane, select SCRIPTS.

4. Select Action, Properties.

5. When the SCRIPTS Properties dialog appears, select the Virtual Directory tab.

6. Toward the bottom of the page, select the Execute (including script) radio button
(see Figure 16.6).

7. Repeat the previous process for your production Web site.

 22 0672318989 ch16 3/30/00 8:12 AM Page 351

Now that your development and production systems are ready, you should create a Visual
InterDev project for your development Web site, and a separate deployment target for
your production server. To do this, implement the following:

1. Return to your development system and copy your Web site to a work directory.

352 Day 16

FIGURE 16.6
Allowing Execute per-
missions for your
SCRIPTS directory.

Yes, it’s true: You now have three copies of your Web site floating around.
This is how most professional Web developers develop, test, and deploy
their systems.

Note

2. Run Visual InterDev. By default, the New Project dialog will appear; if it doesn’t,
you can bring it up by selecting File, New Project.

3. In the Name box, enter Store, and in the Location box, enter the location of the
work copy of your Web server made in step 1. The Web Project Wizard then
appears.

4. Select your development Web server as the server you want to use, and select
Master Mode as the mode you would like to work in. Click Next.

5. Select Connect to an existing Web application, and select the directory of your pro-
duction store application (probably the Root Web). Click Finish.

6. The Wizard might ask if you would like to install the Visual InterDev script library.
You should choose No.

7. In the upper right corner of Visual InterDev, you will see a small window labeled
Project Explorer (see Figure 16.7). Go to Project and select New Deployment
Target.

 22 0672318989 ch16 3/30/00 8:13 AM Page 352

Debugging Your E-Commerce Applications 353

16

8. In the window that appears, enter the URL for your Production server. The window
in the upper right corner will have a new section labeled Deployment Explorer.

Your Web site is now set up for three levels of deployment: development, testing, and
production. When you want to edit a file, you’ll double-click the file’s name in the
Project Explorer window. You might be prompted to copy the file locally, and will then
see a small pencil icon appear to the left of the filename (see Figure 16.8). When you are
finished editing files, place them on your testing site by selecting Project, Web Project,
Synchronize Files.

When you are satisfied that your E-Commerce application works correctly on your test-
ing site, you can copy it to your production server by selecting Project, Deploy, Deploy
to http://www.yourdomain.com.

FIGURE 16.7
Project Explorer.

You must enter the complete URL to your production server, including
http:; for example, http://www.yourdomain.com.

Caution

 22 0672318989 ch16 3/30/00 8:13 AM Page 353

Debugging Your Application Using Visual
InterDev’s Integrated Debugger

A great advantage to using Visual InterDev for ASP development is the InterDev debug-
ger. If you are running Visual InterDev on Windows NT, you can perform sophisticated
debugging of both server-side ASP and client-side Dynamic HTML. You can set server-
side breakpoints, and while your script is stopped at a breakpoint, you can examine the
contents of variables, step through your scripts line-by-line, and step into functions. In
fact, if your database is running on Microsoft SQL Server, you can even step into data-
base stored procedures.

354 Day 16

FIGURE 16.8
A file copied locally.

A breakpoint is an instruction to the server to stop execution at a specific
line of code so that the programmer can examine the state of the scripts
variables.

Note

The debugging features of Visual InterDev only work when Visual InterDev
is installed on Windows NT, not on Windows 95 or Windows 98.

Caution

 22 0672318989 ch16 3/30/00 8:13 AM Page 354

Debugging Your E-Commerce Applications 355

16

Getting Ready to Debug
In order to start debugging your server-side ASP, you will need to install Remote
Machine Debugging and Visual InterDev Server on your development server. The
Remote Machine Debugging component is available on your Visual Studio disks in a
directory called Scrpt_ss. The Visual InterDev Server components are in a directory
called Vid_ss. Run the setup.exe program from each directory and, after the setup pro-
grams finish, reapply the latest service pack and reboot your server.

Now that Remote Machine Debugging is installed, you must enable debugging on your
development site. To do this, implement the following:

1. Go to the IIS Management Console and select your development Web site.

2. Select Action, Properties.

3. Go to the Home Directory tab. On the bottom right part of the tab, click
Configuration (see Figure 16.9).

FIGURE 16.9
The Configuration
button.

4. From the Application Configuration page, click the App Debugging tab and select
both debugging flags (see Figure 16.10). Select OK for both dialogs.

Installing and enabling the debugger on a production Web site is a signifi-
cant security risk. Only enable the debugger on your development Web site.

Caution

 22 0672318989 ch16 3/30/00 8:13 AM Page 355

Now that you have installed Remote Machine Debugging and enabled debugging on your
development site, you must give yourself permission to debug on the development server.
You can do this as follows:

1. From the Start button, click Run.

2. In the small box that appears, type Dcomcnfg.exe and click OK.

3. On the Applications tab, find the Catalog class (see Figure 16.11) and click the
Properties button. This will bring up a dialog called Catalog Class Properties.

356 Day 16

FIGURE 16.10
The App Debugging
tab of Application
Configuration.

FIGURE 16.11
The Applications tab.

4. Click the Security tab (see Figure 16.12). In each of the three permissions sections,
use the Edit button to bring up a dialog that will allow you to give yourself access
permission for the resource. Click OK.

 22 0672318989 ch16 3/30/00 8:13 AM Page 356

Debugging Your E-Commerce Applications 357

16

5. You will return to the Applications tab of the previous dialog. Find the Machine
Debug Manager and repeat step 4.

Debugging a Site
You are now ready to debug the development Web site. Re-open Visual InterDev, and
open the project you created in the previous section, “Deploying Your Application Using
Visual InterDev.” Go to the Project Explorer, and select default.asp, and then from the
menu select Project, Web Files, Set as Start Page.

To try debugging out, double-click default.asp to open it. The file will open in the cen-
ter area of the Visual InterDev IDE, and you will notice a gray strip running down the
left side of the window. You can set a breakpoint by clicking the gray strip next to the
line you’d like to stop on. To try out debugging, click to the left of the first executable
line of the file, cat = TRIM (Request(“cat”)). You will see a red circle appear
next to the line as shown in Figure 16.13. (In the figure, the red circle is black.) Press the
F5 button to start debugging, and you will be prompted for your Windows NT username
and password. Enter it to continue.

Internet Explorer will now launch, and the Visual InterDev IDE will change from editing
view to debugging view. The line broken on will appear highlighted in yellow, and there
will be a yellow arrow pointing to the highlighted line (see Figure 16.14).

FIGURE 16.12
The Security tab.

 22 0672318989 ch16 3/30/00 8:13 AM Page 357

You can now watch the .asp script execute line-by-line and, as the script executes, you
can monitor the contents of VBScript variables in the watch window in the lower right
side of the IDE. Try it now by clicking on the blank cell in the Name column of the
watch window, entering cat and pressing return. You will observe Variable is

358 Day 16

FIGURE 16.13
A breakpoint set in
default.asp.

FIGURE 16.14
Stopped at a break-
point set in
default.asp.

 22 0672318989 ch16 3/30/00 8:13 AM Page 358

Debugging Your E-Commerce Applications 359

16

undefined: ‘cat’ in the Value column, and Error in the Type column (see
Figure 16.15). Press the F10 key once, and you will see several things happen:

• The yellow arrow moves to the next line of VBScript

IF cat = “” THEN cat = “Home”.

• The yellow highlight moves to the next line of VBScript.

• The Value column in the watch window changes to “”.

• The Type column in the watch window changes to String.

FIGURE 16.15
The watch window.

According to the current line, because the value of the variable cat is “”, it should be set
to “Home”. Try it by pressing F10 again. You will observe that the Value column in the
watch window changes to “Home”. The color of the string is red to signify that the value
changed as a result of executing the previous statement (see Figure 16.16).

The watch window can also look inside COM objects that your ASP script instantiates.
The line of ASP script currently highlighted creates an ADO Connection. Try looking
into it by clicking the watch window on the empty cell in the Name column (underneath
cat) and typing Con. Press F10 again, and you will see a plus sign inside a box next to
the variable name Con. Click the plus sign to expand the object, and you will see the
members of the new Connection object (see Figure 16.17).

 22 0672318989 ch16 3/30/00 8:13 AM Page 359

The Visual InterDev IDE can also show you all the variables and objects defined for the
current script. Go to the View menu and select Debug Windows, Locals. The Locals win-
dow will appear on the lower left side of the IDE, and will include all the objects that
ASP defines for your page (like Request, Response, Session, Application) as well as
the variables defined in adovbs.inc and the variables defined in default.asp as of the

360 Day 16

FIGURE 16.16
The watch window
changes as a result of
the single statement
executed.

FIGURE 16.17
Examining an ADO
Connection object in
the watch window.

 22 0672318989 ch16 3/30/00 8:13 AM Page 360

Debugging Your E-Commerce Applications 361

16

current line (see Figure 16.18). You can exit the debugger by going to the Debug menu
and selecting End, or by pressing Shift+F5.

FIGURE 16.18
The Locals window.

As you can imagine, this is an extremely powerful way to examine potential errors in
your ASP code. Many bugs result from unanticipated data or typing errors; these kinds of
bugs are easy to diagnose and fix with the Visual InterDev IDE. Single-step debugging
isn’t appropriate for diagnosing every problem; for example, bugs that relate to multiple
users accessing your Web site simultaneously. This is because when the debugger is
stopped at a breakpoint, the Web server isn’t able to respond to requests from other Web
clients. To debug problems related to multiple requests, you will need to use techniques
like those described in the next two sections.

Debugging Your Application on a Production
Server

Although you might test your application thoroughly on your development site, a few
bugs will almost always slip into your production system. The best way to diagnose these
problems is to try to reproduce the bug on your development system while watching ASP
execution in the Visual Studio debugger; however, as discussed in the previous section,
this isn’t always possible. In those cases, you will need a way to have the production
Web site output additional information to you while your customers continue to use the

 22 0672318989 ch16 3/30/00 8:13 AM Page 361

Web site normally. The ASP Session object offers a straightforward way to do this by
allowing you to set a per-session debugging level and adding a hidden administrative
page to allow you to set the debugging level. You can then use that debugging variable in
your code to decide how much debugging information to add to the output of your ASP.

362 Day 16

This technique takes advantage of ASP Sessions. Although Sessions have
many advantages, keeping per-session information in an ASP-driven Web
site will degrade performance when your site is under high levels of load.
You will need to explore the specific performance characteristics of your
own Web site to decide whether using this technique is worth the potential
performance impact.

Note

Creating and Maintaining a Session Variable for
Debugging
To create the debugging variable, you will first need to create a global.asa file if it isn’t
already created. To create an instance of the Global.asa file using Visual InterDev, go to
the Project Explorer window and right-click your Web project. In the context menu that
appears, select Add, Active Server Page. Change the name of the file in the Add Item
page from ASPPage1.asp to global.asa. The new global.asa file will open in a new win-
dow in the center of the IDE. Delete all the text from the window and add the lines of
code in Listing 16.1. If you aren’t using the Visual InterDev IDE, you can simply create
the global.asa file in Notepad or another text editor.

LISTING 16.1 Setting iDebugLevel to 0 for Each Session

1 <SCRIPT LANGUAGE=”VBScript” RUNAT=”Server”>
2
3 Sub Session_OnStart
4 Session(“iDebugLevel”) = 0
5 End Sub
6 </SCRIPT>

Whenever a new user comes to your Web site, line 4 of this script initializes a
session variable called iDebugLevel and sets it to 0. In the future, you will use

values of iDebugLevel that are greater than 0 as a signal to emit additional information
on your Web pages.

INPUT

ANALYSIS

 22 0672318989 ch16 3/30/00 8:13 AM Page 362

Debugging Your E-Commerce Applications 363

16

You will need to add a hidden, administrative page that allows you to reset the value of
iDebugLevel. For additional flexibility, we will do this by adding a subfolder called
Admin, and a page in the Admin folder called adminPage.asp. You can do this in the
Visual InterDev IDE by going to the Project Explorer and right-clicking your Web pro-
ject. In the context menu that appears, select New Folder. In the dialog that appears,
enter Admin. A new Admin folder will appear in the Project Explorer. Right-click that
folder and select Add, Active Server Page. Change the name of the file in the Add Item
page from ASPPage1.asp to adminPage.asp. A template for the new page will appear in
the center of the IDE. If you aren’t using the Visual InterDev IDE, you can create the
folder and adminPage.asp file using Notepad or another text editor. In either case, the
ultimate contents of adminPage.asp are in Listing 16.2. Although there is not a link to
adminPage.asp on your Web site, you can access it directly by going to http://
www.yoursite.com/Admin/adminPage.asp, changing the debug level, and clicking
Submit.

LISTING 16.2 Resetting iDebugLevel in adminPage.asp

1 <%@ Language=”VBScript” %>
2 <%
3 If Request.Form(“ProcForm”) = “Process” Then
4 Session(“iDebugLevel”) = Request.Form(“debugLevel”)
5 If Session(“iDebugLevel”) = “” Then
6 Session(“iDebugLevel”) = 0
7 End If
8 End If
9 %>
10 <HTML>
11 <HEAD>
12 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
13 <title>Johnson’s Candies and Gifts Administration Page</title>
14 </head>
15 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
16 <center>
17
18 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥cellpadding=”0”>
19 <tr>
20 <td>
21
22 </td>
23 </tr>
24 <tr>
25 <td colspan=”2”>

INPUT

continues

 22 0672318989 ch16 3/30/00 8:13 AM Page 363

26 <hr width=”640”>
27 </td>
28 </tr>
29 </table>
30
31 <H2>Administration Page<H2>
32 <FORM method=”POST” action=”adminPage.asp”>
33 <input type=”hidden” name=”ProcForm” value=”Process”>
34 <table>
35 <tr>
36 <td> Debug Level </td>
37 <td> <input name=”debugLevel” value=”<%=Session.Value

➥(“iDebugLevel”)%>”></td>
38 </tr><tr>
39 <td> <input type=”submit” value=”Submit”> </td>
40 </tr>
41 </table>
42 </FORM>
43 </BODY>
44 </HTML>

When the page is first executed, the value of the hidden variable ProcForm is not
defined, so the page ignores the script between lines 4 and 7. On line 37, the cur-

rent value of iDebugLevel is placed into an input textbox. When the user clicks the
Submit button, the hidden variable ProcForm has been defined as “Process” on line 33,
so the script between lines 4 and 7 sets the value of the session variable iDebugLevel to
whatever the user entered. The form is now regenerated with the new value of
iDebugLevel placed into the input textbox (line 37).

Using the Session-level Debugging Variable
A second axiom of programming is that errors most frequently occur when two different
pieces of software interact. As you’ve seen, in building an E-Commerce site, the external
software interacted with the most is the database, which is accessed via SQL and ADO.
Using the iDebugLevel variable defined previously, you can now add code that displays
extra debugging information in your Web pages—an especially useful technique for pro-
duction debugging when your ASP is interacting with the database. For example, you
might want to display SQL statements before they are executed if iDebugLevel is 1, and
then display both SQL statements and their results if iDebugLevel is 2, and so on. In
these examples, we will only take advantage of setting iDebugLevel to 1.

To show the power of this technique, we will take, as an example, a page we created
on Day 5, “Building Your Product Catalog,” called updateProducts.asp, and add

364 Day 16

LISTING 16.2 continued

ANALYSIS

 22 0672318989 ch16 3/30/00 8:13 AM Page 364

Debugging Your E-Commerce Applications 365

16

session-level debugging output to that script to allow us to diagnose our SQL queries.
(This file is included with the CD-ROM that accompanies this book with the name
debugUpdateProducts.asp.)

First, we’ll add a subroutine to the top of the page that will capture the logic of deciding
whether to display extra information. We’ll insert the code in Listing 16.3 between lines
1 and 2 of updateProducts.asp so that the routine is available to the entire script.

LISTING 16.3 Adding a Debug Routine to updateProducts.asp

1.1 Sub DebugWrite(sDebugText, iDebugLevel)
1.2 If CInt(Session(“iDebugLevel”)) >= CInt(iDebugLevel) Then
1.3 Response.Write(vbNewLine & “<COMMENT>” & vbNewLine &

➥”Debugging output level “ & iDebugLevel & vbNewLine)
1.4 Response.Write(sDebugText)
1.5 Response.Write(vbNewLine & “</COMMENT>” & vbNewLine)
1.6 End If
1.7 End Sub

When the DebugWrite subroutine is called, if the current value of the session
debugging level is greater than or equal to the value passed in as iDebugLevel

(line 1.1), the information passed in as sDebugText is emitted in an HTML comment
(lines 1.3–1.5).

Now that the DebugWrite subroutine is available, we can place it in strategic places in
updateProducts.asp. As we’re concerned about our SQL statements, we will insert code
that emits the SQL statements when iDebugLevel is 1. The code we add is in Listing 16.4.

LISTING 16.4 Adding Strategic DebugWrite Calls to updateProducts.asp

6 Set Con = Server.CreateObject(“ADODB.Connection”)
6.1 DebugWrite “Opening accessDSN”, 1
7 Con.Open “accessDSN”

13 RS.CursorType = 3
13.1 selectStr = “SELECT * FROM Products WHERE product_id=” & productID
13.2 DebugWrite selectStr, 1
14 RS.Open selectStr

Now, go to admin/adminPage.asp and change the Debug Level to 1. Next, go to
manageProducts.asp, and click one of the product links to bring you to an
updateProduct.asp generated page. Although the output of the page looks the
same in the browser, if you select View, Source, you will observe that the first four lines
of HTML

INPUT

ANALYSIS

INPUT

 22 0672318989 ch16 3/30/00 8:13 AM Page 365

<COMMENT>
Debugging output level 1
Opening accessDSN
</COMMENT>
<COMMENT>
Debugging output level 1
SELECT * FROM Products WHERE product_id=26
</COMMENT>

are comments generated by our DebugWrite routine.

Creating a Debug Library
Before writing any more debugging functions and subroutines, now is a good time to
create an .asp page that can serve as a debugging library. (This file is included on the
CD-ROM that accompanies this book with the name debug.asp.) Keeping all the debug-
ging routines in a single file (in this site, we will call it debug.asp) makes the routines
much easier to use and maintain. Rather than having to copy and paste the same func-
tions into multiple files, it will be much easier to INCLUDE=”/debug.asp” at the top of
each page. This technique also gives each of your pages access to new functions (or fixes
to existing functions) without having to make the same changes to many pages. The first
routine to add to debug.asp is DebugWrite, which we will move from the top of
updateProduct.asp to the top of debug.asp.

Recovering from and Capturing Errors
When your ASP calls ADO and encounters an error in the database, the VBScript inter-
preter stops processing your Web page and emits text like this:

Microsoft OLE DB Provider for ODBC Drivers error 80004005
[Microsoft][ODBC Driver Manager] Data source name not found and no default
driver specified
/updateProduct.asp, line 7

and the currently executing script stops. This can make it difficult to diagnose problems
because the error messages are often cryptic and, although there is sometimes more
information available in various error state objects, because execution stops immediately,
there is no opportunity to examine that information. Also, some errors are recoverable
but, again, because execution stops immediately, there is no opportunity to examine the
error and decide whether to continue or to present a friendlier error. Adding the On
Error Resume Next statement to the top of a script gives the programmer the opportuni-
ty to do both.

When a script contains On Error Resume Next, it becomes the programmer’s responsi-
bility to handle runtime errors. To help handle these errors, we will add the CheckError

366 Day 16

 22 0672318989 ch16 3/30/00 8:13 AM Page 366

Debugging Your E-Commerce Applications 367

16

subroutine to our debugging library, which will be called after each ADO operation (see
Listing 16.5). The CheckError subroutine checks for errors and, if encountered, emits
extended error information.

The ADO diagnostics in CheckError assume that all ADO connections are
named Con. If you decide to add pages that use ADO to the sample site,
make sure to name your ADO connections Con.

Note

LISTING 16.5 CheckError

1 Sub CheckError
2
3 If Err.Number > 0 Then
4 Response.Write vbNewLine & “<COMMENT>” & vbNewLine & “ASP Error! “ &

➥vbNewLine
5 Response.Write “ Number: “ & err.number & vbNewLine
6 Response.Write “ Description: “ & err.description & vbNewLine
7 Response.Write “ Source: “ & err.source & vbNewLine
8 Response.Write “</COMMENT> “ & vbNewLine
9 End If
10
11 If Not IsEmpty(Con) Then
12 If Con.Errors.Count > 0 Then
13 ‘
14 ‘ First count the real errors
15 ‘
16 Dim i, j
17 j = 0
18 For i = 1 to Con.Errors.Count
19 if Con.Errors(i-1).number <> 0 Then
20 j = j + 1
21 End if
22 Next
23 ‘
24 ‘ Now output them if necessary
25 ‘
26 If j > 0 Then
27 j = 1
28 Response.Write (vbNewLine & “<COMMENT>” & vbNewLine & “ADO Errors! “

➥ & vbNewLine)
29 For i = 1 to Con.Errors.Count
30 If Con.Errors(i-1).number <> 0 Then
31 Response.Write “ ADO Error “ & j & vbNewLine
32 Response.Write “ Number: “ & Con.Errors(i-1).number &

➥vbNewLine

INPUT

continues

 22 0672318989 ch16 3/30/00 8:13 AM Page 367

33 Response.Write “ Description: “ & Con.Errors(i-1).description
➥ & vbNewLine

34 Response.Write “ Source: “ & Con.Errors(i-1).source &
➥vbNewLine

35 If Con.Errors(i-1).nativeerror <> “” Then
36 Response.Write “ Native Error: “ &

➥Con.Errors(i-1).nativeerror & vbNewLine
37 End If
38 If Con.Errors(i-1).sqlstate <> “” Then
39 Response.Write “ SQL State: “ & Con.Errors(i-1).sqlstate &

➥ vbNewLine
40 End If
41 End If
42 Next
43 Response.Write (“</COMMENT> “ & vbNewLine)
44 End If
45 End If
46 End If
47
48 End Sub

The CheckError subroutine has two parts. The first part (lines 2–10) checks for a
VBScript error. Line 2 checks the VBScript intrinsic object Err to see if an

unhandled error occurred. If one did, lines 4–8 emit an HTML comment with informa-
tion about the error.

The second part (lines 11–47) checks the ADO connection object, if any, for errors. This
code is more complicated than the code that checks the Err intrinsic object because a
single ADO call can cause more than one error, and because some ADO errors are sim-
ply informational. Line 12 checks to see if there are any errors or informational mes-
sages. Lines 18–22 loop through each of the ADO errors. Line 19 checks to see if each
error is an actual error (informational messages have Error.Number = 0) and, if it is,
line 20 counts them in j. Line 26 checks j to see if there were any actual errors. If there
were, lines 29–42 loop through the errors again and output detailed information about
each of them, if available, in an HTML comment.

To demonstrate CheckError in action, we will introduce a common error into
manageProducts.asp. We’ll change the manageProducts.asp as shown in Listing 16.6
so that debug.asp is included and product names with single quotes are no longer
escaped.

368 Day 16

LISTING 16.5 continued

ANALYSIS

 22 0672318989 ch16 3/30/00 8:13 AM Page 368

Debugging Your E-Commerce Applications 369

16

LISTING 16.6 Changes to manageProducts.asp

1 <!-- #INCLUDE FILE=”debug.asp” -->
2 <%
3 On Error Resume Next
4
5 FUNCTION fixQuotes(theString)
6 ‘ fixQuotes = REPLACE(theString, “‘“, “‘’”)
7 fixQuotes = theString
8 END FUNCTION

To check for errors, we will need to call the CheckError subroutine after each SQL oper-
ation. You should add the CheckError subroutine after every Con.Execute statement in
the manageProducts.asp file.

Now, go to manageProducts.asp in your browser and try to update the entry for
Hershey’s Chocolate Bar. Although the page reports that the update was successful, go to
View, Source in the browser. You will see the following comment in your HTML:

<COMMENT>
ADO Errors!
ADO Error 1

Number: -2147217900
Description: [Microsoft][ODBC Microsoft Access Driver] Syntax error
(missing operator) in query expression ‘’Hershey’s Chocolate

Bar’,product_price=9,product_picture=’hersheys.jpg’,product_category=’Chocolate
Solids’,product_briefdesc=’A solid bar of delicious chocolate.
‘,product_fulldesc=’Everybody loves this classic candy!
‘,product_status=1 WHERE produ’.

Source: Microsoft OLE DB Provider for ODBC Drivers
Native Error: -3100
SQL State: 37000

</COMMENT>

This illustrates the importance of capturing and reporting errors in a user-friendly manner
after On Error Resume Next has been specified. In many cases, error checking is easy;
for example, here you can just add a check for errors before displaying the user message
about data being updated; for example,

<%=productName%> was <% if Con.Errors.Count > 0 Then %> not
➥<% end if %> updated in the database

Capturing Errors into a Log File
Writing errors to comments in an HTML page is very powerful; however, you might
encounter errors that only happen to your customers and that you can’t reproduce. In

INPUT

 22 0672318989 ch16 3/30/00 8:13 AM Page 369

these cases, you might find it helpful to capture errors into a log file. VBScript provides
a straightforward way to do this with the FileSystemObject object. (To learn more about
using the FileSystemObject, see Day 4, “Working with Files in Your E-Commerce
Application.”) You can write the errors by making the changes in Listing 16.7 to
debug.asp.

LISTING 16.7 Changes to debug.asp to Capture Errors into a File

1 Sub WriteToFileAndHtml(fFileStream, sString)
2 Response.Write sString
3 If Not IsEmpty(fFileStream) Then
4 fFileStream.Write sString
5 End If
6 End Sub
7
8 Sub CheckError
9 Dim fs
10 Dim f
11
12 If Err.Number > 0 Then
13 Set fs = CreateObject(“Scripting.FileSystemObject”)
14 Set f = fs.CreateTextFile(fs.GetTempName())
15
16 WriteToFileAndHtml f, vbNewLine & “<COMMENT>” & vbNewLine & “ASP Error!

➥ “ & vbNewLing
17 WriteToFileAndHtml f, “ Number: “ & err.number & vbNewLine
18 WriteToFileAndHtml f, “ Description: “ & err.description & vbNewLine
19 WriteToFileAndHtml f, “ Source: “ & err.source & vbNewLine
20 WriteToFileAndHtml f, “</COMMENT> “ & vbNewLine
21
22 End If
23 If Not IsEmpty(Con) Then
24 If Con.Errors.Count > 0 Then
25 ‘
26 ‘ First count the real errors
27 ‘
28 Dim i, j
29 j = 0
30 For i = 1 to Con.Errors.Count
31 if Con.Errors(i-1).number <> 0 Then
32 j = j + 1
33 End if
34 Next
35 ‘
36 ‘ Now output them if necessary
37 ‘
38 If j > 0 Then
39 j = 1

370 Day 16

INPUT

 22 0672318989 ch16 3/30/00 8:13 AM Page 370

Debugging Your E-Commerce Applications 371

16

40 If IsEmpty(fs) Then
42
41 Set fs = CreateObject(“Scripting.FileSystemObject”)
43 Set f = fs.CreateTextFile(fs.GetTempName())
44 End If
45
46 WriteToFileAndHtml f, vbNewLine & “<COMMENT>” & vbNewLine &

➥”ADO Errors!” & vbNewLine
47 For i = 1 to Con.Errors.Count
48 If Con.Errors(i-1).number <> 0 Then
49 WriteToFileAndHtml f, “ ADO Error “ & j & vbNewLine
50 WriteToFileAndHtml f, “ Number: “ & Con.Errors(i-1).number &

➥ vbNewLine
51 WriteToFileAndHtml f, “ Description: “

➥ & Con.Errors(i-1).description & vbNewLine
52 WriteToFileAndHtml f, “ Source: “ & Con.Errors(i-1).source &

➥ vbNewLine
53 If Con.Errors(i-1).nativeerror <> “” Then
54 WriteToFileAndHtml f, “ Native Error: “

➥ & Con.Errors(i-1).nativeerror & vbNewLine
55 End If
56 If Con.Errors(i-1).sqlstate <> “” Then
57 WriteToFileAndHtml f, “ SQL State: “

➥ & Con.Errors(i-1).sqlstate & vbNewLine
58 End If
59 End If
60 Next
61 WriteToFileAndHtml f, “</COMMENT> “ & vbNewLine
62
63 End If
64 End If
65 End If
66
67 If Not IsEmpty(fs) Then
68 f.Close
69 End If
70 End Sub

The modified version of debug.asp is included on the CD-ROM that accompa-
nies this book with the name debug2.asp. The first change to debug.asp is to

add a new function (lines 1–6) that echoes strings to both the ASP page and a file that is
passed in as fFileStream. Next, new objects are created in CheckError (lines 9–10) that
can keep track of a file. The temporary file is potentially created in two places, lines
13–14 and lines 40–44, because if there’s no ASP error, lines 13–14 won’t be executed.
The temporary file is then closed, if necessary, in lines 67–69. Finally, each of the calls
to Response.Write is changed to WriteToFileAndHtml (lines 16–20 and 46–61).

ANALYSIS

 22 0672318989 ch16 3/30/00 8:13 AM Page 371

The new version of CheckError writes a separate log file for each error that your users
might encounter as they navigate your site. As previously mentioned in the section
“Creating a Debug Library,” because CheckError is in debug.asp, any of the ASP
pages that call it to log errors take advantage of this new functionality. Of course, you
will need to proactively check the temporary files periodically to look for these sorts of
errors. In a later chapter, we will discuss how to have the Web server automatically email
these logs to you.

Testing for Scalability
Before you decide to open your E-Commerce site, imagine how much traffic you would
need to have to feel really successful; then multiply that traffic by 10. This algorithm for
calculating traffic is a standard metric that commercial Web sites use. The reason for this
is that if you do exceed your own expectations, you want to make sure that you provide
all your customers a good experience.

If you are expecting a small number of customers (a few hundred per day), testing for
scalability isn’t so important. On the other hand, if you are expecting thousands of cus-
tomers, you owe it to yourself and to them to measure how well the site responds to that
kind of load. To do so, you will either need a lot of friends and a lot of computers, or you
will need a tool that can create simulated load, like WebLoad, LoadRunner, or the
Microsoft Web Capacity Analysis Tool.

Microsoft’s WCAT is available for free from Microsoft’s Web site at http://
msdn.microsoft.com/workshop/server/toolbox/wcat.asp. Using WCAT requires you
to have at least three computers: a server, a controller, and one or more clients. The serv-
er is your production Web server; the controller and clients are Windows NT Workstation
or Windows NT Server machines. Run the WCAT setup program on all these machines.
On the server machine, run the Extract Server Content program.

WCAT also requires you to know the IP addresses of your client and controller
machines. If you don’t know these addresses, you can use the command-line utility ping
to find them out. Go to the Start menu and select Programs, Command Prompt. When the
Command Prompt appears, type ping <machine name>. The machine’s IP address will

372 Day 16

The temporary files created in this manner are, by default, placed in the
\winnt\system32 directory, and are named with strange looking filenames—
three letters, followed by five numbers, with a .tmp extension. The exercises
will give you an opportunity to change the location and filenames, if you
want.

Note

 22 0672318989 ch16 3/30/00 8:13 AM Page 372

Debugging Your E-Commerce Applications 373

16

appear within square brackets. In the example in Figure 16.19, the IP address of the
machine named MIKA is 192.168.201.1. Repeat this process for the server and the con-
troller.

FIGURE 16.19
Pinging MIKA.

To configure the controller and each client, you will need to bring up a Command
Prompt. On the controller, change to the directory that contains the controller (by default
c:\webctrl, so type cd \webctrl); then type config <Server-IP-Address>. For exam-
ple, if MIKA is the controller, you would type config 192.168.201.1. On each client,
change to the directory for the WCAT client and type config <controller-name>
<controller-IP>. You can now start your clients by typing client at a command
prompt on each client; then start the controller by typing run <testname>.

A simple way to test your customers’ experience is to run the asp75 test that comes with
the WCAT utility; then, from an unused machine, try using your Web site. This will give
you the user experience of using a loaded server. As you get more adventurous, the
WCAT documentation explains how to script your own tests and capture a wide variety
of statistics. Should you want to, you might also explore using commercial tools to script
your testing, or using commercial firms to monitor your E-Commerce site’s performance
from various parts of the country.

Summary
This chapter introduces deployment, debugging, and testing. You learned how and why to
keep your development system separate from your production system. You also learned
how to install and use Visual InterDev’s integrated debugger on a development system,
and how to debug your application on a production system using HTML comments and
temporary files. Finally, you learned about Microsoft’s WCAT tool.

 22 0672318989 ch16 3/30/00 8:13 AM Page 373

Q&A
Q My debugger is no longer breaking at breakpoints. Instead of a red circle, I

see a red circle with a question mark in it. What do I do?

A This is a very common problem. First, make sure that you have installed the latest
NT Service Pack. If this doesn’t fix the problem, try the following:

1. Go to Control Panel, Services and stop the World Wide Web Publishing
Service.

2. Open a command prompt. Type cd \winnt\system32\inetsrv.

3. Type regsvr32 asp.dll.

4. Restart the World Wide Web Publishing Service.

For more information, see the article “Microsoft Visual InterDev 6.0 Debugging” at
the Microsoft MSDN Web site at the following URL:

http://msdn.microsoft.com/library/techart/msdn_videbugging.htm

Q I’ve done scalability testing and am disappointed with the results—or—my
customers are complaining about the speed of my site. What do I do?

A Congratulations! This is a great problem to have.

Performance on Web servers can be influenced by a variety of factors—amount of
memory in the machine, processor speed, network speed, or disk drive (or disk
controller) speed.

The first thing to do is isolate which of these factors is causing your problem. NT
comes with a tool called Performance Monitor that allows you to measure how
much of each resource your system is using. If your processor utilization is maxi-
mized, try running with a faster machine. If your hard drive keeps spinning, try
increasing memory. If neither of these is the problem, you might need faster disk
drives, or you might need to talk with your ISP about getting more bandwidth.

Q I have a bug that I can’t figure out. What do I do?

A Even the best programmers run into problems that at first look unsolvable. Relax,
get a cup of coffee, and think about something else for awhile. If the answer still
doesn’t come to you, visit Microsoft’s Web site or some of the sites listed in the
inside back cover of this book for helpful troubleshooting tips. So many people are
writing ASP these days that chances are someone else has run into your problem.

374 Day 16

 22 0672318989 ch16 3/30/00 8:13 AM Page 374

Debugging Your E-Commerce Applications 375

16

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. Why is it important to keep separate development and production Web sites?

2. What is a breakpoint?

3. Can I install the debugger on my production server?

4. Why should I keep all my debugging routines in a single script?

5. How much load should I plan to handle?

Exercise
Update the CheckError function so that it writes log files into a directory on your
Web site.

 22 0672318989 ch16 3/30/00 8:13 AM Page 375

 22 0672318989 ch16 3/30/00 8:13 AM Page 376

DAY 17

WEEK 3

Administering Your Store
Remotely with ASPs

After your E-Commerce site is up and debugged, if unchanged, it will normally
keep running without intervention. Of course, you will want to make changes to
your store as it runs. The changes you make might be administrative, they
might be additions to, changes to, or deletions from the catalog, or they might
be structural changes. These changes are simple when you make them from
your system’s console; however, they are also easy to perform remotely.

IIS comes with a built-in Web site that allows you to administrate your Web site
through an HTML based interface. In addition, you can use a combination of
your own Web pages and the FTP server, or Microsoft Posting Acceptor to
modify your store’s catalog.

Today, you will learn

• How to install and secure the IIS administration pages

• How to administer your Web server with the IIS administration pages

• How to install and administer the IIS FTP service

 23 0672318989 ch17 3/30/00 8:22 AM Page 377

• How to upload files to your site using FTP

• How to perform advanced, Web-based catalog maintenance

The IIS Administration Pages
In previous chapters, you have learned to use the Internet Service Manager to administer
your E-Commerce site’s Web server. The Internet Service Manager for the Microsoft
Management Console is a powerful and useful tool, but it can only be used from a com-
puter that is part of the same Windows domain as your Web server. You might find your-
self in a situation in which you don’t have access to such a machine but need to adminis-
ter your site. The IIS Internet Service Manager Web pages give you the ability to perform
many site administration tasks from any machine with Internet access and a Web browser.

Installing the Administration Pages
If you are using Windows 2000, the Internet Service Manager Web pages should already
be installed on your machine. If you are using Windows NT, you can install the Internet
Service Manager Web pages by doing the following:

1. Go to the Start menu and select Programs, Windows NT 4.0 Option Pack,
Windows NT 4.0 Option Pack Setup.

2. When the Setup program appears, press the Next button, and then press the
Add/Remove button.

3. Select Internet Information Server (IIS) and press the Show Subcomponents
button.

4. Check the box beside Internet Service Manager (HTML) (see Figure 17.1) and
press OK. Press the Next button. The setup program will then install the additional
components and might prompt you to reboot your computer. Do so.

378 Day 17

FIGURE 17.1
Installing IIS sub-
components.

 23 0672318989 ch17 3/30/00 8:22 AM Page 378

Administering Your Store Remotely with ASPs 379

17

5. Re-install the latest Windows NT Service Pack.

The Internet Service Manager (HTML) is now installed into a virtual directory called
IISADMIN. It is ready to use, but only from a browser running on the server on which it
was installed. Navigate to http://localhost/IISADMIN to explore its features (see
Figure 17.2).

FIGURE 17.2
The home page of the
Internet Service
Manager (HTML).

Securing the Administration Pages
At this point, if you try to access the Internet Service Manager (HTML) with a browser
running on a machine other than the Web server that runs your E-Commerce site, you
will observe the following messages:

HTTP Error 403 - Access to Internet Service Manager (HTML) is

restricted to Localhost

403.6 Forbidden: IP address rejected

Every machine that runs TCP/IP can refer to itself by using either its assigned
IP address (or, in the case of a multi-homed machine, assigned IP addresses)
or the special IP address 127.0.0.1. Similarly, all machines that run TCP/IP can
refer to themselves with the special name localhost, which always refers to
127.0.0.1.

Note

 23 0672318989 ch17 3/30/00 8:22 AM Page 379

You’ll receive this error message because, as a security precaution, the setup program
uses the IP address restriction feature of IIS to limit access to the Internet Service
Manager (HTML) to browsers running on the server on which it was installed. To enable
access to the Internet Service Manager (HTML) for browsers running on other machines,
you will need to use the Internet Service Manager to broaden these restrictions.

To update the IP address restrictions for the Internet Service Manager (HTML), you
can use either the Internet Service Manager for MMC or the Internet Service Manager
(HTML) from the Web server machine. To use the Internet Service Manager (HTML),
go to the Web server machine and follow these steps:

1. Open a browser and navigate to http://localhost/IISADMIN.

2. If it isn’t already expanded, expand the default Web site by clicking the plus sym-
bol next to the text Default Web Site (see Figure 17.3).

380 Day 17

FIGURE 17.3
Expanding the Default
Web Site.

3. Click on the virtual directory IISADMIN.

4. Select Properties, Security link in the left hand navigation bar (see Figure 17.4).

5. Click the Edit button in the IP Address and Domain Name Restrictions section of
the security page (see Figure 17.5).

6. Change the IP Address Access Restrictions to Grant Access to All Computers by
default (see Figure 17.6) and click the OK link.

At this point, anyone with access to the Internet can administer your Web
site by visiting http://www.yoursite.com/iisadmin. So don’t stop here.
Continue through steps 7–10.

Caution

 23 0672318989 ch17 3/30/00 8:22 AM Page 380

Administering Your Store Remotely with ASPs 381

17

FIGURE 17.4
The WWW Properties
page for IISADMIN.

FIGURE 17.5
The security adminis-
tration page.

7. Click the Edit button in the Anonymous Access and Authentication Control section
of the security page (see Figure 17.5).

8. In the Access methods page that appears (see Figure 17.7), verify that the Allow
Anonymous check box is not checked and the Windows NT Challenge/Response
check box is checked. (This is called Integrated Windows Authentication in the
case of Windows 2000.)

 23 0672318989 ch17 3/30/00 8:22 AM Page 381

If you plan to administer your Web site from machines running browsers other than
Internet Explorer such as Netscape Navigator, you can check the Basic Authenti-
cation box. Click the Edit button in the Basic Authentication section of the dialog
box, and enter the domain in which your Web server is a member. Otherwise, veri-
fy that the Basic Authentication check box is not checked. Finally, click the OK
link.

382 Day 17

FIGURE 17.6
Granting access to the
admin pages to all
computers.

FIGURE 17.7
The Access Methods
page.

 23 0672318989 ch17 3/30/00 8:22 AM Page 382

Administering Your Store Remotely with ASPs 383

17

If you have installed a server certificate on your Web server and enabled the Secure
Sockets Layer (see Days 8, “Building the Transaction Databases,” and 15,
“Securing Your Store”), you should require secure communications with the
administration pages by following steps 9 and 10.

9. Click the Edit button in the Secure Communications section of the security page
(see Figure 17.5). This button will appear only if you have a server certificate
installed.

10. Check the box labeled Require Secure Channel when accessing this resource (see
Figure 17.8). Click the OK link.

Basic Authentication is less secure than other forms of authentication. Only
enable Basic Authentication if you are sure that you will need to administer
your site from a machine that doesn’t have Internet Explorer installed.

Caution

FIGURE 17.8
The Secure
Communications page.

If you know that you will always be accessing the administration pages with
a browser that has 128-bit security (Netscape Navigator or Internet Explorer
128-bit, US/Canada versions), you should check the box labeled Require
128-bit Encryption for additional security.

Note

 23 0672318989 ch17 3/30/00 8:22 AM Page 383

After completing step 10, the access methods page will refresh, and you will observe the
following messages:

HTTP Error 403

403.4 Forbidden: SSL Required.

Don’t worry—this is to be expected, as you just reconfigured your Web server to require
SSL to access the administration pages. Close the page with the error, go back to the
Web browser you are using to configure your Web server and change the beginning of
the URL from http to https. You can now administer your E-Commerce site from any-
where by pointing a browser to https://www.yoursite.com/iisadmin.

Using the Administration Pages
You can use the Internet Service Manager (HTML) to remotely perform many of the
administrative functions for which you would normally use the Internet Service Manager
for MMC. The most obvious differences are

• You cannot use the Internet Service Manager (HTML) to start or stop a Web
service.

384 Day 17

The Internet Service Manager (HTML) is Web-based, which means that it
requires a Web server. As such, it doesn’t make sense to be able to stop the
Web server that the Internet Service Manager (HTML) is running on from
the HTML-based service manager.

Note

• You can only use the Internet Service Manager (HTML) to administer the Default
Web Site.

• Although you can add new virtual directories, you cannot change the physical (NT)
directories they point to. The physical directories will all be contained within the
physical directories for their parents.

Other than these exceptions, you will find the Internet Service Manager (HTML) a useful
tool for performing emergency maintenance on your E-Commerce site.

 23 0672318989 ch17 3/30/00 8:22 AM Page 384

Administering Your Store Remotely with ASPs 385

17

Installing and Administering the IIS FTP
Service

One of the more common remote tasks you might need to perform on your E-Commerce
site will be to add and remove content—for example, directories, Web pages, and
images. Using the File Transport Protocol (FTP) Service is one way to do just that.

The FTP service implements one of the oldest Internet technologies, the File
Transport Protocol, which dates back to 1971.

Note

By default, the FTP service is installed on Windows 2000. If you are using Windows NT,
the FTP service might not be installed. To check whether it is, go to the Start Menu and
select Windows NT 4.0 Option Pack, Microsoft Internet Information Server, Internet
Service Manager. Go to the left panel, open the Internet Information Server node, and
select your server. In the right panel, you should observe an icon for an FTP Site (often
called Default FTP Site—see Figure 17.9).

FIGURE 17.9
The Default FTP Site.

If the FTP server is not installed, you can install it by doing the following:

1. Go to the Start menu and select Programs, Windows NT 4.0 Option Pack,
Windows NT 4.0 Option Pack Setup.

2. When the Setup program appears, press the Next button, and then press the
Add/Remove button.

3. Select Internet Information Server (IIS) and press the Show Subcomponents button.

 23 0672318989 ch17 3/30/00 8:22 AM Page 385

4. Check the box beside File Transport Protocol(FTP) (see Figure 17.1) and press
OK. Press the Next button. The setup program will then install the additional com-
ponents and might prompt you to reboot your computer. Do so.

5. Re-install the latest Windows NT Service Pack.

After the FTP service is installed on your Web server, you can examine its configuration
by right-clicking the FTP site in Internet Service Manager and choosing Properties. You
will want to make several changes to the default configuration to improve security. First,
you will want to restrict anonymous access to your FTP server; then you will want to add
a virtual FTP directory for your Web site.

386 Day 17

Anonymous access to an FTP server dates back to the early days of the
Internet, when FTP servers were used to share data. Enabling anonymous
access is useful for Web sites that, like Download.com, are primarily intend-
ed to distribute files. It is generally not appropriate for E-Commerce sites.

Caution

To configure your FTP server, follow these steps:

1. To turn off anonymous access to your FTP server, select the Security Accounts tab
of the FTP Site Properties dialog box (see Figure 17.10) and uncheck the Allow
Anonymous Connections box. Press the OK button.

FIGURE 17.10
The Security Accounts
tab of the FTP Site
Properties dialog box.

2. To add a virtual FTP directory for your Web site, select Actions, New, Virtual
Directory from the Internet Service Manager. The New Virtual Directory wizard
will appear and prompt you to enter a directory name. Enter a name (for example,
Site) and press the Next button.

 23 0672318989 ch17 3/30/00 8:22 AM Page 386

Administering Your Store Remotely with ASPs 387

17

3. The next page will prompt you to enter the physical path for your new directory.
Enter the path to your Web server (for example, C:\InetPub\wwwroot\
candystore).

4. The next page will prompt you for the kinds of access permissions you want to
provide for the directory. Check both boxes to allow read and write access.

The new directory will appear in the Internet Service Manager (see Figure 17.11). You
are now ready to use the FTP service to upload and download files to and from your
Web site.

FIGURE 17.11
The new virtual FTP
directory appears in
the Internet Service
Manager.

Uploading Files to Your Site Using FTP
Like the Web, FTP is a client-server protocol. Whereas the Web uses a Web server as the
server and a browser as the client, FTP uses an FTP server as the server and an FTP client
as the client. By installing and configuring the FTP Service as described in the previous
section, you have set up your Web server to also function as an FTP server and to commu-
nicate with FTP clients. You can now use an FTP client to connect to the FTP service.

A client-server protocol is a standardized method for allowing client process-
es and server processes to communicate. A client process interacts with
users, allowing the users to request services from server processes. A server
process waits for a request to arrive from the client process and then
responds to those requests. The standardization of protocols allows a wide
variety of client processes that might run on a wide variety of machines to
request the same set of services from a wide variety of server processes that
also might run on a wide variety of machines.

Note

 23 0672318989 ch17 3/30/00 8:22 AM Page 387

Windows 95, Windows 98, Windows NT, and Windows 2000 come with a simple, text-
oriented FTP client. Figure 17.12 illustrates the steps involved in using the simple
Windows FTP client to transfer a file to the Web site:

388 Day 17

FIGURE 17.12
A transcript of upload-
ing a file to a Web
server.

1. Open an MS-DOS (Windows 95 or Windows 98) or Command Prompt.

2. Change the directory to the directory that contains the file you want to transfer; for
example, cd temp.

3. Run the FTP program by typing ftp yourhost.com.

4. The FTP program will prompt you for a username. Enter DOMAIN/username.

We are using DOMAIN as a placeholder for the Windows NT domain of your
Web server, and username as a placeholder for your Windows NT username.
Note that, unlike many Windows applications, we use the forward slash to
separate domain and username.

Note

5. The program will then prompt you for a password. Enter your Windows account
password.

6. Change the directory to the virtual directory you created above by typing cd site.

Subdirectories of the Web server appear as subdirectories of the virtual
directory, so in order to upload files to a subdirectory named dir, you would
type cd site/dir instead of cd site.

Note

7. Upload the file by typing put filename.

 23 0672318989 ch17 3/30/00 8:23 AM Page 388

Administering Your Store Remotely with ASPs 389

17

The file will now be available on your Web server.

More modern, easier to use FTP client software is available as shareware or
freeware from sources like download.com. One of my favorites is CuteFTP.
CuteFTP allows you to perform FTP transfers with an interface that appears
more like the Windows Explorer.

Note

In addition to sending a file from a client computer to the FTP server, the FTP client can
also be used to download files (the get command) and delete files (the del command).
To get a list of commands, type ? at the ftp prompt. To get help on a specific command,
type Help command.

You will find that FTP is an invaluable tool for site maintenance, especially if you are on
the road. For example, before installing the FTP service, adding or updating a product’s
picture with the addproduct.asp and updateproduct.asp requires physical access to the
server. With the installation of the FTP service, you can now add and update product
images using a combination of FTP and the catalog maintenance pages.

Advanced Web-Based Product Catalog
Maintenance

In Chapter 5, we introduced the addproduct.asp, updateProduct.asp, and manageprod-
ucts.asp pages, which allow you to add, update, and manage the products in your cata-
log. In this section, we will integrate these pages into the administration pages created in
Day 16, “Debugging Your E-Commerce Applications,” making adminPage.asp the home
page of an administrative Web site. To prepare for these changes, move the following
files to the admin directory:

• addProduct.asp

• updateProduct.asp

• manageProducts.asp

We will then extend each of these pages to add functionality that will allow easier, more
secure, remote catalog maintenance. The maintenance is made easier by using the
Microsoft Posting Acceptor (installed in Chapter 16) to extend these pages to add or
update all a product’s attributes, including images, from a browser page. After you move
these files, you must secure the admin directory by setting a password on the administra-
tive pages (see sidebar).

 23 0672318989 ch17 3/30/00 8:23 AM Page 389

390 Day 17

Setting a Password on Your Administrative Pages Directory

The interfaces described in this section make it quick and easy to modify your cata-
log. This is convenient, but it presents a significant security risk. In general, any
pages that can perform powerful operations should be protected.

IIS makes it easy to require a user to enter a password when he accesses a directo-
ry. As we will place all these pages into the admin directory, protecting that direc-
tory is the most obvious way to protect the pages. You can require a Windows NT
username and password for any access to files in the admin directory in the follow-
ing manner:

1. Launch the Internet Service Manager (called the Internet Services Manger on
Windows 2000).

2. Choose Action, Properties and go to the Directory Security tab. Press the
Anonymous Access and Authentication Control button.

3. In the Authentication Methods dialog that appears (see Figure 17.13), deselect
the Allow Anonymous Access button.

The next time a user attempts to access any of the pages in the admin directory, he
will be prompted for a username and password (see Figure 17.14).

FIGURE 17.13
The Authentication
Methods dialog box.

FIGURE 17.14
The Enter Network
Password dialog box.

 23 0672318989 ch17 3/30/00 8:23 AM Page 390

Administering Your Store Remotely with ASPs 391

17

The way the addProduct.asp and updateProduct.asp pages were originally written
assumes that, when the store administrator wants to add or modify a product’s picture,
the file that contains the image is already in the root directory of the store’s Web site.
This requires the administrator to use an FTP client to upload the image file, and then
switch to a browser to change the product database. The Posting Acceptor makes it possi-
ble to add or update all a product’s attributes, including images, from the same Web
page, as long as the store administrator has a relatively recent browser (Netscape
Navigator version 3.0 and above or Internet Explorer version 4.0 or above).

How the Posting Acceptor Makes it Easier for the User
and the Programmer
We’ll need to modify the HTML forms in the addproduct.asp and updateproduct.asp
pages to enable the store administrator to upload product pictures. You can upload a file
through a standard HTML form by using the FILE attribute of the HTML <INPUT> tag.
When you use the FILE attribute in an HTML form, the HTML form will include a
Browse button that enables you to select a file from your local hard drive to upload to the
Web site (see Figure 17.15). You can use this form element to upload any type of file
including documents and images.

FIGURE 17.15
A new Add Product
page that supports
image file upload,
including a Browse
button to help users
find the file.

 23 0672318989 ch17 3/30/00 8:23 AM Page 391

Using the FILE attribute has a serious drawback. If you accept file uploads in an HTML
form, you can no longer use the Form collection of the Request object to retrieve the
form variables. You must use an alternative method of retrieving the form variables. In
this section, you will learn how to use the Microsoft Posting Acceptor to accept files
uploads.

392 Day 17

There are several third-party upload components that you can use instead of
the Microsoft Posting Acceptor to accept file uploads. Although these com-
ponents can be expensive, they are typically much easier to use. To see a list
of these components, visit the software section of superexpert at
http://asp.superexpert.com/software.

Note

Before you can use an HTML form with the Posting Acceptor, you must make several
modifications to the form. First, you must add an ENCTYPE attribute to the <FORM> tag.
The ENCTYPE attribute must have the value multipart/form-data. This value enables the
form to upload binary files.

Next, you must modify the ACTION attribute of the <FORM> tag. Instead of submitting the
form directly to another ASP page, you must submit the form to the Posting Acceptor.
For example, suppose that your <FORM> tag looks like this:

<FORM METHOD=”POST” ACTION=”saveform.asp”>

If you want to use the Posting Acceptor to retrieve a file uploaded in the form, you must
modify the <FORM> tag like this:

<FORM METHOD=”POST” ENCTYPE=”multipart/form-data”

ACTION=”http://www.yourserver.com/Scripts/cpshost.dll?
➥PUBLISH?saveform.asp”>

This modified <FORM> tag allows the Posting Acceptor to submit the form data, minus the
uploaded file, to the saveform.asp page.

Finally, before you can use the Posting Acceptor, you must add a hidden form field
named TargetURL to the HTML form. The Posting Acceptor uses the value of the
TargetURL field to determine where, relative to the root directory of the Web server, to
post the uploaded file or files.

 23 0672318989 ch17 3/30/00 8:23 AM Page 392

Administering Your Store Remotely with ASPs 393

17

One significant problem with the Posting Acceptor results when a user doesn’t specify a
file to be uploaded. If a file isn’t uploaded, the Posting Acceptor will simply return an
error message. We’ll solve this problem by modifying storeFuncs.asp (see Listing 17.1)
and by creating a special client-side upload subroutine in upload.asp (see Listing 17.2).

LISTING 17.1 Additions to storeFuncs.asp

1 ‘ ==========================
2 ‘ Upload variables
3 ‘ ==========================
4
5 Dim strServerURL
6 Dim strTargetURL
7 Dim strRepostURL
8 Dim strPathToPA
9 Dim strPostingURL
10
11 strServerURL = “http://” & Request.ServerVariables(“SERVER_NAME”)
12 strTargetURL = “/Images”
13 strRepostURL = strServerURL & “/donePost.asp”
14 strPathToPA = strServerURL & “/Scripts/cpshost.dll”
15 strPostingURL = strPathToPA & “?PUBLISH?” + strRepostURL

Line 11 specifies strServerURL as the default URL to the server and is used as a
base to construct other URLs. Line 12 sets strTargetURL, which is used in

addProduct.asp (see Listing 17.3) and updateProduct.asp (see Listing 17.4) to inform
the Posting Acceptor of the destination directory for uploaded files. In line 13, the vari-
able named strRepostURL is assigned the URL of an ASP page that is used in two situa-
tions. When the user doesn’t specify a file to be uploaded, it is the URL to which we post
directly; when the user specifies a file, it is the URL to which the Posting Acceptor pass-
es control after placing the uploaded file in the strTargetURL directory. In either case,
the script in question is named donePost.asp (see Listing 17.5). Line 14 specifies the
URL to the Posting Acceptor, and line 15 specifies the actual URL that we use as the
value for the FORM tag’s ACTION attribute in addProduct.asp and updateProduct.asp.

By default, the Posting Acceptor cannot be used to enable anonymous visi-
tors to your Web site to upload files. You must place all the pages discussed
in this section in a password-protected directory of your Web site.

To enable anonymous visitors to use the Posting Acceptor, you can change a
setting in your server’s registry. For more information, see Knowledge Base
Article Q179566 at the Microsoft Web site.

Caution

INPUT

ANALYSIS

 23 0672318989 ch17 3/30/00 8:23 AM Page 393

LISTING 17.2 The upload Subroutine in upload.asp

1 <script language=”VBScript”>
2 SUB upload(BYREF frm)
3 DIM numFiles, i
4
5 numFiles = 0
6 FOR i = 0 TO frm.elements.length - 1
7 IF frm.elements(i).type = “file” AND LEN(frm.elements(i).value) > 0 THEN
8 numFiles = numFiles + 1
9 END IF
10 NEXT
11
12 IF numFiles = 0 THEN
13 frm.action = “<%=strRepostURL%>”
14 frm.encoding = “application/x-www-form-urlencoded”
15 END IF
16
17 frm.submit()
18 END SUB
19 </script>

394 Day 17

INPUT

The upload subroutine contained in upload.asp is a client-side script that
uses VBScript. This means that it won’t work on browsers such as Netscape
Navigator that do not support VBScript. To use the upload.asp file, you must
use Microsoft Internet Explorer.

Note

Line 1 declares that the script inside the <script></script> tags is for execu-
tion on the client. Line 2 declares the upload subroutine, which takes the form to

be submitted as an argument. Lines 6–10 count the number of files the user specified for
upload. Lines 12–15 handle the case in which the user hasn’t specified any files for
upload by changing the URL in which the form is submitted (line 13) and the type of the
form to the default (line 14). Line 14 assumes that storeFuncs.asp has been included so
that strRepostURL is set to the form processing URL. The subroutine assumes that the
form passed in has its attributes set to upload to the Posting Acceptor by default, so if the
user has specified at least one file, it submits the form according to its defaults (line 17).

ANALYSIS

 23 0672318989 ch17 3/30/00 8:23 AM Page 394

Administering Your Store Remotely with ASPs 395

17

With the common code above, we are almost ready to change the existing product cata-
log maintenance pages to use the Posting Acceptor and to integrate them into our admin-
istration site. The last few steps before making these changes are

1. Verify that the Posting Acceptor is installed. Look for a file called cpshost.dll in
your site’s script directory.

2. Create a new images directory and move all the image files (*.jpg) there.

3. Go to the Internet Service Manager and right-click the images directory. Set the
Access permissions to Read and Write and the Execution permissions to None as
shown in Figure 17.16.

upload.asp should be placed in the admin directory where the other prod-
uct management pages, such as manageproducts.asp and
updateproduct.asp, are stored.

Note

These permission changes are necessary to prevent unauthorized users from
uploading and running scripts on your site.

Caution

FIGURE 17.16
Permissions set for the
new images directory.

4. Change the tags in search.asp, productlist.asp, product.asp, fea-
tured.asp, and fastproductlist.asp that refer to the pictures of products so that
they refer to the new images directory (for example, change <IMG SRC=”<%=RS
(“product_Picture)%>> to <IMG SRC=”images/<%=RS(“product_Picture)%>>).

 23 0672318989 ch17 3/30/00 8:23 AM Page 395

Uploading Pictures from addProduct.asp and
updateProduct.asp
Now that the Posting Acceptor is installed, the images directory created, the directories
protected, and the common code written, you are ready to change addProduct.asp (see
Figure 17.15 and Listing 17.3) and updateProduct.asp (see Figure 17.17 and Listing
17.4) so that users can submit pictures. The new pages feature a more consistent look-
and-feel and use the common code written in the previous section along with an <INPUT
TYPE=”FILE”> tag to allow users to upload new or changed product pictures.

LISTING 17.3 New addProduct.asp that Can Upload Images

1 <!-- #include file=”../storeFuncs.asp” -->
2
3 <html>
4 <head><title>Johnson Candies and Gifts - Add Product </title></head>
5 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
6
7 <!-- #include file=”upload.asp” -->
8
9 <center>
10 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥ cellpadding=”0”>
11 <tr>
12 <td>
13
14 </td>
15 </tr>
16 <tr>
17 <td colspan=”2”>
18 <hr width=”640”>
19 </td>
20 </tr>
21 </table>
22 <form method=”post” enctype=”multipart/form-data” name=”form”

➥action=”<%=strPostingURL%>”>
23 <input type=”hidden” name=”TargetURL” value=”<%=strTargetURL%>”>
24 <table width=”600” border=1 bgcolor=”lightyellow” cellpadding=”4”

➥cellspacing=”0”>
25 <tr>
26 <td colspan=”2” bgcolor=”yellow”>
27 Add Product
28 </td>
29 </tr>
30 <tr>
31 <td> Product Name:</td>
32 <td><input name=”productName” size=”50” maxlength=”50”></td>

396 Day 17

INPUT

 23 0672318989 ch17 3/30/00 8:23 AM Page 396

Administering Your Store Remotely with ASPs 397

17

33 </tr>
34 <tr>
35 <td>Product Price:</td>
36 <td><input name=”productPrice” size=”10”></td>
37 </tr>
38 <tr>
39 <td>Product Picture:</td>
40 <td><input name=”productPicture” type=”file”

➥size=”50” maxlength=”50”></td>
41 </tr>
42 <tr>
43 <td>Product Category:</td>
44 <td><input name=”productCategory” size=”50” maxlength=”50”></td>
45 </tr>
46 <tr>
47 <td>Product Brief Desc:</td>
48 <td><textarea name=”productBriefDesc” cols=”50”

➥rows=”2” wrap=”virtual”></textarea></td>
49 </tr>
50 <tr>
51 <td>Product Full Desc:</td>
52 <td><textarea name=”productFullDesc” cols=”50”

➥rows=”10” wrap=”virtual”></textarea></td>
53 </tr>
54 <tr>
55 <td>Product Status:</td>
56 <td><select name=”productStatus”><option value=”0”>INACTIVE
57 <option value=”1”>ACTIVE</select></td>
58 </tr>
59 <tr>
60 <td colspan=2 align=”right”><input type=”button” value=”Add Product”

➥ onclick=”upload(form)”> </td>
61 </tr>
62 </table>
63
64 <input name=”addProduct” type=”hidden” value=”1”>
65 </form>
66 </center>
67 </body>
68 </html>

Lines 1 and 7 include the common code from the previous section. Line 22 gives
the form the name “form” so that it can be passed to the upload subroutine

(see line 60) and sets it to be submitted by default to strPostingURL (defined in
storeFuncs.asp, Listing 17.1) as a multipart/form-data, which allows the image file
to be submitted in binary form. Line 23 defines the hidden TargetURL input to tell the
Posting Acceptor where to place the uploaded file. Line 40 is the <INPUT TYPE=”FILE”>
tag, in which the user can specify where to find the new item’s picture on his computer.

ANALYSIS

 23 0672318989 ch17 3/30/00 8:23 AM Page 397

Line 60 changes the Add Product button from a TYPE=”submit” (which just submits the
form as specified in the <FORM> tag) to a TYPE=”button”, and calls the upload subroutine
(see Listing 17.2) with the form when the button is clicked. Finally, line 64 is a hidden
INPUT field that informs the form processor that the data is coming from
addProduct.asp.

LISTING 17.4 Changes to updateProduct.asp to Allow Images to Be
Uploaded

1 <!--#include file=’../storefuncs.asp’-->
2 <%
3 Response.Buffer = TRUE
4
5 ‘ Get the Product ID
6 productID = Request(“pid”)
7
8 ‘ Open the Database Connection
9 Set Con = Server.CreateObject(“ADODB.Connection”)
10 Con.Open “accessDSN”
11
12 ‘ Open the Recordset
13 Set RS = Server.CreateObject(“ADODB.Recordset”)
14 RS.ActiveConnection = Con
15 RS.CursorType = 3
16 RS.Open “SELECT * FROM Products WHERE product_id=” & productID
17 IF NOT RS.EOF THEN
18 productName = RS(“product_name”)
19 productPrice = RS(“product_price”)
20 productPicture = RS(“product_picture”)
21 productCategory = RS(“product_category”)
22 productBriefDesc = RS(“product_briefDesc”)
23 productFullDesc = RS(“product_fullDesc”)
24 productStatus = RS(“product_status”)
25 END IF
26 ‘ Close the Recordset
27 RS.Close
28
29 ‘ Assign Default Values
30 IF productName = “?????” THEN
31 productName = “”
32 END IF
33
34 IF productCategory = “?????” THEN
35 productCategory = “”
36 END IF
37 IF (productBriefDesc = “?????”) OR (productBriefDesc = (“?????” & vbCrLf))

➥THEN
38 productBriefDesc = “”
39 END IF

398 Day 17

INPUT

 23 0672318989 ch17 3/30/00 8:23 AM Page 398

Administering Your Store Remotely with ASPs 399

17

40 IF (productFullDesc = “?????”) OR (productFullDesc = (“?????” & vbCrLf)) THEN
41 productFullDesc = “”
42 END IF
43
44 FUNCTION SELECTED(firstVal, secondVal)
45 IF cSTR(firstVal) = cSTR(secondVAL) THEN
46 SELECTED = “ SELECTED “
47 END IF
48 END FUNCTION
49
50 %>
51 <html>
52 <head><title>Johnson Candies and Gifts - Update Product </title></head>
53 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
54
55 <!-- #include file=”upload.asp” -->
56
57 <center>
58 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥cellpadding=”0”>
59 <tr><td></td></tr>
60 <tr><td colspan=”2”><hr width=”640”></td></tr>
61 </table>
62 <form method=”post” enctype=”multipart/form-data”

➥name=”form” action=”<%=strPostingURL%>”>
63 <input type=”hidden” name=”TargetURL” value=”<%=strTargetURL%>”>
64 <table width=”600” border=1 bgcolor=”lightyellow”

➥cellpadding=”4” cellspacing=”0”>
65 <tr>
66 <td colspan=”2” bgcolor=”yellow”>

➥Update Product</td>
67 </tr>
68 <tr>
69 <td>Product Name:</td>
70 <td><input name=”productName” size=”50” maxlength=”50”

➥value=”<%=Server.HTMLEncode(productName)%>”></td>
71 </tr>
72 <tr>
73 <td>Product Price:</td>
74 <td><input name=”productPrice” size=”10”

➥value=”<%=productPrice%>”></td>
75 </tr>
76 <tr>
77 <td> Current Product Picture: </td>
78 <td>
79 <% IF productPicture <> “?????” THEN %>
80 <img src=”/images/<%=productPicture%>”>
81 <input type=”hidden” name=”currentPicture”

➥value=”<%=productPicture%>”>
82 <% ELSE %>

continues

 23 0672318989 ch17 3/30/00 8:23 AM Page 399

83 No picture currently specified.
84 <% END IF %>
85 </td>
86 </tr>
87 <tr>
88 <td>New Product Picture:</td>
89 <td><input name=”productPicture” type=”file” size=”50” maxlength=”50”>

➥</td>
90 </tr>
91 <tr>
92 <td>Product Category:</td>
93 <td><input name=”productCategory” size=”50” maxlength=”50”

➥value=”<%=Server.HTMLEncode(productCategory)%>”></td>
94 </tr>
95 <tr>
96 <td>Product Brief Desc:</td>
97 <td><textarea name=”productBriefDesc” cols=”50” rows=”2”

➥wrap=”virtual”><%=Server.HTMLEncode(productBriefDesc)%></textarea></td>
98
99 </tr>
100 <tr>
101 <td>Product Full Desc:</td>
102 <td><textarea name=”productFullDesc” cols=”50” rows=”10”

➥wrap=”virtual”><%=Server.HTMLEncode(productFullDesc)%></textarea></td>
103 </tr>
104 <tr>
105 <td>Product Status:</td>
106 <td><select name=”productStatus”>
107 <option value=”0” <%=SELECTED(“0”, productStatus)%>>INACTIVE
108 <option value=”1” <%=SELECTED(“1”, productStatus)%>>ACTIVE
109 </select></td>
110 </tr>
111 <tr>
112 <td colspan=2 align=”right”><input type=”button” value=”Update Product”

➥onclick=”upload(form)”></td>
113 </tr>
114 </table>
115
116 <input name=”productID” type=”hidden” value=”<%=productID%>”>
117 <input name=”updateProduct” type=”hidden” value=”1”>
118 </form>
119
120 </center>
121 </body>
122 </html>

The new updateproduct.asp page is shown in Figure 17.17. Lines 1 and 55
include the common code from the previous section. Lines 6–27 get information

400 Day 17

LISTING 17.4 continued

ANALYSIS

 23 0672318989 ch17 3/30/00 8:23 AM Page 400

Administering Your Store Remotely with ASPs 401

17

about the selected product from the database: the product’s ID is passed in as the
Request item pid (line 6), the record is selected from the database (lines 13–16), and the
information about the product is stored in script variables (lines 18–24). If a user doesn’t
specify information for a specific product property, five question marks are stored in the
database; lines 29–42 detect the question marks and convert them to blanks for display to
the user.

Line 62 gives the form the name “form” so that it can be passed to the upload subroutine
(see line 112), and sets it to be submitted by default to strPostingURL (defined in
storeFuncs.asp, Listing 17.1) as a multipart/form-data, which allows the image file
to be submitted in binary. Line 63 defines the hidden TargetURL input to tell the Posting
Acceptor where to place the uploaded file.

Lines 76–86 display the product’s current picture, if in the database; if no product picture
is available, a message is displayed (line 83). Line 89 is the <INPUT TYPE=”FILE”> tag,
in which the user can specify where to find the item’s new picture on his computer.
Along with the function SELECTED (lines 44–48), lines 106–109 display whether the
product is currently set to be available in the database. Line 112 changes the Update
Product button from a TYPE=”submit” (which just submits the form as specified in the
<FORM> tag) to a TYPE=”button”, and calls the upload subroutine (Listing 17.2) with the
form when the button is clicked. Line 116 identifies the existing product’s ID to the pro-
cessing form. Finally, line 117 is a hidden INPUT field that informs the form processor
that the data is coming from updateProduct.asp.

Identifying the form as we do in lines 64 (see Listing 17.3) and 117 (see
Listing 17.4) allows us to place the form processing code for both
addProduct.asp and updateProduct.asp, most of which is shared, in the
same place (donePost.asp, Listing 17.5).

Note

Moving Form Processing Logic from
manageProducts.asp to the New donePost.asp
The old versions of addProduct.asp and updateProduct.asp always submit directly to
manageProducts.asp. Because of limitations of the Posting Acceptor, the new versions
of these files submit to the new file donePost.asp (see Listing 17.5), either via the
Posting Acceptor or directly. The scripts in this new file perform the database processing
that was previously done by scripts in manageProducts.asp. The changes to
manageProducts.asp are primarily deletions and are available on the CD-ROM that
accompanies this book.

 23 0672318989 ch17 3/30/00 8:23 AM Page 401

LISTING 17.5 The New File donePost.asp

1 <%@ Language=VBScript %>
2 <!--#include file=’storefuncs.asp’-->
3 <%
4 Response.Buffer = TRUE
5
6 Dim addProduct
7 Dim updateProduct
8 Dim productID
9 Dim productName
10 Dim productPrice
11 Dim productPicture
12 Dim currentPicture
13 Dim productCategory
14 Dim productBriefDesc
15 Dim productFullDesc
16 Dim productStatus
17
18 ‘ Get the Form Variables
19 addProduct = TRIM(Request.Form(“addProduct”))
20 updateProduct = TRIM(Request.Form(“updateProduct”))
21
22 productID = TRIM(Request.Form(“productID”))
23 productName = TRIM(Request.Form(“productName”))
24 productPrice = TRIM(Request.Form(“productPrice”))
25 productPicture = Request.Form(“fileName”) &

➥Request.Form(“fileExtention”)
26 currentPicture = TRIM(Request.Form (“currentPicture”))
27 productCategory = TRIM(Request.Form(“productCategory”))

402 Day 17

FIGURE 17.17
A new Update Product
page that supports
image file upload.

INPUT

 23 0672318989 ch17 3/30/00 8:23 AM Page 402

Administering Your Store Remotely with ASPs 403

17

28 productBriefDesc = TRIM(Request.Form(“productBriefDesc”))
29 productFullDesc = TRIM(Request.Form(“productFullDesc”))
30 productStatus = TRIM(Request.Form(“productStatus”))
31
32 ‘ Assign Default Values
33 IF productName = “” THEN
34 productName = “?????”
35 END IF
36 IF productPrice = “” or NOT isNUMERIC(productPrice) THEN
37 productPrice = 0
38 END IF
39
40 IF productPicture = “” THEN
41 IF currentPicture = “” THEN
42 productPicture = “?????”
43 ELSE
44 productPicture = currentPicture
45 END IF
46 END IF
47
48 IF productCategory = “” THEN
49 productCategory = “?????”
50 END IF
51 IF productBriefDesc = “” THEN
52 productBriefDesc = “?????”
53 END IF
54 IF productFullDesc = “” THEN
55 productFullDesc = “?????”
56 END IF
57
58 ‘ Open the Database Connection
59 Set Con = Server.CreateObject(“ADODB.Connection”)
60 Con.Open “accessDSN”
61 %>
62 <html>
63 <head><title>Johnson’s Candies and Gifts</title></head>
64 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
65 <body link=”#ff4040” bgcolor=”#ffffff” vtext=”lightred”>
66 <center>
67 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥cellpadding=”0”>
68 <tr><td></td></tr>
69 <tr><td colspan=”2”><hr width=”640”><P> </P></td></tr>
70 </table>
71 </center>
72
73 <%
74 ‘ Add New Product
75 IF addProduct <> “” THEN
76

continues

 23 0672318989 ch17 3/30/00 8:23 AM Page 403

77 sqlString = “INSERT INTO Products “ &_
78 “(product_name, product_price, product_picture, “ &_
79 “product_category, product_briefdesc, product_fulldesc, “ &_
80 “product_status) VALUES (“ &_
81 “ ‘“ & productName & “‘, “ &_
82 productPrice & “, “ &_
83 “ ‘“ & productPicture & “‘, “ &_
84 “ ‘“ & productCategory & “‘, “ &_
85 “ ‘“ & productBriefDesc & “‘, “ &_
86 “ ‘“ & productFullDesc & “‘, “ &_
87 productStatus & “)”
88
89 Con.Execute sqlString
90
91 %>
92 <CENTER>
93 <table width=”600” cellpadding=”4” cellspacing=”0”>
94 <tr>
95 <td><%=productName%> was added to the database</td>
96 </tr>
97 <tr>
98 <td><P align=center>

➥Add Another Product</P></td>
99 <td><P align=center>

➥Manage Products</P></td>
100 <td><P align=center>

➥Administration Page</P></td>
101 </tr>
102 </table>
103 </CENTER>
104 <p>
105 <%
106 END IF
107
108 ‘ Update Product
109 IF updateProduct <> “” THEN
110
111 sqlString = “UPDATE Products SET “ &_
112 “product_name=’” & fixQuotes(productName) & “‘,” &_
113 “product_price=” & cCUR(productPrice) & “,” &_
114 “product_picture=’” & fixQuotes(productPicture) & “‘,” &_
115 “product_category=’” & fixQuotes(productCategory) & “‘,” &_
116 “product_briefdesc=’” & fixQuotes(productBriefDesc) & “‘,” &_
117 “product_fulldesc=’” & fixQuotes(productFullDesc) & “‘,” &_
118 “product_status=” & productStatus & “ WHERE “ &_
119 “product_id=” & productID
120
121 Con.Execute sqlString
122

404 Day 17

LISTING 17.5 continued

 23 0672318989 ch17 3/30/00 8:23 AM Page 404

Administering Your Store Remotely with ASPs 405

17

123 %>
124 <center>
125 <table width=”600” cellpadding=”4” cellspacing=”0”>
126 <tr>
127 <td><%=productName%> was updated in the database</td>
128 </tr>
129 <tr>
130 <td><P align=center>

➥Manage Products</P></td>
131 <td><P align=center>

➥Administration Page</P></td>
132 </tr>
133 </table>
134 </center>
135 <p align=”left”> <%
136 END IF
137 %></p>
138
139 </body>
140 </HTML>

Lines 18–30 retrieve the product data that the user entered in his form. With the
exception of productPicture (line 25), this data is taken direct from <INPUT>

fields. As for productPicture, if the Posting Acceptor calls the script, the Posting Ac-
ceptor will provide the uploaded file’s name and extension in two fields called fileName
and fileExtension; if addProduct.asp or updateProduct.asp calls the script directly,
there will be no uploaded file, and the fields will be blank. Lines 33–56 check whether
the fields have not been filled in and, if not, assign them default values. Lines 59–60
open a database connection that is used for either inserting or updating, depending on
whether donePost.asp is invoked to add or update a product. If donePost.asp is in-
voked because of an operation in addProduct.asp, lines 75–89 insert the new product
into the database, and lines 92–104 display a confirmation message. Otherwise, if
donePost.asp is invoked because of an operation in updateProduct.asp, lines 109–121
update the appropriate record in the database, and lines 124–137 display a confirmation
message.

Integrating the Pages into the Administration Web
Now that the scripts are written, we are ready to integrate addProduct.asp and
manageProducts.asp into the home page of our administration Web, adminPage.asp.
These changes comprise of simply adding links to the two pages (see Listing 17.6) and,
voilá!—a rudimentary, but very functional administration Web site. The adminPage.asp
is shown in Figure 17.18.

ANALYSIS

 23 0672318989 ch17 3/30/00 8:23 AM Page 405

LISTING 17.6 Updated adminPage.asp

1 <%@ Language=”VBScript” %>
2 <%
3 If Request.Form(“ProcForm”) = “Process” Then
4 Session(“iDebugLevel”) = Request.Form(“debugLevel”)
5 If Session(“iDebugLevel”) = “” Then
6 Session(“iDebugLevel”) = 0
7 End If
8 End If
9 %>
10 <HTML>
11 <HEAD>
12 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
13 <title>Johnson’s Candies and Gifts Administration Page</title>
14 </head>
15 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
16 <center>
17
18 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥cellpadding=”0”>
19 <tr><td></td></tr>
20 <tr><td colspan=”2”><hr width=”640”></td></tr>
21 </table>
22
23 <H2>Administration Page</H2>
24 <H4 align=”left”>Maintain Catalog</H4>
25 <p>Add product </p>
26 <p>Manage Products</p>
27 <FORM method=”POST” action=”adminPage.asp”>
28 <h4 align=”left”>Set Debug Level <input type=”hidden” name=”ProcForm”

➥value=”Process”></h4>
29 <table>
30 <tr>
31 <td><div align=”right”>Debug Level: </div></td>
32 <td><input name=”debugLevel” value=”

➥<%=Session.Value(“iDebugLevel”)%>”></td>
33 </tr>
34 <tr><td colspan=”2”><div align=”center”>

➥<input type=”submit” value=”Submit”></div></td></tr>
35 </table>
36 </FORM>
37 </center></BODY></HTML>

The links to addProduct.asp and manageProducts.asp are defined in lines 25
and 26, respectively.

406 Day 17

INPUT

ANALYSIS

 23 0672318989 ch17 3/30/00 8:23 AM Page 406

Administering Your Store Remotely with ASPs 407

17

Summary
In today’s lesson, you learned how to administer your Web server from a remote loca-
tion. In the first section, you learned how to configure your Web server with a standard
Web browser by using the HTML interface to the Internet Service Manager. You learned
methods of using the HTML version of the Internet Service Manager to perform standard
administrative functions such as altering the security settings for a directory.

In the next section, you were introduced to the FTP service. You learned how to use the
FTP service to upload and download files from a remote location. You were introduced
to basic FTP commands such as the put command, which enables you to upload files
from a remote location and the get command, which allows you to download files from a
remote location.

Finally, you learned how to upload files to your Web site from a remote location by using
the Microsoft Posting Acceptor. First, you learned how to configure the Posting Acceptor
to work on your Web server. Next, you modified the store administration pages discussed
in previous lessons to enable you to upload pictures of the products contained in your
store.

FIGURE 17.18
The new
adminPage.asp.

 23 0672318989 ch17 3/30/00 8:23 AM Page 407

Q&A
Q upload.asp contains something called a client-side script. What’s the difference

between a client-side and server-side script?

A Most of the scripts in this book are server-side scripts, which, as the name sug-
gests, are scripts that execute on the server. Any script in an ASP file that appears
between the <% and %> script delimiters is executed on the server. Scripts that are
contained between <SCRIPT></SCRIPT> tags by default are interpreted and execut-
ed on the Web browser. Because these scripts run on the user’s machine, they are
called client-side scripts.

Server-side scripts are appropriate for most database applications, but in some
cases you will need a page to take a different action based on user input. One
example of this can be found in this chapter, where the upload.asp script submits
a page to the Posting Acceptor when a user specifies a file and submits it to an
ASP page when she doesn’t. The only way this could work is if the browser can
execute scripts.

Client-side scripts are also useful in cases in which you don’t want the user to have
to wait for the server to receive and respond to a message. Many E-Commerce sites
use client-side scripts for input verification. This makes the verification faster
because the user doesn’t have to wait for the server to validate the data the user
inputs. It also helps improve the scalability of these sites because the server only
processes correct input. The selectCust.asp script in the next chapter illustrates
the use of client-side script as a technique for improving response time and scala-
bility.

Workshop
The Quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What are three administrative tasks that the Internet Service Manager (HTML) can-

not perform?

2. What is FTP? Is it advisable to allow anonymous access to your FTP service?

3. What is the Posting Acceptor?

4. What happens if you submit a form to the Posting Acceptor that doesn’t include a
file for upload?

408 Day 17

 23 0672318989 ch17 3/30/00 8:23 AM Page 408

DAY 18

WEEK 3

Using Email from Active
Server Pages

A powerful, but hidden, feature of IIS is the ability to send email from within
an ASP page. As alluded to in Day 16, “Debugging Your E-Commerce
Applications,” you can use this feature to send yourself email when something
goes wrong (or when something goes right!). You can also use this to automati-
cally send individual email messages to your customers. Finally, and perhaps
most powerfully, you can use this feature for direct email marketing.

If you have ever had an email account, you already know about email-based
direct marketing. Direct email marketing is very similar to the postal email mar-
keting that many retailers use, but with one big advantage—it’s free. In previous
Days, you collected email addresses when your customers signed up for sub-
scription-based services or submitted orders. With IIS and Active Server Pages,
you now have an easy way to take advantage of those collected addresses.

Today, you will learn

• The basics of Internet mail

• How to configure the IIS SMTP server

 24 0672318989 ch18 3/30/00 8:16 AM Page 409

• Information about the Collaboration Data Objects for NT Server (CDONTS)

• How to use CDONTS to send an email from an ASP page

• How to send batches of personalized email

The Basics of Internet Mail
Electronic messaging dates back to the 1970s. The original email systems were designed
to enable people in a single organization to communicate. In those early systems, sending
email to someone in a different organization was difficult, if not impossible. As more and
more computers became connected, users wanted to access those connections to send
email, and a variety of methods of transferring mail between email systems briefly flour-
ished. Those methods are known as mail protocols, and all of them have two key fea-
tures: They guarantee delivery or notification of delivery failure, and they perform format
conversions. The protocol that eventually survived was the Simple Mail Transmission
Protocol (SMTP), developed by David Crocker in 1982. SMTP was extended in 1992 to
handle large messages with attachments in the Multipurpose Internet Mail Extensions
(MIME).

If you have been using the Internet for even a brief period of time, you are familiar with
sending email using SMTP and MIME. To a user, in fact, sending an email is quite sim-
ple: Specify a destination address in the format user@domain. To an SMTP server, the
process of getting the message to its intended recipient is more complex.

If the destination domain is the same as your own, the server simply delivers the email to
the user. If the destination domain is not the same as yours, the SMTP server at your
domain stores the message in a queue, and then asks its DNS server for a server that
knows how to deliver mail to the domain you have specified. This machine might be at
the destination domain or at an intermediate domain. Your SMTP server then converts the
mail, if necessary, and delivers it to the server specified by the DNS server. That destina-
tion machine stores the message in its own queue, and then acknowledges receipt to your
SMTP server. Your SMTP server can then delete the message from its queue. If the desti-
nation machine doesn’t acknowledge the message, your server keeps trying to send the
message, and if it still cannot deliver the message, your server sends a message back to
you. This process repeats until the message arrives at the recipient’s SMTP server. This
entire process is known as “store-and-forward” communication, and is depicted in Figure
18.1. The use of intermediate servers was much more common in earlier days of the
Internet. It is now usual for email to pass through only two SMTP servers—the sender’s
server and the recipient’s server—before being delivered.

410 Day 18

 24 0672318989 ch18 3/30/00 8:16 AM Page 410

Using Email from Active Server Pages 411

18

Configuring the SMTP Service
If you are using Windows 2000, then the SMTP Service is installed by default. If you are
using Windows NT, then you can verify that the SMTP Service is installed by launching
the Internet Service Manager. Go to the left panel, open the Internet Information Server
node, and select your server. In the right panel, you should see an icon for an SMTP site,
often called Default SMTP Site (see Figure 18.2).

FIGURE 18.1
An illustration of
SMTP store-and-for-
ward communication.

1. Sender addresses mail to recipient@domain3, submits message to local SMTP server.

2. SMTP server stores mail locally pending delivery.

3. After acknowledgement from SMTP server at domain2, SMTP server deletes message.

4. SMTP server at domain1 performs data conversions if necessary and transmits

message to domain2.

5. SMTP server at domain2 acknowleges receipt.

6. SMTP server asks Domain Name Server (DNS) for the SMTP server that handles mail

for domain3. DNS replies with a server name, perhaps at domain2.

7. SMTP server stores mail locally pending delivery.

8. After acknowledgement from SMTP server at domain3, SMTP server deletes message.

9. SMTP server at domain1 performs data conversions if necessary and transmits

message to domain3.

10. SMTP server at domain3 acknowledges receipt.

11. SMTP server asks Domain Name Server (DNS) for the SMTP server that handles mail

for domain3. DNS replies with a server name.

12. SMTP server delivers mail to recipient, performing formatting conversion if necessary.

13. SMTP server stores mail locally pending delivery.

14. After verification of delivery, SMTP server deletes message.

sender@domain1 recipient@domain3

SMTP server at
domain1

SMTP server at
domain2

DNS server DNS server

SMTP server at
domain3

SMTP
mail

directory

SMTP
mail

directory

SMTP
mail

directory

1.

2.

4.

5.

6.

9.

10.

12.

11.
3.

7.

8.

13.

14.

 24 0672318989 ch18 3/30/00 8:16 AM Page 411

If you are using Windows NT Server and the SMTP service is not installed, you can
install it by going to the Start Menu and selecting Windows NT 4.0 Option Pack,
Windows NT 4.0 Option Pack Setup. The SMTP server is a subcomponent of Internet
Information Server. After installing the SMTP service, be sure to reapply the latest
Windows NT Service Pack.

After you have verified that the SMTP service is installed on your Web server, you
should verify its configuration with your ISP. You can examine the SMTP service’s con-
figuration by double-clicking the SMTP site in Internet Service Manager. In general, the
default configuration is correct. However, you should check that relaying is turned off.
You can verify this by bringing up the SMTP site configuration and clicking the
Directory Security tab (see Figure 18.3). In the Relay Restrictions box, click the Edit
button and be sure that By Default, All Computers Are Not Allowed to Relay is selected
(see Figure 18.4).

412 Day 18

FIGURE 18.2
Verifying that the
SMTP service is
installed on your
server.

FIGURE 18.3
The Directory Security
tab of the Default
SMTP Site Properties
dialog.

 24 0672318989 ch18 3/30/00 8:16 AM Page 412

Using Email from Active Server Pages 413

18

The SMTP service performs the process discussed in the previous section (“The Basics
of Internet Mail”) by using four directories. When installed, it creates a set of directories
beneath a root directory, MailRoot. The directories are Pickup, Queue, BadMail, and
Drop. To send a message, an application (such as a mail client) places a properly format-
ted message into the Pickup directory. The SMTP service monitors this directory, and
when it finds a file there, it tries to deliver the file to the destination SMTP server. If the
service delivers the message successfully, it deletes the message. If it does not deliver the
message successfully, it moves the message to the Queue directory.v

When a message is in the Queue directory, the SMTP service keeps trying to send the mes-
sage to its destination. The number of times it tries and the interval between the tries are
configurable in the Internet Service Manager. When messages cannot be delivered, the
SMTP service writes transcript files (text files with the extensions LTR and RTR) to the
Queue directory. You can use these transcript files to diagnose problems with mail delivery.

After a message is successfully delivered, it is deleted from the Queue directory. If the
number of delivery tries exceeds the configured value in the Internet Service Manager,
the service returns the mail to the sender. If the message cannot be returned to the sender
and cannot be delivered to its recipient, the SMTP service moves the message to the
BadMail directory.

The last directory is the Drop directory. If any other SMTP server tries to deliver mail to
a recipient of the SMTP service, the service stores the message in the Drop directory. The
SMTP service in IIS concentrates on sending and relaying mail; to use the SMTP service
to receive mail, you must write some ASP pages to move the incoming mail into individ-
ual user mailboxes.

FIGURE 18.4
The Relay Restrictions
dialog.

If relaying is not restricted, spammers will be able to exploit your Web server
to send unsolicited bulk email through your site. You don’t want to get
blamed for the questionable activities of others.

Caution

 24 0672318989 ch18 3/30/00 8:16 AM Page 413

The Collaboration Data Objects for NT Server
(CDONTS)

It is possible to use ASP to send mail by writing message files into the SMTP server’s
MailRoot\Pickup directory. However, Collaboration Data Objects for NT Server
(CDONTS), which are installed along with the IIS SMTP server, provide a convenient,
easy-to-use, server-independent, and robust way to send messages from within ASP. The
CDONTS are the latest in a long series of Microsoft’s messaging technologies. CDONTS
are similar to the ActiveX Data Objects (ADO) you learned about in Day 5, “Building
Your Product Catalog.” They give users of any programming or scripting language access
to a complex, robust set of operating system features. Where ADO is specific to databas-
es, CDONTS enables ASP programmers to send and receive email by wrapping the
Windows native messaging services with ActiveX. Sending email using CDONTS is a
simple matter of creating a mail object and setting a few of its properties.

414 Day 18

The Collaboration Data Objects for NT Server also work with Windows 2000
Server.

Note

Early versions of CDONTS have some serious bugs. If you are using Windows
NT Server, before continuing, check to see that you are using the correct ver-
sion of CDONTS by using Windows Explorer to go to your WINNT\SYSTEM32
directory. Right-click CDONTS.DLL, and select the Properties menu item. In the
Properties dialog, select the Version tab (see Figure 18.5). The version num-
ber should be equal to or greater than 5.5.1877.28.

If your CDONTS.DLL is earlier than version 5.5.1877.28, you can obtain a
newer version by downloading the latest Microsoft Exchange 5.5 Service
Pack from Microsoft’s Web site.

Caution

 24 0672318989 ch18 3/30/00 8:16 AM Page 414

Using Email from Active Server Pages 415

18

Sending Email from an ASP Page
The code in Listing 18.1 demonstrates just how easy it is to send an email from an ASP
page. Simply create a CDONTS.Newmail object and call its Send method with four parame-
ters: sender address, recipient address, subject, and body. Whenever the page is executed,
mail is sent. (See Figures 18.6 and 18.7.)

LISTING 18.1 Sending a Simple Email Message from ASP

1 <%@ Language=VBScript %>
2 <%
3 Set NewMailObj = CreateObject(“CDONTS.NewMail”)
4 recipStr = “asprecipient@yahoo.com”
5 NewMailObj.Send “jon@levlin.com”, recipStr, “Check it out!”, “Here’s some

➥email for you”
6 Set NewMailObj = Nothing
7 %>
8
9 <HTML>
10 <HEAD>
11 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
12 </HEAD>
13 <BODY>
14
15 <P>Sent mail to <%=recipStr%>.</P>
16
17 </BODY>
18 </HTML>

FIGURE 18.5
The Version tab of the
CDONTS.DLL Properties
dialog.

INPUT

 24 0672318989 ch18 3/30/00 8:16 AM Page 415

Line 3 of the script creates a CDONTS.NewMail object, and line 5 sends the mail
specified to the recipient specified. Line 4 stores recipient name in a variable so

that it can be echoed to the browser in line 15. After the Send method is called in line 5,
the CDONTS.NewMail object is no longer usable; however, line 6 signals to the VBScript
interpreter that it can clean up the object.

416 Day 18

ANALYSIS

FIGURE 18.6
The output of the sim-
ple NewMail script.

FIGURE 18.7
Checking out the mail
sent from the script.

Using the NewMail.Send method with parameters is quite impressive. The entire process
of sending a message is encapsulated in as few as two lines of ASP. The CDONTS.NewMail
object also offers a more verbose way of addressing and setting the contents of a mes-
sage (illustrated in Listing 18.2). This verbose way is a bit easier to debug should there
be a logic error. Also, as you will see later in this lesson, using the object this way is
somewhat more compatible with using a database and ASP to generate lists of message
recipients and complex message bodies from the database.

 24 0672318989 ch18 3/30/00 8:16 AM Page 416

Using Email from Active Server Pages 417

18

LISTING 18.2 A More Verbose Way to Send the Same Message

1 <%
2 Set NewMailObj = CreateObject(“CDONTS.NewMail”)
3 NewMailObj.From = “jon@levlin.com”
4 NewMailObj.To = “asprecipient@yahoo.com”
5 NewMailObj.Subject = “Check it out!”
6 NewMailObj.Body = “Here’s some email for you”
7 NewMailObj.Send
8 Set NewMailObj = Nothing
9 %>

Line 2 of the script creates a CDONTS.NewMail object. Lines 3–6 set each property
(From, To, Subject, and Body) of a message separately, and line 7 sends the mail

specified to the recipient specified. As in Listing 18.1, line 8 signals to the VBScript
interpreter that it can clean up the object.

The CDONTS Constants
Before going any further, notice that there are a number of numeric constants that
CDONTS use as flags. Although it’s possible to specify these constants as numeric val-
ues, that makes the resulting code quite hard to read and maintain. Even worse, as you
examine the documentation for the CDO for NTS Library, you might notice that some of
the numeric values for flags aren’t documented! To solve these issues, take the code from
Listing 18.3 and place it in a file called cdonts.inc. If you include that file in any ASP
page that uses CDONTS, you will be able to specify the flags textually.

ANALYSIS

Because the IIS SMTP server does not perform any address checking, you can
theoretically specify whatever you like as a From address. It’s not a good
idea to take advantage of this feature.

The actual IP address source of every message is stored as it passes through
SMTP servers on the Internet. Should an SMTP administrator decide that
your IP address is a source of email with forged return addresses, he can
refuse to accept email from your server. Even worse, a group of mail admin-
istrators maintain something called the Realtime Blackhole List (RBL). The
RBL is a list of IP addresses that are thought to be the sources of bad email,
often known as spam. Thousands of mail administrators have programmed
their SMTP servers to automatically reject email from any server on the RBL.
You certainly do not want your server’s IP address to end up on that list!

Caution

INPUT

 24 0672318989 ch18 3/30/00 8:16 AM Page 417

LISTING 18.3 Constants for CDONTS to Be Placed in cdonts.inc

1 <%
2 ‘ CDONTS Constants
3
4 ‘ CDONTS Attachment.Type values
5 Const CdoFileData = 1
6 Const CdoEmbeddedMessage = 4
7
8 ‘ CDONTS Message.Importance Values. Also used in NewMail.Importance
9 Const CdoLow = 0
10 Const CdoNormal = 1
11 Const CdoHigh = 2
12
13 ‘ CDONTS Message.MessageFormat and Session.MessageFormat Values
14 Const CdoMime = 0
15 Const CdoText = 1
16
17 ‘ CDONTS NewMail.AttachFile and NewMail.AttachURL EncodingMethod Values
18 Const CdoEncodingUUencode = 0
19 Const CdoEncodingBase64 = 1
20
21 ‘ CDONTS NewMail.BodyFormat Values
22 Const CdoBodyFormatHTML = 0
23 Const CdoBodyFormatText = 1
24
25 ‘ CDONTS NewMail.MailFormat Values
26 Const CdoMailFormatMime = 0
27 Const CdoMailFormatText = 1
28
29 ‘ CDONTS Recipient.Type Values
30 Const CdoTo = 1
31 Const CdoCc = 2
32 Const CdoBcc = 3
33
34 ‘ CDONTS Session.GetDefaultFolder Values
35 Const CdoDefaultFolderInbox = 1
36 Const CdoDefaultFolderOutbox = 2
37
38 %>

The constants here are used to pass various numeric flags to CDONTS objects.
The constants in lines 5–6 specify whether a particular attachment is a file or

another message. Those constants in lines 9–11 specify whether a message has low, nor-
mal, or high priority. The constants in lines 14–15 and 26–27 signal whether a message
is to be transferred as plain text or as MIME. In lines 18–19, the constants specify
whether attachments should be transferred as UUEncoded (the standard format for text

418 Day 18

INPUT

ANALYSIS

 24 0672318989 ch18 3/30/00 8:16 AM Page 418

Using Email from Active Server Pages 419

18

attachments) or Base64 (the standard format for MIME attachments). Lines 22–23 con-
tain constants that specify whether the body of a message includes HTML or is exclu-
sively text. The constants in lines 30–32 are used when examining the kinds of recipients
of a message (for example, whether they are direct recipients or have received a CC or
BCC copy of the message). Finally, the constants in lines 35–36 are used to specify
which folder to open when using the Session object to open a folder.

You will find it useful to specify <% Option Explicit %> in ASP files where
you use CDONTS.

Because the default value of an unspecified VBScript variable is 0, it is easy
to create bugs that are extremely difficult to find. The most common exam-
ple of this is misspelling a constant. With Option Explicit, the VBScript
interpreter will flag an error when you reference an unspecified variable.

Caution

Send Yourself Email on Errors
In Day 16, you learned how to write errors into a log file when your users encounter a
problem with your Web site. This is very helpful to isolate hard-to-reproduce bugs, but it
requires that you periodically check the error logs on your Web server. Finding these
errors is even easier when you use CDONTS to automatically email you when your users
encounter an error.

Listing 16.6 shows how to write a CheckError function that writes errors into log files.
Listing 18.4 adds a SendErrorLog function to debug.asp, which attaches that log file to
an email message. By calling SendErrorLog from CheckError whenever an error occurs,
the Web server sends the error and error log to the Webmaster whenever a problem
occurs. You can then delete the file from the server.

LISTING 18.4 Changes to debug.asp to Send Error Logs in Email

1 <!-- #include file=”cdonts.inc” -->
2
3 Sub SendErrorLog(sLogFileName)
4 Dim NewMailObj
5 Set NewMailObj = CreateObject(“CDONTS.Newmail”)
6 NewMailObj.From = “webServer@levlin.com”
7 NewMailObj.To = “asprecipient@yahoo.com”
8 NewMailObj.Subject = “Web Server Error Log”
9 NewMailObj.Body = “An error occurred on the webserver. The error log

➥ is attached.”
10 NewMailObj.AttachFile sLogFileName, “Error Log”
11 NewMailObj.Importance = CdoHigh

INPUT

continues

 24 0672318989 ch18 3/30/00 8:17 AM Page 419

12 NewMailObj.Send
13 Set NewMailObj = Nothing
14 End Sub

First, the CDONTS constants are included in line 1. Then, lines 4–13 create and
send a message as in previous listings in this lesson. The differences are that a

filename is passed into the subroutine in line 3, and then that file is attached to the email
message in line 10. Finally, the importance of the message is set to high in line 11.

The results are displayed in Figures 18.8 and 18.9. In Figure 18.8, you might
notice that the attachment is called Error Log. You can specify this name in the
NewMailObj.AttachFile method (refer to Listing 18.4, line 10). The value of the file-
name is arbitrary; that is, you may specify any text for it that you like.

420 Day 18

LISTING 18.4 continued

ANALYSIS

The appearance of the attachments will vary from mail reader to mail read-
er. The relatively Spartan appearance of Figure 18.8 is due to use of the
Yahoo! mail reader. Note that the Yahoo! mail reader does not display
the high importance (line 11) of the message. Whether and how the
NewMail.Importance property is displayed is up to the particular mail reader.
(The Importance property is displayed in Microsoft Outlook and Microsoft
Outlook Express.)

Note

FIGURE 18.8
The text of the error
email.

 24 0672318989 ch18 3/30/00 8:17 AM Page 420

Using Email from Active Server Pages 421

18

Sending New Users Email
Many E-Commerce sites send their users email after registration. This allows the site to
reconnect with its customers, and provides an opportunity to encourage the customers to
revisit the Web site—perhaps by sending them a coupon or other special offer. Using the
techniques we have learned so far today, this feature is simple to add to the Candy Store
Web site.

First, we will add the sendNewUserMail function in Listing 18.5 to the storeFuncs.asp
file. Then, as the last line of the addUser function, call the sendNewUserMail function
with the user’s name and email address. When a user successfully completes the registra-
tion form, the sendNewUserMail function will automatically send that user an email (as
shown in Figure 18.10).

FIGURE 18.9
The error log
attachment.

This function requires adding <!-- #include file=”cdonts.inc” --> to the
top of storeFuncs.asp in order to give the function access to the CDONTS
constants.

Note

 24 0672318989 ch18 3/30/00 8:17 AM Page 421

LISTING 18.5 The sendNewUserMail Function

1 SUB sendNewUserMail(sUserName, sUserMail)
2 Dim NewMailObj
3 Dim sMailBody
4
5 Set NewMailObj = CreateObject(“CDONTS.Newmail”)
6 NewMailObj.From = “customer-service@JohnsonGifts.com”
7 NewMailObj.To = sUserMail
8 NewMailObj.Subject = “Welcome to Johnson Candy and Gifts”
9 NewMailObj.MailFormat = CdoMailFormatMime
10 NewMailObj.BodyFormat = CdoBodyFormatText
11 sMailBody = “Dear “ & sUserName & “,” & vbNewLine & vbNewLine
12 sMailBody = sMailBody & “ Thank you for registering at our site!” &

➥vbNewLine & vbNewLine
13 sMailBody = sMailBody & “ We look forward to serving you in the

➥future. “
14 sMailBody = sMailBody & “Visit us again soon at

➥http://www.johnsongifts.com” & vbNewLine & vbNewLine
15 sMailBody = sMailBody & “Sincerely yours,” & vbNewLine & vbNewLine
16 sMailBody = sMailBody & “David Johnson,” & vbNewLine
17 sMailBody = sMailBody & “CEO, Johnson Candy and Gifts.”
18 NewMailObj.Body = sMailBody
19
20 NewMailObj.Send
21 Set NewMailObj = Nothing
22 END SUB

The sendNewUserMail function (line 1) takes two strings: the new user’s name
and his email address. Lines 5–20 create and send a message as we have in previ-

ous listings in this lesson. The passed-in mail address is used to set the destination
address of the email in line 7, and the passed-in name is used to personalize the email in
line 11. Finally, line 14 sends a URL back to the store Web site so that the user can easi-
ly return to the store after reading the message.

422 Day 18

INPUT

ANALYSIS

Lines 9 and 10 work around a known issue with CDONTS. Unless the
MailFormat property of the NewMail object is set to CdoMailFormatMime, the
line length of messages is limited to 74 characters or fewer. If the
MailFormat property is set to CdoMailFormatMime, however, the default body
format will be HTML; therefore, you must also set the BodyFormat property
to CdoBodyFormatText.

Note

 24 0672318989 ch18 3/30/00 8:17 AM Page 422

Using Email from Active Server Pages 423

18
Sending HTML Mail
So far, we have used only CDONTS to send text email. Most of your customers, howev-
er, are probably using email viewers that enable them to read HTML email. If you are
not familiar with it, HTML email is exactly what its name implies: email messages for-
matted with HTML tags. This presents you with the opportunity to send your customers
eye-catching promotional material through email.

When read with an HTML-enabled mail reader such as Outlook, Outlook Express, or
Hotmail, HTML messages are more attractive and easier to read than their text equiva-
lents. When read with an old-fashioned mail reader such as Pine or elm, these messages
look like… well… like HTML tags. Therefore, it’s important to make sure that any cus-
tomer to whom you send HTML mail can actually read it.

Most sites that send HTML mail ask customers during user registration whether they can
read HTML mail. We can easily add this question to the Candy Store site. First, add a
Boolean field called user_HTML to the Users table in the database. Then, add the lines
in bold in Listing 18.6 to register.asp and to the addUser function in storeFuncs.asp.
When a new customer registers, he will now be asked whether he can read HTML-
formatted email and the response will be stored in the Users table of the database.

FIGURE 18.10
The automatic email
sent to a new user.

The user_HTML field is already part of the storeDB.mdb file on the CD-ROM
that accompanies this book.

Note

 24 0672318989 ch18 3/30/00 8:17 AM Page 423

LISTING 18.6 Changes to register.asp and to storeFuncs.asp

register.asp

1 <%
2 newusername = TRIM(Request(“newusername”))
3 newpassword = TRIM(Request(“newpassword”))
4 email = TRIM(Request(“email”))
5 street = TRIM(Request(“street”))
6 city = TRIM(Request(“city”))
7 state = TRIM(Request(“state”))
8 zip = TRIM(Request(“zip”))
9 cctype = Request(“cctype”)
10 ccnumber = TRIM(Request(“ccnumber”))
11 ccexpires = TRIM(Request(“ccexpires”))
12 ccname = TRIM(Request(“ccname”))
12.1 html = TRIM(Request (“html”))
13
14 submitpage = Request.ServerVariables(“SCRIPT_NAME”)
15 %>
…
70
71
username:
72 <input name=”newusername” size=20 maxlength=20
73 value=”<%=Server.HTMLEncode(newusername)%>”>
74
password:
75 <input name=”newpassword” size=20 maxlength=20
76 value=”<%=server.HTMLEncode(newpassword)%>”>
77
email address:
78 <input name=”email” size=30 maxlength=75
79 value=”<%=Server.HTMLEncode(email)%>”>
79.1
<input name=”html” type=”checkbox” value=”Yes” <% if

➥Server.HTMLEncode(html) = “Yes” then %>CHECKED<% end if %>>
79.2 I can read E-Mail formatted in HTML.
80

storeFuncs.asp

115 SUB addUser
116 ‘ Get Registration Fields
117 newusername = TRIM(Request(“newusername”))
118 newpassword = TRIM(Request(“newpassword”))
119 email = TRIM(Request(“email”))
120 street = TRIM(Request(“street”))
121 city = TRIM(Request(“city”))
122 state = TRIM(Request(“state”))
123 zip = TRIM(Request(“zip”))
124 cctype = Request(“cctype”)
125 ccnumber = TRIM(Request(“ccnumber”))
126 ccexpires = TRIM(Request(“ccexpires”))

424 Day 18

INPUT

 24 0672318989 ch18 3/30/00 8:17 AM Page 424

Using Email from Active Server Pages 425

18

127 ccname = TRIM(Request(“ccname”))
127.1 if html <> “Yes” then
127.2 html = “1”
127.3 else
127.4 html = “0”
127.5 end if
…
179 sqlString = “INSERT INTO users (“ &_
180 “user_username, “ &_
181 “user_password, “ &_
182 “user_email,” &_
183 “user_street, “ &_
184 “user_city,” &_
185 “user_state,” &_
186 “user_zip,” &_
187 “user_ccnumber, “ &_
188 “user_cctype, “ &_
189 “user_ccexpires,” &_
190 “user_ccname,” &_
190.1 “user_HTML” &_
191 “) VALUES (“ &_
192 “ ‘“ & fixQuotes(newusername) & “‘, “ &_
193 “ ‘“ & fixQuotes(newpassword) & “‘, “ &_
194 “ ‘“ & fixQuotes(email) & “‘, “ &_
195 “ ‘“ & fixQuotes(street) & “‘, “ &_
196 “ ‘“ & fixQuotes(city) & “‘, “ &_
197 “ ‘“ & fixQuotes(state) & “‘, “ &_
198 “ ‘“ & fixQuotes(zip) & “‘, “ &_
199 “ ‘“ & fixQuotes(ccnumber) & “‘, “ &_
200 “ ‘“ & cctype & “‘, “ &_
201 “ ‘“ & ccexpires & “‘, “ &_
202 “ ‘“ & fixQuotes(ccname) & “‘, “ &_
202.1 “ “ & html & “ “ &_
203 “)”

Lines 79.1 and 79.2 of register.asp add a check box to the registration form
asking the new customer whether he can read HTML mail. When the customer

clicks submit, and if his entries pass the validation in the addUser function, lines
127.1–127.5 of storeFuncs.asp set the value of the variable html to something that can
be inserted into an SQL database. Lines 190.1 and 202.1 of storeFuncs.asp insert that
value into the database along with other information about the new user.

If the customer’s entries do not pass the validation in the addUser function, addUser dis-
plays an error page that allows the customer to return to the registration form. If this
occurs, lines 12.1 and 79.1 of register.asp make sure that the value of the new check
box is reset to the value originally set by the user.

ANALYSIS

 24 0672318989 ch18 3/30/00 8:17 AM Page 425

Now that we know whether each user can receive HTML-formatted email, we can
change the code that sends welcoming email to send formatted email to appropriate
users. Listing 18.7 demonstrates a new sendNewUserMail function that sends messages
in HTML format to new users who check the I Can Read HTML box on the registration
form. A sample HTML-formatted message is illustrated in Figure 18.11.

LISTING 18.7 A sendNewUserMail Function That Sends HTML

1 SUB sendNewUserMail(sUserName, sUserMail, fHtml)
2 Dim NewMailObj
3 Dim sMailBody
4
5 Set NewMailObj = CreateObject(“CDONTS.Newmail”)
6 NewMailObj.From = “customer-service@JohnsonGifts.com”
7 NewMailObj.To = sUserMail
8 NewMailObj.Subject = “Welcome to Johnson Candy and Gifts”
9
10 if fHtml = “0” then
11 NewMailObj.BodyFormat = CdoBodyFormatText
12 NewMailObj.MailFormat = CdoMailFormatMime
13 sMailBody = “Dear “ & sUserName & “,” & vbNewLine & vbNewLine
14 sMailBody = sMailBody & “ Thank you for registering at our site!” &

➥ vbNewLine & vbNewLine
15 sMailBody = sMailBody & “ We look forward to serving you in the

➥future. “
16 sMailBody = sMailBody & “Visit us again soon at

➥http://www.johnsongifts.com.” & vbNewLine & vbNewLine
17 sMailBody = sMailBody & “Sincerely yours,” & vbNewLine & vbNewLine
18 sMailBody = sMailBody & “David Johnson,” & vbNewLine
19 sMailBody = sMailBody & “CEO, Johnson Candy and Gifts.”
20 NewMailObj.Body = sMailBody
21 else
22 NewMailObj.BodyFormat = CdoBodyFormatHTML
23 NewMailObj.MailFormat = CdoMailFormatMime
24 NewMailObj.ContentBase = “http://www.superexpert.com/”
25 NewMailObj.ContentLocation = “candystore/”
26 sMailBody = “<HTML><HEAD><TITLE>Thanks from Johnson’s Candy and

➥Gifts</TITLE></HEAD>”
27 sMailBody = sMailBody & “<BODY><table width=””640”” border=””0””

➥bgcolor=””#ffffff”” cellspacing=””0”” cellpadding=””0””>”
28 sMailBody = sMailBody & “<tr><td><img src=””http://www.superexpert.com/

➥candystore/logo.gif”” WIDTH=””300”” HEIGHT=””30””></td></tr>”
29 sMailBody = sMailBody & “<tr><td colspan=””2””><hr width=””640””></td>

➥</tr></table>”
30 sMailBody = sMailBody & “<p>Dear “

➥& sUserName & “, “
31 sMailBody = sMailBody & “<p>Thank you for registering at our site!

➥<p>We look forward to serving you in the future. “

426 Day 18

INPUT

 24 0672318989 ch18 3/30/00 8:17 AM Page 426

Using Email from Active Server Pages 427

18

32 sMailBody = sMailBody & “Visit us again soon at
➥”

33 sMailBody = sMailBody & “http://www.johnsongifts.com.

➥
Sincerely yours,

David Johnson”

34 sMailBody = sMailBody & “
CEO, Johnson Candy and Gifts
➥</BODY></HTML>”

35 NewMailObj.Body = sMailBody
36 end if
37 NewMailObj.Send
38 Set NewMailObj = Nothing
39 END SUB

Line 22 sets the format of the message body to HTML. Lines 24 and 25 set the
ContentBase and ContentLocation properties, which provide a default root

URL and directory for images and other embedded objects. Lines 26–34 actually set the
contents of the body to essentially the same contents as the text version of the message,
but with HTML formatting that includes tables (lines 27–29), embedded images (line
28), and links (line 33). The mail is personalized for the recipient in line 30.

ANALYSIS

Not all mail readers support the ContentBase and ContentLocation proper-
ties. To be safe, fully qualify all the references to images and other embed-
ded objects in your HTML-formatted email by using an absolute address
rather than a relative address.

Note

FIGURE 18.11
A new user email in
HTML format.

 24 0672318989 ch18 3/30/00 8:17 AM Page 427

Sending email in HTML enables you to give your sent messages the graphical punch of
Web pages. In fact, you can use an HTML editor such as FrontPage or HomeSite to com-
pose very sophisticated, formatted email and save the format to a file. VBScript can then
read the file by using the FileSystemObject you learned about in Day 16 or by using the
<INPUT type=file> tag discussed later in this lesson. The results can be extremely pow-
erful, indeed.

Sending Batches of Email
Automatically sending a single email message is certainly useful, but even more useful is
sending batches of email. With CDONTS, it is possible to write ASP scripts that send
large volumes of personalized email. With your database of email addresses and names,
you can use these scripts to quickly and easily send newsletters, promotions, or other
messages to some of or all your customers.

In order to demonstrate this, we will add three scripts to the admin directory we created
in Day 16. The first script enables the sender to select which customers will receive the
email message, the second to compose a message, and the third to send the message.
These scripts enable a hypothetical marketing director to send messages to his company’s
customer base.

428 Day 18

If you haven’t already protected your admin directory (as described in Day
17, “Administering Your Store Remotely with ASPs”) by requiring a user-
name and password for access, you should do so now. The ASP pages that
follow allow anyone with access to the admin directory to send email to all
your customers!

Caution

Increasing the Granularity of Security on ASP Scripts

You might want to restrict access to ASP scripts on a user-by-user basis. For example, you
might want only the marketing director to be able to send mail to your customers, but
anyone in the marketing department to be able to add or change product information.

Windows NT and Windows 2000 provide a sophisticated set of access controls through
the security features of the NTFS file system. By assigning each of your employees his
own Windows NT username and password and setting file access permissions on specific
ASP scripts for specific users, IIS can limit access to those scripts to users who enter one of
a specific set of usernames.

 24 0672318989 ch18 3/30/00 8:17 AM Page 428

Using Email from Active Server Pages 429

18Selecting Customers
First, to enable the marketing director to select the customers who will receive this mes-
sage, the selectCust.asp page lists the registered customers next to check boxes that
allow their selection (see Listing 18.8). A simple server-side script generates a table of
each registered customer and his email address along with a selection check box in a sin-
gle page. A client-side script provides a quick shortcut for the marketing director to
select and deselect all the customers at one time (see Figure 18.13). All the check boxes
in the table have the same name: sendEMail; each check box’s value is the email address
of the corresponding customer. As you will see in the next page, this technique makes it
easier for the script writer to find the email addresses and usernames of each customer
once the form is submitted.

LISTING 18.8 The selectCust.asp Page That Allows Selection of Customers

1 <%@ Language=VBScript %>
2 <!-- #include file=”../adovbs.inc” -->
3 <%
4
5 Dim Con
6 Dim rs
7
8 Set Con = Server.CreateObject(“ADODB.Connection”)
9 Con.Open “accessDSN”

A detailed description of Windows NT and Windows 2000 security features is beyond the
scope of this book, but you can begin your exploration of the NTFS file system security
features by going to Windows NT Explorer, right-clicking one of your ASP scripts, and
selecting Properties. Go to the Security tab of the Properties dialog and click the Permis-
sions button. The File Permissions dialog enables you to control access to ASP scripts on a
file-by-file and basis (see Figure 18.12).

FIGURE 18.12
The File Permissions
dialog.

INPUT

continues

 24 0672318989 ch18 3/30/00 8:17 AM Page 429

10 Set rs = Server.CreateObject(“ADODB.Recordset”)
11 rs.Open “users”, Con, adOpenForwardOnly, adLockReadOnly
12
13 %>
14 <HTML>
15 <HEAD>
16 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
17 <title>Johnson’s Candies and Gifts - Send Mail To Customers Pages

➥(Step 1)</title>
18 </head>
19 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
20 <center>
21
22 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥ cellpadding=”0”>
23 <tr>
24 <td>
25
26 </td>
27 </tr>
28 <tr>
29 <td colspan=”2”>
30 <hr width=”640”>
31 </td>
32 </tr>
33 </table>
34
35 <H2>Send Mail to Customers<H2>
36 </center>
37
38 <SCRIPT Language=”VBScript”>
39 <!--
40 SUB CheckAll
41
42 For Each cb in document.custlist.elements
43 If cb.name <> “allbox” Then
44 cb.checked = document.custlist.allbox.checked
45 End If
46 Next
47 END SUB
48 -->
49 </SCRIPT>
50 <H3> Step 1: </H3>
51 <H4> Check the boxes next to the customers to whom you wish to send E-Mail

➥ and press the Next button. </H4>
52
53 <FORM name=”custlist” method=”POST” action=”composeMsg.asp”>

430 Day 18

LISTING 18.8 continued

 24 0672318989 ch18 3/30/00 8:17 AM Page 430

Using Email from Active Server Pages 431

18

54
55 <TABLE cellpadding=”2” cellspacing=”0” bordercolor=”#cccccc” bgcolor=”Gray”

➥ border=”1” cols=”3” rules=”ALL”>
56 <TR bgcolor=”#003468” align=”Left”>
57 <TH></TH>
58 <TH WIDTH=”136”>

➥Customer</TH>
59 <TH WIDTH=”136”>

➥E-Mail Address</TH>
60 </TR>
61
62 <%
63
64 rs.MoveFirst()
65 WHILE rs.EOF <> true
66 %>
67 <TR bgcolor = “White” align=”Left” bordercolor=”#cccccc”>
68 <TD><input type=”checkbox”

➥ name=”sendEMail” value=”<%=rs(“user_email”)%>”> </TD>
69 <TD WIDTH=”136”>

➥<% =rs(“user_username”) %></TD>
70 <TD WIDTH=”136”>

➥<% =rs(“user_email”) %></TD>
71 </TR>
72 <% rs.MoveNext()
73 WEND
74 %>
75 </TABLE>
76 <TABLE>
77 <TR bgcolor = “White” bordercolor = “White”>
78 <td valign=”top”><input name=”allbox” type=”checkbox”

➥value=”Check All” onClick=”CheckAll”></td>
79 <td colspan=”2”>Select all customers</td>
80 </tr>
81
82 </TABLE>
83

84 <INPUT type=”submit” value=”Next >” id=”submit1” name=”submit1”>
85 </FORM>
86 </BODY>
87 <%
88 rs.Close()
89 Con.Close()
90 Set rs = Nothing
91 Set Con = Nothing
92 %>
93 </HTML>

 24 0672318989 ch18 3/30/00 8:17 AM Page 431

Lines 8–11 open a Recordset for a database table that contains each customer’s
name and email address.

Lines 53–85 define a form named custlist that is used to select the customers to whom
the message will be sent. Within that form, lines 55–76 define a table that is used to view
each user. Lines 56–60 define the header of that table. Lines 64–74 loop through the cus-
tomers in the database table and create a row in the table for each. Line 68 defines a
table cell that contains a check box with the name sendEMail and the value of the partic-
ular customer’s email address, line 69 defines a cell that includes the customer’s name,
and line 70 defines a cell that includes the email address.

Lines 76–82 define an additional check box named allbox that enables the user to select
or deselect all users at the same time. The onClick attribute of the check box defined in
line 78 causes a call to the client-side script subroutine named CheckAll when the addi-
tional check box is clicked.

432 Day 18

ANALYSIS

The selectCust.asp page uses client-side VBScript. This means that it will
work with Microsoft Internet Explorer but not Netscape Navigator. This limi-
tation should not present a problem since the page is intended to be
accessed only by authorized administrators and not the general public.

Note

Lines 38–49 define the client-side script subroutine named CheckAll. Lines 38 and 49
are the SCRIPT tags that define a client-side script. Lines 42–46 iterate through each
named item in the custlist form and set the state of each item that is not allbox to
match allbox’s state.

The technique of listing all customers on the same page is adequate for a site that has up
to a thousand or so registrants. When the number of customers is too large, you will find
that the selectCust.asp page takes a long time to generate, even longer to transfer, and
makes navigation difficult for users. Handling large numbers of customers requires limit-
ing the number of customers displayed on a single page. The “Webbiest” way to solve
this problem is to split the generation of the table over multiple pages, similar to the way
that products are displayed over multiple pages in Day 6, “Displaying Your Products.”

Composing the Message
After customers are selected, the marketing director presses the Next button. Control
passes to the composeMsg.asp page, which provides a simple interface for writing an
email (see Figure 18.14). The user enters a subject and the text of a message and presses
Send. The source code for composeMsg.asp is shown in Listing 18.9.

 24 0672318989 ch18 3/30/00 8:17 AM Page 432

Using Email from Active Server Pages 433

18

FIGURE 18.13
The list of customers
with selection check
boxes.

FIGURE 18.14
The composeMsg.asp
interface to enter a
message for customers.

 24 0672318989 ch18 3/30/00 8:17 AM Page 433

LISTING 18.9 The composeMsg.asp Page That Allows Entering the Message

1 <%@ Language=VBScript %>
2 <HTML>
3 <HEAD>
4 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
5
6 <title>Johnson’s Candies and Gifts - Send Mail To Customers Pages

➥(Step 2)</title>
7 </head>
8 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
9 <center>
10
11 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥cellpadding=”0”>
12<tr>
13 <td>
14
15 </td>
16 </tr>
17 <tr>
18 <td colspan=”2”>
19 <hr width=”640”>
20 </td>
21 </tr>
22 </table>
23
24 <H2>Send Mail to Customers</H2>
25 </center>
26 <H3>Step 2:</H3>
27 <H4>Each message will be personalized with a “Dear Customer:” line.

28 Compose the body of the message you wish to send and press ‘Send’</H4>
29
30 <FORM name=”composemsg” method=”POST” action=”sendMsg.asp”>
31 Subject: <INPUT type=”text” name=”subject” size=”70”>
32 <textarea name=”messageText” rows=15 cols=70 wrap=”soft”>
33 </textarea>
34

35 <INPUT type=”submit” value=”Send” id=”submit1” name=”submit1”>
36 <%
37 For i = 1 to Request.Form(“sendEmail”).Count %>
38 <INPUT type=”hidden” value=”<%=Request.Form(“sendEmail”)(i)%>”

➥name=”sendEmail”> <%
39 Next %>
40 </FORM>
41 </BODY>
42 </HTML>

434 Day 18

INPUT

 24 0672318989 ch18 3/30/00 8:17 AM Page 434

Using Email from Active Server Pages 435

18

Lines 30–40 define the form used to compose the customer message. Line 31
accepts the subject of the message. The <TEXTAREA> tag in lines 32 and 33 allows

the user to enter multiple lines of text. Finally, lines 37–39 create a hidden input field
named sendEmail for each box in the selectCust.asp page.

When ASP scripts execute as the result of a form POST, the value of each <INPUT> or
<TEXTAREA> tag appears in the Request.Form collection, and is referenced by using the
name attribute of the tag. For example, Request.Form(“messageText”) refers to the
message the user enters in the TEXTAREA named messageText. When multiple <INPUT>
tags share the same name, such as the customer selection check boxes in
selectCust.asp, their contents appear as a subcollection referred to by their shared
name, whereas their individual values are referred to within the subcollection by num-
bers. For example, the second customer selected from the table in selectCust.asp is
referred to as Request.Form(“sendEmail”)(2). This makes it easy to iterate through
each value. Because we will need individual email addresses when sending the personal-
ized email messages in the sendMsg.asp page, a separate hidden <INPUT> tag with the
same name is inserted for each selected customer address.

Sending the Messages
After the message is entered and the Send button is pressed, control passes to the
sendMsg.asp script (see Listing 18.10). Just as composeMsg.asp iterates through the list
of customer email addresses, sendMsg.asp enumerates each address, this time creating a
message for each address. Because the customer names are not directly available, in
order to personalize the message, we must go back into the database and recover each
customer’s name given his email address. An example of the results of the personaliza-
tions is shown in Figure 18.15.

LISTING 18.10 The sendMsg.asp Page That Sends the Composed Message

1 <%@ Language=VBScript %>
2 <!-- #include file=”../adovbs.inc” -->
3 <%
4
5 Dim Con
6 Dim rs
7
8 Set Con = Server.CreateObject(“ADODB.Connection”)
9 Con.Open “accessDSN”
10 Set rs = Server.CreateObject(“ADODB.Recordset”)
11
12 Dim NewMailObj
13 Dim sMailBody

ANALYSIS

INPUT

continues

 24 0672318989 ch18 3/30/00 8:17 AM Page 435

14 Dim sSql
15
16 For i = 1 to Request.Form(“sendEMail”).Count
17 sSql = “select user_username from users where user_email=’”&
➥Request.Form(“sendEMail”)(i) &”’”
18 rs.Open sSql, Con, adOpenForwardOnly, adLockReadOnly
19
20 Set NewMailObj = CreateObject(“CDONTS.Newmail”)
21 NewMailObj.From = “marketing@JohnsonGifts.com”
22 NewMailObj.To = Request.Form(“sendEMail”)(i)
23 NewMailObj.Subject = Request.Form(“subject”)
24
25 NewMailObj.BodyFormat = CdoBodyFormatText
26 sMailBody = “Dear “ & rs.Fields(“user_username”) & “,” & vbNewLine

➥& vbNewLine
27 sMailBody = sMailBody & Request.Form(“messageText”)
28 NewMailObj.Body = sMailBody
29 NewMailObj.Send
30 Set NewMailObj = Nothing
31 rs.Close()
32 next
33
34 Con.Close()
35 Set rs = Nothing
36 Set Con = Nothing
37
38 %>
39
40 <HTML>
41 <HEAD>
42 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
43 <title>Johnson’s Candies and Gifts - Send Mail To Customers Pages

➥(Step 3)</title>
44 </head>
45 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
46 <center>
47
48 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥ cellpadding=”0”>
49 <tr>
50 <td>
51
52 </td>
53 </tr>
54 <tr>
55 <td colspan=”2”>
56 <hr width=”640”>
57 </td>

436 Day 18

LISTING 18.10 continued

 24 0672318989 ch18 3/30/00 8:17 AM Page 436

Using Email from Active Server Pages 437

18

58 </tr>
59 </table>
60
61 <H2>Send Mail to Customers</H2>
62 </center>
63 <H3>Step 3:</H3>
64 <H4>Your message has been sent!</H4>
65 </BODY>
66 </HTML>

Lines 8–14 create objects that are used in the loop in lines 16–32. That loop actu-
ally does the work of selecting the customer’s name into a Recordset given his

email address (lines 17–18), creating a message for the user (line 20), addressing (line
22) and personalizing (line 26) the message, and then sending it (line 29). Line 34–36
closes the ADO connection. Closing ADO connections when they are not being used
helps increase database scalability.

ANALYSIS

The Recordset is closed at the end of each loop because reopening a
Recordset before closing it generates an ADO exception.

Caution

FIGURE 18.15
A personalized mes-
sage for Jane.

 24 0672318989 ch18 3/30/00 8:17 AM Page 437

Doing Email Marketing
Your historical orders database is one of the most valuable assets you have, and just like
the big boys in the e-tailing businesses, you can easily mine it for sales. With a few
SELECT statements, you can extend the techniques discussed in this lesson for sending
bulk email to promote repeat orders. With a little more effort, you can cross-promote
slower-selling items based on customers’ buying patterns. The techniques for doing this
are beyond the scope of this book, but it certainly behooves the serious, aspiring e-com-
merce site owner to learn more about databases!

Summary
In today’s lesson, you learned the basics of Internet mail and how to configure the IIS
SMTP service. You then learned the basics of sending email from an ASP page, first
sending an error log to yourself when the CheckError function detects a problem, and
then sending mail to new customers as they register. Finally, you modified user registra-
tion to capture whether a user can receive HTML email and learned to send formatted
HTML mail and bulk email to groups of your users.

Q&A
Q When I configure my SMTP service, how many times should I have it try to

deliver a message before giving up? How much time should I wait between
delivery attempts?

A The default settings for the SMTP service are adequate for nearly all servers. If
many of your customers have ISPs with unreliable Internet connections, you might
want to increase the length of time between delivery attempts.

Q The interfaces of composeMsg.asp and sendMsg.asp are pretty inconvenient
and don’t seem to provide much flexibility in the way of formatting. How can
I change these pages to have a better interface?

A You can use the techniques described in Day 17 for uploading pictures with the
Posting Acceptor to upload HTML files created in FrontPage, HomeSite, or Word.
Start by changing the <TEXTAREA> tag in composeMsg.asp to the <INPUT
TYPE=”file”> tag we used in Day 17, having the <FORM> in composeMsg.asp sub-
mit to the Posting Acceptor and from there to sendMsg.asp, and then changing the
loop in the sendMsg.asp script to send MIME HTML messages.

438 Day 18

 24 0672318989 ch18 3/30/00 8:17 AM Page 438

Using Email from Active Server Pages 439

18

Workshop
The following Quiz and Exercise questions are designed to test your knowledge of the
material covered in this lesson. The answers are provided in Appendix A, “Quiz
Answers.”

Quiz
1. What is an SMTP server?

2. Why is it important to restrict relaying on your SMTP server?

3. What is the difference between text and MIME mail messages? How do you send
one or the other?

4. What happens if more than one <INPUT> tag in a form has the same name attribute?

 24 0672318989 ch18 3/30/00 8:17 AM Page 439

 24 0672318989 ch18 3/30/00 8:17 AM Page 440

DAY 19

WEEK 3

Generating Store Reports
Now that you’ve gotten your store up and working, you will want to manage it.
Bill Hewlett, co-founder of Hewlett-Packard, was reputed to say, “You can’t
manage what you can’t measure.” If you haven’t already, you will soon find
yourself wanting to measure your store’s effectiveness: how many people are
accessing it, and what pages are they looking at. As with reports on other
aspects of your business, these measurements will help you evaluate your past
investments and plan for future ones.

Today, you will learn the following:

• How IIS logs usage

• What you can learn about your customers by analyzing these usage logs

Reporting on Site Usage
One of the first things the operator of a new E-Commerce site wants to know is
how many people are visiting his site. This impulse might originate from an
emotional source—wanting to know for certain that all the hard work that has
gone into developing the store hasn’t been wasted—but learning about site

 25 0672318989 ch19 3/30/00 8:14 AM Page 441

traffic has a business utility that goes far beyond feeling better. It helps an E-Commerce
company in at least three areas: technical development, marketing, and business strategy.

On the technical front, the more detailed knowledge you can gather about your site’s
usage, the better you can plan your future capital and operating expenditures. More usage
certainly means that you will need to buy more Internet bandwidth, and it might also
mean that you will need to upgrade your Web site hardware, your database software, or
maybe even hire a professional operations staff. In addition to raw information about
Web site “hits” (see the sidebar, “The Vocabulary of Web Usage”), knowing the time it
takes to answer a request, the number of requests that are answered with errors, and the
geographic and ISP distribution of your users can help you make better decisions about
where to invest technical resources. For example, if the customers connecting via a spe-
cific ISP are experiencing longer download times than your other customers, you might
want to buy bandwidth directly from that ISP.

As the prime directive of marketing professionals is to “know your customer,” you will
also find usage information critical to your marketing effort. Raw information is more
useful than no information when you evaluate the success of your marketing campaigns,
but the more specific information you can gather about your users and their interests, the
more targeted and efficient your marketing can be. Taking the Candy Store example, if
you find that most of your customers are children, you might want to advertise on Web
sites children frequent. If you find that many of your customers come from a specific
geographic location, you might choose to advertise on radio stations in that area.

Specific user and usage information is even more critical when you evaluate your Web-
specific business strategy. To extend the Candy Store example, suppose that you operate
a physical Candy Store in which chocolate candies are very popular. When you open an
Internet store, your initial impulse might be to focus on chocolates; however, customers
might come to your Internet store for entirely different products. Your Internet customers
might visit your store to buy specialty regional candies they cannot easily purchase in
their home area. Just as you would do for your physical store, examining your Internet
store’s purchase data separately will help you know how much of what products to stock,
and with what other sites to partner.

442 Day 19

 25 0672318989 ch19 3/30/00 8:14 AM Page 442

Generating Store Reports 443

19Site Usage Logs
As users browse the pages of your store, their browsers are requesting files from your
Web server. Like most Web servers, IIS records each of these requests with an entry in a
log, usually a file. The most obvious way to analyze your store’s usage is to examine
these Web site logs. Unfortunately, because of the nature of HTTP, the protocol that
underlies the Web, these logs are somewhat limited in what they can show. Knowing the
information that IIS records when a browser requests a file can help you understand
exactly what sort of information you can extract from the IIS logs.

The Vocabulary of Web Usage

By now, you have noticed that the Web seems to have established its own argot. Some
important Web terms to know with respect to Internet site usage are

CPM—Cost per mille, or one thousand impressions (mille is French for thousand). CPM
comes directly from the print world, and it is the standard unit for Web advertising
charges. (See impressions in a later paragraph.)

Hits—A hit is a browser’s request for a file from a Web server. Web pages typically com-
prise several elements, each of which is typically contained in its own file. The main text
of the page—its graphic elements, Java applets, and ActiveX controls, for example—are
almost always each contained in a separate file. Because Web servers count each request
for a file as a hit, on average, each complete Web page download causes about six hits.
Hits are the most useful measurement for estimating the technical requirements of a site.

Impressions—An impression is a browser request for an advertising element (like a ban-
ner or button). It is another term that comes from the print advertising world.

Page views—By contrast with a hit, a page view is the delivery to the user of an entire
Web page, including graphics elements. Because they measure user activity rather than
server activity, page views are a more useful measurement than hits for marketing and
strategic planning purposes. Content Web sites typically report their traffic in term of
page views.

Unique users—Unique users are the number of different people who visit a site within a
specific period, usually a day or week. Unique users also offer a useful measurement for
marketing and strategic planning purposes.

Log and log file are standard computer jargon for records that operating
systems, programs, and services keep about their operations. For example,
Windows NT keeps records of its operation using a program called Event
Log. Event Log isn’t related to the IIS logging feature.

Note

 25 0672318989 ch19 3/30/00 8:14 AM Page 443

IIS records logs on a site-by-site basis and can store its logs in one of four different for-
mats: NCSA Common Log File Format, ODBC Logging Format, Microsoft IIS Log File
Format, or W3C Extended Log File Format. The log file format can be configured from
the Internet Service Manager (called the Internet Services Manager on Windows 2000).
Select your store’s Web site and choose Action, Properties. The Web Site tab (see Figure
19.1) allows you to turn on or off logging and to adjust the log file format. By clicking
the Properties button, you can use the Logging Properties dialog (see Figures 19.2, 19.3,
and 19.4) to control various logging settings. The IIS default for file-based logs is to
store the log files for service subdirectories of \LOGFILES—each service getting its own
subdirectory—and to create a new log file for each service every day. This helps keep the
size of each log file under control.

444 Day 19

FIGURE 19.1
The Web Site
Properties page, with
the logging properties
at the bottom of the
page.

As discussed in Chapter 16, “Debugging Your E-Commerce Applications,” IIS
allows a single computer to provide multiple services. For example, one
Windows NT Server could host three Web sites, two SMTP servers, and one
FTP site. The computer would be hosting six different sites and would record
information about each site in a separate log file.

Note

The NCSA Common Log File Format
The NCSA Common Log File Format is the oldest and simplest Web server log file for-
mat. It dates back to the original Web servers, which were written in the early 1990s at
the National Center for Supercomputing Applications. You might want to set your Web
server to use this format if you are trying to maintain compatibility with log files from a
legacy Web server. When your server is set to log in NCSA Common Log File Format

 25 0672318989 ch19 3/30/00 8:14 AM Page 444

Generating Store Reports 445

19

and you click the Properties button in the Web Site tab of the Internet Service Manager
site properties dialog, you will see the NCSA Logging Properties page (see Figure 19.2).
You can use this page to configure where the log files will be stored and how often a new
file will be created. The names of the log files depend on how often a new file is created,
as shown in Table 19.1.

FIGURE 19.2
The NCSA Logging
Properties page.

TABLE 19.1 Naming Conventions for NCSA Common Log File Format Files

How Often a New File Is Created File Name Format

Daily ncyymmdd.log

Weekly ncyymmww.log

Monthly ncyymm.log

When log file exceeds specified size ncsann.log

or
Unlimited file size

Where

• yy is the last two digits of the year.

• mm is the number of the month.

• ww is the number of the week in the month.

• dd is the date.

• nn is a sequence number.

An NCSA Common Log File Format log file contains the following information about
each request to a Web server:

• The IP address of the computer requesting the file.

• The username of the user requesting the file, if available, or a - if the name isn’t
available.

 25 0672318989 ch19 3/30/00 8:14 AM Page 445

• Date and time of request in server local time, including the offset of server
local time from Greenwich Mean Time (GMT). It is stored in the format
[DD/MMM/YYYY:HH:MM:SS TAABB], where DD is the date, MMM is the three-letter
abbreviation for the month, YYYY is the year, HH is the hour in 24-hour time, MM is
the minute, SS is the second, T is + if the server’s local time is ahead of GMT or -
if the local time is behind GMT, AA is the number of hours ahead or behind of
GMT and BB is the number of minutes ahead or behind GMT.

• The request made.

• The status code of the request.

• Bytes sent.

Elements in NCSA Common Log File Format log files are separated by spaces so that
when a log file in this format is opened in NOTEPAD or another text editor, its entries look
like this:

192.168.201.3 LEVLIN\jon [06/Jan/2000:13:39:04 -0800]
➥”GET /admin/adminPage.asp, HTTP/1.0” 200 1503

This sample log file entry is for a request to download the adminPage.asp file made
from a computer at IP address 192.168.201.3 by the user jon in the LEVLIN domain at
1:39:04 p.m. Pacific Time. The server processed the request without an error (status code
200) and sent 1503 bytes in response to the request (see Table 19.2 for detailed, element-
by-element interpretation).

TABLE 19.2 Interpreting the Sample NCSA Common Log File Format Log File Entry

Information Element Value

IP address of requestor 192.168.201.3

Username of requestor LEVLIN/jon

Date and time of request 06/Jan/2000:13:39:04 -0800

Actual request GET /admin/adminPage.asp, HTTP/1.0

Status code 200

Number of bytes sent 1503

The ODBC Logging Format
The ODBC Logging Format is interesting because it allows you to store Web server logs
directly in a table in an ODBC-compliant database like Access, SQL Server, or Oracle.
The format also makes it convenient to aggregate log file information from several
servers in a single place. Finally, it allows you to use the database to report on Web

446 Day 19

 25 0672318989 ch19 3/30/00 8:14 AM Page 446

Generating Store Reports 447

19

server activity in real-time. When set to ODBC Logging, the Web server stores the fol-
lowing information about each Web server request:

• The IP address of the computer making the request

• The username of the user making the request, if available

• Date and time of request in server local time

• The name of the service that fielded the request (W3SVC for a Web service)

• The name of the machine that fielded the request

• The IP address of the machine that fielded the request

• The amount of time the server spent processing the request, in milliseconds

• The length of the request, in bytes

• The number of bytes sent in response to the request

• The HTTP status code returned to the browser (200 means no error)

• The Windows status code of the request (0 means no error)

• The operation (typically GET to retrieve a file or POST to submit data for a form)

• The target (usually the name of a file to be retrieved or ASP page to be run)

• Any parameters sent or returned (parameters sent are the text that follows the ?
symbol in the URL)

Information about each Web server request is stored in a separate database row.

Before setting your Web server to use the ODBC Logging Format, you must create the
table that will contain the log entries and create an ODBC System DSN (Data Source
Name) for the table. The new table must contain columns as specified in Table 19.3. The
process you use to create the table will vary from database to database, although the
default installation of IIS includes a template that creates the appropriate columns in a
SQL database. This template is in a file named Logtemp.sql, which is located in the
\WINNT\SYSTEM32\INETSRV directory by default. To create the ODBC System DSN, fol-
low the same steps listed in Chapter 5, “Building Your Product Catalog,” (see the section
“Connecting to a Database”), but name your data source logDSN.

TABLE 19.3 Column Names and Data Types for ODBC Logging

Column Name Data Type

ClientHost Varchar(255)

Username Varchar(255)

LogTime Datetime

continues

 25 0672318989 ch19 3/30/00 8:14 AM Page 447

Service Varchar(255)

Machine Varchar(255)

ServerIP Varchar(50)

ProcessingTime Int

BytesRecvd Int

BytesSent Int

ServiceStatus Int

Win32Status Int

Operation Varchar(255)

Target Varchar(255)

Parameters Varchar(255)

You are now ready to use the Web Site properties page of the Internet Service Manager
site properties dialog to configure the Web server to store log file entries in the database
table.

1. Set the server to log in ODBC Logging format.

2. Click the Properties button. The ODBC Logging Properties page (see Figure 19.3)
will appear.

448 Day 19

TABLE 19.3 continued

Column Name Data Type

FIGURE 19.3
The ODBC Logging
Properties page.

3. Enter logDSN as the ODBC Data Source Name, the name of the table you created
(inetlog if you used the template file), and any username and password informa-
tion if appropriate.

4. Click OK or Apply.

 25 0672318989 ch19 3/30/00 8:14 AM Page 448

Generating Store Reports 449

19

The IIS log file entries will now be stored in the newly created database table.

The Microsoft IIS Log File Format
TheMicrosoft IIS Log File Format is the original log file format for IIS versions 3.0 and
earlier. It records more information than the NCSA Common Log File Format and a sim-
ilar amount of information as the ODBC Logging Format. As with the NCSA Common
Log File Format, you might want to set your Web server to use this format if you are try-
ing to maintain compatibility with log files from an older Web server. When your server
is set to log in Microsoft IIS Log File Format and you click the Properties button in the
Web Site tab of the Internet Service Manager site properties dialog, you will see the
Microsoft Logging Properties page, which is essentially the same as the NCSA Logging
Properties page in Figure 19.2. As with the NCSA Logging Properties page, you can use
this page to configure where the log files will be stored and how often a new file will be
created. The names of the log files depend on how often a new file is created, as shown
in Table 19.4.

TABLE 19.4 Naming Conventions for Microsoft IIS Log File Format Files

How Often a New File Is Created File Name Format

Daily inyymmdd.log

Weekly inyymmww.log

Monthly Inyymm.log

When log file exceeds specified size inetsvnn.log

or
Unlimited file size

Where

• yy is the last two digits of the year.

• mm is the number of the month.

• ww is the number of the week in the month.

• dd is the date.

• nn is a sequence number.

A Microsoft IIS Log File records the following information about each request to a Web
server, replacing missing items with a hyphen:

• The IP address of the computer requesting the file

• The username of the user requesting the file, if available

 25 0672318989 ch19 3/30/00 8:14 AM Page 449

• Date of request in server local time, in the format MM/DD/YY, where MM is the month
number, DD is the date, and YY is the last two digits of the year

• The time of the request, in server local time, in the format HH:MM:SS, where HH is
the hour in 24-hour time, MM is the minute, and SS is the second

• The name of the service that fielded the request

• The name of the machine that fielded the request

• The IP address of the machine that fielded the request

450 Day 19

It might seem silly to collect the IP address of the server answering the
request; however, this information can be useful when your Web server is
multi-homed.

Note

• The amount of time the server spent fielding the request, in milliseconds

• The number of bytes in the request

• The number of bytes the server returned in response to the request

• The HTTP status code returned to the browser (200 means no error)

• The Windows status code of the request (0 means no error)

• The operation (typically GET to retrieve a file or POST to submit data for a form)

• The target (usually the name of a file to be retrieved or ASP page to be run)

• Any parameters sent or returned (parameters sent are the text that follows the ?
symbol in the URL)

Commas separate elements in the Microsoft IIS Log File Format. When a log file in this
format is opened in NOTEPAD or another text editor, its entries look like this:

192.168.200.3, levlin\jon, 1/7/00, 14:43:55, W3SVC6,
➥MIKA, 192.168.201.251, 100, 578, 3607, 200, 0,
➥GET, /admin/updateproduct.asp, pid=35,

This sample log file entry is for a request to download the updateProduct.asp file for
product 35 made from a computer at IP address 192.168.200.3 by the user jon in the
levlin domain on January 7, 2000 at 2:43:55 p.m. server local time. The request was
made of service W3SVC6 running on server MIKA at IP address 192.168.201.251. The
server spent 100 milliseconds processing the request, which was 578 bytes long. The
server processed the request without an error (status code 200) and sent 3607 bytes in
response to the request (see Table 19.5 for detailed, element-by-element interpretation).

 25 0672318989 ch19 3/30/00 8:14 AM Page 450

Generating Store Reports 451

19

TABLE 19.5 Interpreting the Sample Microsoft IIS Log File Entry

Information Element Value

IP address of requestor 192.168.201.3

Username of requestor levlin/jon

Date of request 1/7/00

Time of request 14:43:55

Service Name W3SVC6

Server Name MIKA

Server IP address 192.168.201.251

Time spent processing (ms) 100

Bytes in request 578

Bytes returned to client 3607

HTTP status code 200

Windows NT return code 0

HTTP operation GET

Target file /admin/updateproduct.asp

Parameters pid=35

The W3C Extended Log File Format
The W3C Extended Log File Format is the most extensive logging format available, and
it is probably the format you will choose for your log files. The format is customizable,
meaning that you can select the information you would like to record in your log file.
When your server is set to log in W3C Extended Log File Format and you click the
Properties button in the Web Site tab of the Internet Service Manager site Properties dia-
log, you will see the General Properties page of the Extended Logging Properties dialog,
which is essentially the same as the NCSA Logging Properties page in Figure 19.2. As
with the NCSA Logging Properties page, you can use this page to configure where the
log files will be stored and how often a new file will be created. The names of the log
files depend on how often a new file is created, as shown in Table 19.6. If you switch to
the Extended Properties tab (see Figure 19.4), you can select the information you would
like to collect in the log file from among the possibilities enumerated in Table 19.7.

 25 0672318989 ch19 3/30/00 8:14 AM Page 451

TABLE 19.6 Naming Conventions for W3C Extended Log File Format Files

How Often a New File Is Created File Name Format

Daily exyymmdd.log

Weekly exyymmww.log

Monthly Exyymm.log

When log file exceeds specified size extendnn.log

or
Unlimited file size

Where

• yy is the last two digits of the year.

• mm is the number of the month.

• ww is the number of the week in the month.

• dd is the date.

• nn is a sequence number.

452 Day 19

FIGURE 19.4
The W3C Logging
Extended Properties
page.

TABLE 19.7 Information Recordable in W3C Extended Log File Format Files

Element Name
(As It Appears
in the Log Properties
File Header) Dialog Choice Meaning

date Date The Greenwich mean date that the request was
made, in the format YYYY-MM-DD, where YYYY is
the year, MM is the number of the month, and DD
is the date

 25 0672318989 ch19 3/30/00 8:14 AM Page 452

Generating Store Reports 453

19

Time Time The Greenwich mean time that the request was
made, in the format HH:MM:SS, where HH is the
hour in 24-hour time, MM is the minute, and SS
the second

c-ip Client IP Address The IP address of the computer requesting the
file

cs-username User Name The username of the user requesting the file, if
available

s-sitename Service Name The name of the service that fielded the request
(usually W3SVC)

s-computername Server Name The name of the machine that fielded the
request

s-ip Server IP The IP address of the machine that fielded the
request

s-port Server Port The TCP port that the request was submitted on
(usually 80, or 443 for secure HTTP)

cs-method Method The request operation (typically GET to retrieve
a file or POST to submit data for a form)

cs-uri-stem URI Stem The file to be retrieved or ASP page to be run

Cs-uri-query Any parameters to the URI Stem (text that fol-
lows the ? symbol in the URL)

sc-status Http Status The HTTP status code returned to the browser
(200 means no error)

sc-win32-status Win32 Status The Windows status code for the request (0
means no error)

sc-bytes Bytes sent The number of bytes the server returned in
response to the request

cs-bytes Bytes Received The number of bytes in the request

time-taken Time Taken The amount of time the server spent processing
the request, in milliseconds

cs-version Protocol Version The version of HTTP used for the request, usu-
ally either HTTP/1.0 or HTTP/1.1

Element Name
(As It Appears
in the Log Properties
File Header) Dialog Choice Meaning

continues

 25 0672318989 ch19 3/30/00 8:14 AM Page 453

cs(User-Agent) User Agent The string the browser sends to identify itself,
which includes browser name and version

cs(Cookie) Cookie The value of any cookie that this site previously
stored on the browser

cs(Referer) Referer The last page the user was browsing, if the
request is the result of the user clicking on a
link

If IIS is set to log in W3C Extended Log File Format, whenever the Web server starts or
creates a new log file, it writes four comment lines into the log file that look like this:

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2000-01-07 23:12:20
#Fields: date time c-ip cs-username s-sitename s-computername s-ip cs-method
➥ cs-uri-stem cs-uri-query sc-status sc-win32-status sc-bytes cs-bytes
➥time-taken s-port cs-version cs(User-Agent) cs(Cookie) cs(Referer)

These comments identify the version of the Web server, the version of the log file format,
and the date the log started. Most important, because the format is customizable, the last
comment details which of the fields from Table 19.7 are going to be present in the log
file, and in what order the fields will appear. When the server starts logging, it records a
line for each request, separating fields with spaces and replacing unavailable information
with hyphens; for example:

2000-01-07 23:12:20 192.168.200.3 levlin\jon W3SVC6 MIKA 192.168.201.251
➥GET /admin/updateproduct.asp pid=35 200 0 3607 573 110 80 HTTP/1.1
➥ Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+98)
➥ASPSESSIONIDQQGGQGVY=LLEDNABABDDBONADGFBJBAMM
➥http://192.168.201.251/admin/manageProducts.asp

This sample log file entry is for a request to GET the updateProduct.asp file for product
35 made from a computer at IP address 192.168.200.3 by the user jon in the levlin
domain on January 7, 2000 at 11:12:20 p.m. GMT. The user was running IE 5.01 on
Windows 98. The request was the result of the user clicking on a link from
manageProducts.asp, and an existing cookie was uploaded. The request was made of
service W3SVC6 running on server MIKA on port 80 at IP address 192.168.201.251. The
server spent 110 milliseconds processing the request, which was 573 bytes long. The

454 Day 19

TABLE 19.7 continued

Element Name
(As It Appears
in the Log Properties
File Header) Dialog Choice Meaning

 25 0672318989 ch19 3/30/00 8:14 AM Page 454

Generating Store Reports 455

19

server processed the request without an error (HTTP status code 200, Windows status
code 0) and sent 3607 bytes in response to the request (see Table 19.8 for detailed, ele-
ment-by-element interpretation).

TABLE 19.8 Interpreting the Sample W3C Extended Log File Entry

Information Element Value

date 2000-01-07

time 23:12:20

c-ip 192.168.200.3

cs-username levlin\jon

s-sitename W3SVC6

s-computername MIKA

s-ip 192.168.201.251

cs-method GET

cs-uri-stem /admin/updateproduct.asp

cs-uri-query pid=35

sc-status 200

sc-win32-status 0

sc-bytes 3607

cs-bytes 573

time-taken 110

s-port 80

cs-version HTTP/1.1

cs(User-Agent) Mozilla/4.0+(compatible; +MSIE+5.01;+Windows+98)

cs(Cookie) ASPSESSIONIDQQGGQGVY=LLEDNABABDDBONADGFBJBAMM

cs(Referer) http://192.168.201.251/admin/manageProducts.asp

Analyzing Your Logs
Because of the design of the HTTP protocol, there is no reliable way to identify confi-
dently and completely your site’s users (see the sidebar, “The Limitations of Logging”).
Even so, you can still use your logs to gain some insight into the people using your site
and how they are using it. You can study your Web server’s logs by viewing them in a
text editor such as NOTEPAD, but you will find analyzing log files this way to be extremely
difficult and tedious. It is better to use the ODBC Logging Format to log directly into a
database, or to periodically load log files into a database. After the logs are in a database,
you can use any number of tools to analyze them.

 25 0672318989 ch19 3/30/00 8:14 AM Page 455

456 Day 19

The Limitations of Logging

You might have noticed that the even the information collected by the most detailed
server log format, the W3C Extended Log File Format, is quite limited. Even worse, as you
analyze your logs, you will find that log information seems inaccurate—particularly that
the number of hits, page views, and unique users seems low. This is because the Internet,
and specifically the HTTP protocol, are designed for efficient operation rather than accu-
rate logging. In other words, the HTTP protocol’s primary function is to get information
to its destination, not to track that information’s delivery. In between your store and your
customer, there are many tricks that browsers and ISPs use to increase response time and
minimize traffic, and each of these tricks distorts the view of your users that you are
attempting to tease out of your logs.

To start with, most browsers store each page, graphic, applet, and ActiveX control in a
cache in order to reduce the time it takes to present them to users. When a user requests
a page or when a page references another file, the browser first checks its cache before
asking for the item from a server. This means that if a customer requests the same page
twice, the second access might never actually make it to your server, which means that it
won’t show up in your server log.

In addition to the browser cache, ISPs and corporations reduce the number of entries in
your server log by implementing proxy servers. Proxy servers are like browser caches,
except that they are shared between users. When proxy server users request pages or
other objects from Web servers, the proxy server first checks its cache before passing the
request on to the server. If the page isn’t in the cache, the proxy server requests it from
the site, presents it to the user, and stores it in its cache for the next user request. This
means that if Kathy and Ken are both using the same ISP and they both request the same
page from your store, only one visit will appear in your server’s log.

Although there is a tag that you can add to any of your pages that asks browsers and
proxy servers not to cache them, many proxy servers purposefully ignore this tag. Even if
a proxy server honors the <META HTTP-EQUIV=”Expires” CONTENT=”0”> tag, requests made
through proxy servers often all appear to be from the same IP address, and so appear to
be from the same person. To further confuse your tracking mechanisms, many ISPs and
corporations use firewalls, which in part protect by obscuring. Even if a firewall doesn’t
cache, users accessing your server from a network protected by a firewall will appear to
be using the same IP address, and so will appear to be the same person.

Finally, Web spiders, or bots, from search engines and other automated information gath-
ering services will confuse your user accounting by inflating your server logs. When a ser-
vice like Alta Vista visits your site to index your pages, it retrieves the page the same way
that a browser does, by performing an HTTP GET. This means that, to your Web server,
indexing requests appear to be user requests, even though there is no one actually look-
ing at the retrieved pages.

There is a lot of commercial software available that tries to work around these difficul-
ties, but Web privacy advocates are implementing workarounds to the workarounds in a
kind of privacy versus commerce arms race. In the final analysis, as with nearly anything
else, you will have to decide whether imperfect data is better than no data.

 25 0672318989 ch19 3/30/00 8:14 AM Page 456

Generating Store Reports 457

19

Loading Text Logs into a Database with ASP
If you aren’t using ODBC logging and own Microsoft Access or Microsoft Excel, you
can use their Import Text feature to load log files into your database. Many other data-
base and spreadsheet programs also include an Import Text feature. You can also use an
ASP script to load your data into a Microsoft Access database.

If you decide to use the Import Text feature of a database or spreadsheet to
load information from a W3C Extended Log File into a database, first be
sure to delete the comment lines from the top of the file. The comment
lines are the lines that begin with the # character.

Caution

If you want to roll your own log file import support, you need to allow the administrator
to select the log file or files to be imported, and then pass the selected files to a script
that actually imports the files into the database. The code in Listing 19.1 allows an
administrator to select log files to load in a manner similar to the code in Listing 18.8
that selects email recipients. The fs.inc file that is included on line 2 of the following
code can be found on the CD.

As with other Administration functions, it is important to keep the pages
that maintain the logging database in a password-protected database.

Caution

LISTING 19.1 ListLogs.asp, Which Uses ASP to Enumerate the Log Files

1 <%@ Language=”VBScript” %>
2 <!-- #include file=”../fs.inc” -->
3 <%
4 Dim fs, folder
5 Set fs = CreateObject(“Scripting.FileSystemObject”)
6
7 ‘ Replace with logic that opens the logging folder for your store
8 Set folder = fs.GetSpecialFolder(SystemFolder)
9 Set folder = folder.SubFolders.Item(“LogFiles”)
10 Set folder = folder.SubFolders.Item(“w3svc6”)
11 %>
12
13 <html>
14 <head><title>Johnson’s Candies and Gifts - Log File List</title></head>
15 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>

INPUT

continues

 25 0672318989 ch19 3/30/00 8:14 AM Page 457

16 <center>
17 <table width=”640” border=”0” bgcolor=”#ffffff”

➥cellspacing=”0” cellpadding=”0”>
18 <tr><td></td></tr>
19 <tr><td colspan=”2”><hr width=”640”></td></tr>
20 </table>
21 </center>
22 <SCRIPT Language=”VBScript”>
23 <!--
24 SUB CheckAll
25 Dim cb
26
27 For Each cb in document.loglist.elements
28 If cb.name = “logFileName” Then
29 cb.checked = document.loglist.allbox.checked
30 End If
31 Next
32 END SUB
33 -->
34 </SCRIPT>
35 <center>
36 <H4>Check the boxes next to the log files you wish to load.</H4>
37
38 <FORM name=”loglist” method=”POST” action=”LoadLog.asp”>
39 <table width=”600” border=”1” bgcolor=”white” cellpadding=”4”

➥cellspacing=”0”>
40 <TR border=”0” bgcolor=”yellow” align=”Left”>
41 <TH>
42 <table border=”0” width=”550” cellspacing=”0”><tr>
43 <td>Log File Name</td>
44 <td align=”right”>

➥Return to Administration Page</td>
45 </tr></table></TH>
46 </TR>
47 <%
48 Dim fileList, logFile
49 Set fileList = folder.Files
50 For Each logFile in fileList
51 %>
52 <TR bgcolor = “White” align=”Left” bordercolor=”#cccccc”>
53 <TD WIDTH=”1”>
54 <input type=”checkbox” name=”logFileName” value=”<%=logFile.Path%>”>

➥</TD>
55 <TD><% =logFile.Name %></TD>
56 </TR>
57 <%
58 Set logFile = Nothing
59 Next

458 Day 19

LISTING 19.1 continued

 25 0672318989 ch19 3/30/00 8:14 AM Page 458

Generating Store Reports 459

19

60 Set fileList = Nothing
61 %>
62 </table>
63 <table width=”600” border=”0” bgcolor=”white” cellpadding=”4”

➥cellspacing=”0”>
64 <TR bgcolor = “White” bordercolor = “White”>
65 <td width=”1” valign=”top”>
66 <input name=”allbox” type=”checkbox”

➥value=”Check All” onClick=”CheckAll”></td>
67 <td>Select all files</td>
68 </tr>
69 </TABLE>
70 <INPUT type=”submit” value=”Next >” id=”submit1” name=”submit1”>
71 </form>
72 </center>
73 </body>
74 </html>
75 <%
76 Set fs = Nothing
77 Set folder = Nothing
78 %>

Line 2 of the script includes some VBScript constants for use with the
GetSpecialFolder function below. Lines 8–10 sets the folder variable to the

logging folder for the store—you should change lines 8–10 so that they locate the appro-
priate folder. Lines 38–71 define a form named loglist that is used to select the log
files to be imported. Within that form, Lines 39–62 define a table that is used to view
each user. Lines 41–45 define the header of that table. Lines 48–60 loop through each of
the files in the log file directory pointed to by the folder variable and create a row in the
table for each. Lines 53–55 define a table cell that contains a check box with the name
logFileName and the value of the fully-qualified path name of the log file, and line 55
defines a cell that includes the file’s short name. Lines 66–72 define an additional check
box named allbox that allows the user to select or deselect all users at the same time.
The onClick attribute of the check box defined in line 66 causes a call to the client-side
script subroutine named CheckAll when the additional check box is clicked. As with the
homonymous function in selectCust.asp (see Listing 18.8), lines 22–34 define a client-
side script subroutine named CheckAll, and it is intended to be called when the state of
the allbox check box changes. Lines 22 and 34 are the SCRIPT tags that define a client-
side script. Lines 27–31 iterate through each named item in the loglist form and line 29
sets the state of each item named logFileName to match allbox’s state.

ANALYSIS

 25 0672318989 ch19 3/30/00 8:14 AM Page 459

After the user selects the log files and clicks the Next button, control passes to the code
in Listing 19.2, which is an ASP script that loads the selected W3C Extended Log Files
into a database. This script can be easily modified to load files in the other IIS logging
formats. Integrating these scripts into the Administration Web site is a matter of simply
adding a few links to the adminPage.asp file. An updated version of adminPage.asp and
the fs.inc file included on line 3 is included on the CD-ROM that accompanies this
book.

LISTING 19.2 Loading a W3C Extended Log File with ASP

1 <%@ Language=VBScript %>
2 <!-- #include file=”../adovbs.inc” -->
3 <!-- #include file=”../fs.inc” -->
4 <%
5 Response.Buffer = TRUE
6 %>
7 <HTML>
8 <HEAD>
9 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
10 <title>Johnson’s Candies and Gifts - Load Log Files</title>
11 </head>
12 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
13 <center>
14 <table width=”640” border=”0” bgcolor=”#ffffff”

➥cellspacing=”0” cellpadding=”0”>
15 <tr><td></td></tr>
16 <tr><td colspan=”2”><hr width=”640”></td></tr>
17 </table>
18 </center>
19 <%
20
21 Dim Con, rs, fs, file, fileName, fileString, fieldNameArray
22
23 Set Con = Server.CreateObject(“ADODB.Connection”)
24 Con.Open “logDSN”
25 Set rs = Server.CreateObject(“ADODB.Recordset”)
26 rs.Open “logTable”, Con, adOpenDynamic, adLockOptimistic
27 Set fs = CreateObject(“Scripting.FileSystemObject”)
28
29 For Each fileName in Request.Form(“logFileName”)
30 Set file = fs.OpenTextFile(fileName, ForReading)
31

460 Day 19

A fully-qualified pathname is the entire name of a file, including the disk
drive letter and path.

Note

INPUT

 25 0672318989 ch19 3/30/00 8:14 AM Page 460

Generating Store Reports 461

19

32 While file.AtEndOfStream <> True
33 fileString = file.ReadLine
34 If Left(fileString, 8) = “#Fields:” Then
35 fieldNameArray = Split(Mid(fileString, 10))
36 Elseif Left(fileString, 1) <> “#” Then
37 rs.AddNew fieldNameArray, Split(fileString)
38 End If
39 Wend
40
41 rs.Update
42 file.Close
43 Set file = Nothing
44 Next
45 rs.Close
46 Set rs = Nothing
47 Con.Close
48 Set Con = Nothing
49
50 %>
51
52 <H4>Log files loaded!</H4>
53 </BODY>
54 </HTML>

Lines 2 and 3 include some VBScript constants for use with the file and database
calls contained later in the script. Lines 23–26 create a Database Connection to

the logging database, and open a Recordset to the logging table. You can modify lines
24 and 26 if you have named your logging DSN or table name differently. Line 27 cre-
ates a file system object that allows you to manipulate the actual log files. The outer loop
(lines 29–44) iterates through each file submitted to the form from ListLogs.asp the
same way that sendMsg.asp (see Listing 18.10) iterates through the email addresses
selected from selectCust.asp (see Listing 18.8). Line 30 opens each file for reading,
and the inner loop (lines 32–39) iterates through each line of the opened file. Line 33
reads a line and line 34 checks to see if the line is a field comment. If it is, line 35 parses
the comment into fields and stores them as the column headers into the fieldNameArray.
If it’s another kind of comment, line 36 simply skips over it; otherwise, line 37 parses the
line into fields and inserts the fields into the logging database. After the entire file is
processed, line 42 closes the file and line 43 sets the file object to be reclaimed. Finally,
when the program reaches the end of the list of files to be uploaded, lines 45–48 close
and mark the Recordset and Database Connection for reclaiming.

ANALYSIS

 25 0672318989 ch19 3/30/00 8:14 AM Page 461

Analyzing the Logs with ASP
When your logs are in a database, you can also use ASP to perform usage analysis. As an
example, Listing 19.3 shows the contents of DailyHits.asp, an ASP script that shows
the number of hits a site handles each day. The results of running this script are illustrat-
ed in Figure 19.5. If you want to perform different sorts of analysis, you can start by
modifying the SQL query in line 26. For example, changing the query to

SELECT logTable.date, logTable.[c-ip],
➥ Count(*) FROM logTable GROUP BY logTable.date, logTable.[c-ip]

displays the number of hits from each unique customer IP address on each day.

LISTING 19.3 Displaying the Daily Hits Computed from the Database

1 <%@ Language=VBScript %>
2 <!-- #include file=”../adovbs.inc” -->
3 <%
4 Response.Buffer = TRUE
5 %>
6 <HTML>
7 <HEAD>
8 <META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>
9 <title>Johnson’s Candies and Gifts - Display Daily Hits</title>
10 </head>
11 <body link=”#ff4040” vtext=”lightred” bgcolor=”#ffffff”>
12 <center>
13
14 <table width=”640” border=”0” bgcolor=”#ffffff” cellspacing=”0”

➥cellpadding=”0”>
15 <tr><td> </td></tr>
16 <tr><td colspan=”2”><hr width=”640”></td></tr>
17 </table>
18 </center>
19
20 <%
21 Dim Con, rs, record
22
23 Set Con = Server.CreateObject(“ADODB.Connection”)

462 Day 19

The #Fields: comment appears in a W3C Extended Log File before any
records are logged, but might appear more than once if the Web server is
restarted. Each time the #Fields: comment is encountered, it is re-parsed
because the logging parameters can be changed (see Figure 19.4) while the
server is running. So a single W3C Extended Log File might include log
entries in a variety of formats.

Note

INPUT

 25 0672318989 ch19 3/30/00 8:14 AM Page 462

Generating Store Reports 463

19

24 Con.Open “logDSN”
25 Set rs = Server.CreateObject(“ADODB.Recordset”)
26 rs.Open “SELECT date, count(*) FROM logTable Group by date”, Con
27
28 rs.MoveFirst
29 %>
30
31 <table border=”1” bgcolor=”white” cellpadding=”4” cellspacing=”0”>
32 <TR border=”0” bgcolor=”yellow” align=”Left”>
33 <TH>Date</TH>
34 <TH>Number of Hits</TH>
35 </TR>
36
37 <%
38 While rs.EOF <> true
39 %>
40 <TR>
41 <TD><%=rs.Fields(0)%></TD>
42 <TD><%=rs.Fields(1)%></TD>
43 </TR>
44 <%
45 rs.MoveNext
46 Wend
47
48 rs.Close
49 Set rs = Nothing
50 Con.Close
51 Set Con = Nothing
52 %>
53 </table>
54 <H4>Return to Administration Page</H4>
55 </BODY>
56 </HTML>

Line 2 of the script includes some VBScript constants for use with the database
functions used in later lines of the script. Lines 23–25 create a Database

Connection to the logging database and a Recordset for use with the Database
Connection. Line 26 is where the analysis work is actually done—it queries the logging
table with an SQL statement that counts the number of records (count(*)) collected on
each date (Group by date). As with the code in Listing 19.2, you can modify lines 24
and 26 if you have named your logging DSN or table name differently. When the
Recordset is open, line 28 moves to its first record, and lines 31–53 create a table to dis-
play its results. Lines 32–35 define the header of the table; lines 38–46 loop through
each record in the recordset (each of which represents the summary results for a single
day) and creates table row entries for the date (line 41) and the number of hits (line 42).

ANALYSIS

 25 0672318989 ch19 3/30/00 8:14 AM Page 463

Finally, lines 48–51 clean up the Recordset and Database Connection. Figure 19.5
shows the output of the DailyHits.asp page.

464 Day 19

FIGURE 19.5
Usage analysis results.

Other Ways to Analyze Logs
Depending on the statistics you are collecting in your logs, the SQL used in the script in
Listing 19.3 can be modified to show many other site statistics. However, you might not
have the time, or the knowledge of SQL, to write your own analyses. Instead, when your
logs are in a database, you might find it faster and easier to use other tools to analyze
your store usage. If you choose this route, you will find Crystal Reports, Microsoft
Access, and Microsoft Excel to be quite helpful.

In addition to this “do-it-yourself” log file analysis, many products are available to help
you analyze your logs. Site Server Express 3.0, which is available in a free download
from Microsoft’s Web site, includes a surprisingly robust set of usage analysis tools.
Other products are available for purchase and range in price from hundreds to tens of
thousands of dollars. These products include workarounds for the kinds of problems
described earlier in the sidebar, “The Limitations of Logging.” You will certainly find
one of the products useful as your customer base grows.

 25 0672318989 ch19 3/30/00 8:14 AM Page 464

Generating Store Reports 465

19

Summary
In today’s lesson, you learned the information that IIS stores as it logs Web site usage,
and the differing methods for logging that IIS provides. You were presented with an
overview of the NCSA Common Log File Format, the ODBC Logging Format, the
Microsoft IIS Log File Format, and the W3C Extended Log File Format. You learned
what can and cannot be learned from analysis of those logs. Also, you learned how to use
ASP to load IIS logs into an ODBC database. Finally, you learned how to use ASP to
analyze and report on the logs in those databases.

Q&A
Q What happens if log files fill my server’s disk space?

A If your Web server fills up a disk with log files, it will stop.

Q What if I load the same log file twice?

A If you load the same log file into your logging database twice, you will double-
count visits to your Web site for the period of time covered by that log file. You
might want to add functionality to your log processing scripts that tracks the log
files that have been loaded so you can prevent any double-counting.

Q How can I measure how much my customers are buying from my store?

A Because you are storing your customers’ orders in a database, you can use the tech-
niques we reviewed for log file analysis to generate sales and inventory reports.
You can also use tools like Crystal Reports or Microsoft Excel to generate more
sophisticated reports.

Workshop
The Quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What is the difference between a hit, a page view, and a unique user? For what is

each useful?

2. What are the different log file formats that IIS supports? Which ones are you likely
to want to use? Why?

3. Why is log file analysis an unreliable way to measure site traffic?

 25 0672318989 ch19 3/30/00 8:14 AM Page 465

 25 0672318989 ch19 3/30/00 8:14 AM Page 466

DAY 20

WEEK 3

Working with Wallets
After running your store for even a short period of time, you might discover E-
Commerce’s dirty little secret: abandoned transactions. Just like it sounds, an
abandoned transaction happens when a user gets part of the way through an
order but leaves the Web site before completing the purchase. Most sites find
that a surprisingly large number of their transactions are left uncompleted.

Why does this happen? It might be that the customer has subsequently decided
not to purchase a particular set of items, but in many cases, it has something to
do with the store that he or she is visiting. The new customer registration form
might be too long, the customer might not remember his previously used regis-
tration name, or the customer might not be sufficiently convinced of the site’s
trustworthiness to enter a credit card number.

Many companies have been working hard to improve the abandoned transaction
situation by developing software and technologies that have become known as
electronic wallets. In today’s lesson, you will learn

• What electronic wallets are and why they are being developed

• The different kinds of wallets

• Wallet standards and why they are important

 26 0672318989 ch20 3/30/00 8:14 AM Page 467

• How to create your own single-store wallet with wallet standards in mind

• How your store can accept information from one or more wallets

Physical Commerce Versus Electronic
Commerce

Everyone knows about the biggest hassle of physical commerce: You have to visit a store
in order to know for certain what is there and how much it costs. After you have found
what you want, however, buying things at physical stores is simple. You take the item up
to the front of the store, pull out some cash or a credit card, and you are done. If there is
a long line, you might decide to try again some other time, but because the checkout
lines are visible at the front of the store, you can know how long your wait will be ahead
of time. On the whole, this means that most of the time, if a customer picks something
out at a physical store, the chances are high that he will buy it.

Contrast this with electronic commerce. You can quickly and easily visit lots of stores
and add items to your electronic “shopping basket.” When you are finished picking out
your items, though, the check-out process is harder than it is in a physical store. This is
because every electronic store requires a user to enter information in a way that is unnec-
essary in most physical stores.

Even when purchasing from an Internet store that offers excellent performance, if it is
your first visit, completing a transaction can seem interminable. Electronic stores often
require a new customer to fill out a lengthy, intrusive form, enter a credit card number,
and select a username that is not already being used. Customers are used to this sort of
work when buying cars or houses, but, at best, it seems, like overkill—and, at worst, like
a security risk—when buying a book or even a television. All in all, even a cursory
analysis of the electronic shopping process suggests that getting people through a virtual
checkout line can be as difficult or more difficult than getting them to visit an electronic
commerce site in the first place.

Recent Web studies seem to bear this hypothesis out. A February 1999 study performed
by Jupiter Communications, a New York-based information technology research firm,
found that more than a quarter of users surveyed have abandoned a transaction because
order forms are too long or complicated. Other studies suggest that the number of aban-
doned transactions could be as high as two-thirds of all transaction attempts.

Two-thirds of transactions abandoned is a staggering number. If two out of every three
customers left a shopping cart in the aisles of a supermarket, a huge number of

468 Day 20

 26 0672318989 ch20 3/30/00 8:14 AM Page 468

Working with Wallets 469

20

employees would be needed just to reshelf unwanted items! Although restocking is not a
problem in the electronic world, the loss still means that most of the potential revenue of
E-Commerce sites is being left on the table. It is no wonder, then, that electronic com-
merce companies are working so assiduously to make completing electronic transactions
simpler and more efficient.

Electronic Wallets
As mentioned previously, the biggest hassle in purchasing on the Web is filling in the
order form. This hassle is multiplied by the number of transactions an online customer
makes. In other words, it is bad enough that in order to buy a book, one has to enter
name, address, phone number, and so on, but when buying a book from a second mer-
chant, one has to enter all that information anew. The credit card industry made purchas-
ing easier by centralizing the credit application so that a customer only had to fill out one
application in order to receive credit at thousands of stores. Similarly, the big E-
Commerce players are trying to make Web purchasing easier with electronic wallets.

An electronic wallet is software that holds credit card numbers and other personal infor-
mation such as name, shipping addresses, and telephone numbers. When a customer vis-
its a site that uses electronic wallets, he or she doesn’t need to fill out an entire order
form. Instead, the wallet automatically adds the necessary information for the user into
the appropriate fields on the merchant’s order form.

This doesn’t just make E-Commerce faster and more convenient; it also has the potential
to make it safer. A well-implemented wallet encrypts customer information to keep it pri-
vate. Also, like a valid credit card, a well-implemented wallet provides some extra assur-
ance of a customer’s legitimacy to a merchant. In some cases, electronic wallet vendors
are even offering merchants and customers additional anti-fraud assurances along with
their wallet implementations.

Client-Side Wallets
The first software to be called “wallets” was the so-called “client-side” wallet. These
wallets are called client-side because they store user information on a customer’s com-
puter. Aside from the merchant-specific wallets (see the section “Single-Site Wallets”
later in the chapter), client-side wallets are the most widely used commerce software.
Table 20.1 lists a selected set of client-side wallets.

 26 0672318989 ch20 3/30/00 8:14 AM Page 469

TABLE 20.1 Some Client-Side Wallets

Product Name Company Name Product URL

Ascendent Wallet Hypercom http://www.hypercom.com/web/

products/software/wallet/wallet.htm

Consumer Wallet IBM http://www-4.ibm.com/software/

commerce/payment/wallet.html

Element Wallet Element http://www.element.be/

products/productsSETWallet1.html

eWallet EntryPoint http://www.entrypoint.com/

help/ewhelp02.html#FormFiller

EzCard Trintech http://www.trintech.com

Gator Gator.com http://www.gator.com

ITP Wallet Compaq http://www.tandem.com/prod_des/

walletpd/walletpd.htm

Java Wallet Sun java.sun.com/products/

commerce/docs/

Jotter JTI http://www.jotter.com

NetPay Wallet Maithean http://www.maithean.com/

products/wallet.html

NetWallet Trintech http://www.trintech.com/

products/netwallet/index.html

Q*Wallet Qwallet.com http://www.qwallet.com

SecureLynx SaskTel http://www.securelynx.com/

digital_wallet/

v-Go Passlogix http://www.passlogix.com/

welcome.html#center

WebFormFill Micro Systems Designs http://www.maxlock.com

From a consumer’s perspective, client-side wallets have a distinct privacy advantage—
her personal information cannot be inadvertently disclosed by an employee of the wallet
company because the company doesn’t have access to the information. Instead, the user’s
private data is all stored and encrypted on the user’s computer. Unfortunately, the same
thing that gives these wallets this privacy advantage gives them two big disadvantages.
First, most of them require a download. Second, after the product is downloaded and the
personal information entered, the wallet is only available on a single computer.

The download disadvantage is a problem that has killed many otherwise promising ideas
on the Internet. Downloads take extra time, and the slower a user’s connection, the

470 Day 20

 26 0672318989 ch20 3/30/00 8:14 AM Page 470

Working with Wallets 471

20

longer downloads take. Also, wallets are typically offered for free, and software that has
been offered for free download has often been buggy, hard to install, and even harder to
configure. These disadvantages mean that, unless a user sees a compelling, immediate
utility for a piece of software, typically she will be unwilling to try it out.

The single computer disadvantage seems slight at first, but it is as significant as the
download disadvantage, if not more so. Most customers are using the Internet from com-
puters in at least two places: home and work. Some are using the Internet from several
different computers in each location. In order to effectively use a client-side wallet, a
customer would have to first download the wallet software to each computer that he uses,
and then reenter personal information on each computer. It seems nearly as inconvenient
as the pre-wallet situation.

Client-side wallet vendors are caught in a bind. Merchants will not take the time to adapt
their Web sites to client-side wallets because there are too many wallets, not one of
which has a significant number of users. Customers will not adopt client-side wallets
because the stores that they frequent do not support them. As a result, some vendors (like
Microsoft) have abandoned their client-side wallets, whereas others (like EntryPoint)
have tried to integrate their wallets with software that is otherwise useful. (EntryPoint
bundles their wallet with other utilities such as stock tickers and news headlines.) It is
too early to tell for certain, but many E-Commerce analysts have already written off
client-side wallets. This does not mean implementation support for client-side wallets on
your E-Commerce site is a waste; however, it suggests that, if you have limited
resources, you might be better advised to allocate them somewhere else.

Server-Side Wallets
The alternative to a client-side wallet is a server-side wallet, which, as the name implies,
stores customer information on a server at a financial institution or wallet vendor. These
wallets can be divided into two categories: single-site wallets and general-site wallets.

Single-Site Wallets
Single-site wallets store a customer’s private information to make his next transaction at
a particular store faster and more convenient. Well-designed sites have been implement-
ing this functionality without calling it a “wallet” almost since the beginning of the
Internet. The Candy Store sample application, as written, implements a rudimentary sin-
gle-site, server-side wallet through its Registration feature.

Unfortunately, taking advantage of single-site wallets requires a customer to remember
usernames and passwords—lots of them. In the single-site world, these usernames and
passwords are usually specific to each store; thus a customer is likely to accumulate a
large number of different identities. Larger Internet companies are trying to work around

 26 0672318989 ch20 3/30/00 8:14 AM Page 471

this problem by creating electronic “malls” bringing together several E-Commerce busi-
nesses where the mall’s single-site wallets can be used (see Table 20.2 for examples).

TABLE 20.2 Some Larger Site-Specific Wallets

Company Name Description

Amazon.com Available for all Amazon.com products, as well as selected zShops
and Auctions vendors.

BillPoint Only available for eBay auctions.

Yahoo! Wallet Can be used for any store on Yahoo! Shopping. Username and pass-
word are the same as the username and password for other Yahoo!
features such as Yahoo! mail.

Joining one of these malls is an easy, albeit potentially expensive, way to take advantage
of server-side wallets. It is easy for your customers because it limits the number of user-
names and passwords to remember, and it is easy for you because you don’t have to han-
dle any programming or charge clearing. It is potentially expensive because, if you
already have a credit-card clearing account for a physical store, you might find that these
vendors charge more per month and per transaction than your current merchant bank does.

General Server-Side Wallets
At first glance, client-side wallets seem to be the best answer to commerce in the elec-
tronic world because they leave all the information on the customer’s computer, much
like a physical wallet exists only in a customer’s pocket. This analogy is misleading. On
closer examination, it becomes clear that general server-side wallets are really the most
similar to the current general-purpose credit card system.

In the physical world, information about a customer—such as billing address, account
balance, and credit history—is not kept in his wallet, but at his financial institution.
Plastic credit cards are simply devices that enable quick and convenient, but also
extremely limited, merchant access to that information. When a consumer uses a credit
card at a store, the store delegates the handling of the financial part of the transaction to
the credit card network and the card-issuing bank. The customer’s financial information
remains private between himself and the issuing bank.

General server-side wallets replace the physical token of the credit card with a common
username and password; otherwise, the scheme is remarkably similar to the credit card
system. During a customer’s first purchase at a general server-side-wallet–enabled E-
Commerce site, the customer completes payment and shipping information on the mer-
chant’s Web form. The difference is that at the end of the transaction, the merchant asks

472 Day 20

 26 0672318989 ch20 3/30/00 8:14 AM Page 472

Working with Wallets 473

20

the customer to sign up for a free digital wallet. If the customer accepts, he or she selects
a username and password, and a financial institution or other third-party securely stores
the entered payment and shipping information under that username. Alternatively, the
customer can sign up for a general server-side wallet by visiting a wallet provider’s site
(see Table 20.3 for some general server-side wallets).

TABLE 20.3 Some General Server-Side Wallets

Product Name Company Name Product URL

AOL Quick Checkout AOL Quickcheckout.aol.com

Arzoo Arzoo http://www.arzoo.com

Brodia.com Brodia.com http://www.brodia.com

Doughnet Doughnet http://www.doughnet.com

InstaBuy CyberCash http://www.instabuy.com

MBNAWallet MBNA http://www.mbnawallet.com

MyOneWallet Capital One http://www.myonewallet.com

NetHost Trintech http://www.trintech.com/products/

payware/payware_nethost.html

Network Wallet BlueMoney http://www.bluemoney.com/comprod/

products/network_wallet.html

Companion Obongo http://www.obongo.com

Passport Microsoft http://www.passport.com/business/

wallet_services.asp

PowerWallet Qpass.com http://www.qpass.com

ServerWallet Netlife http://www.netlife.de

ZixWallet ZixIt http://www.zixcharge.com

It does not matter whether a customer sets up a wallet through a merchant’s site or
directly with the wallet vendor. When that customer visits any merchant that participates
in the same server-side wallet program, she can use the wallet username and password
instead of manually entering the payment and shipping information. The shipping infor-
mation is transferred securely to the merchant site. Depending on the specific server-side
wallet provider, either the provider handles charging the user’s credit card or the payment
information is transferred securely to the merchant along with the shipping information.

 26 0672318989 ch20 3/30/00 8:14 AM Page 473

TABLE 20.4 Information Sources on E-Commerce Applications for SmartCards

Company Name Product Description Product URL

ActivCard SmartCard, plus http://www.activcard.com/

PC or modem reader solutions/ewallet.html

GemPlus SmartCard, plus PC reader http://www.gemplus.com/products/

software/wallet

Hitachi Electronic Mondex http://www.hitachi.co.jp/Div/

wallet device, interfaces nfs/products/wallet-E.html

with Mondex SmartCard

Mondex MasterCard-backed ePurse http://www.mondexusa.com

Schlumberger Mondex, Proton, http://www.slb.com/smartcards/

and Visa Cash cards products/banking

Sun JavaCard http://www.javasoft.com/

products/javacard/index.html

VISA Visa Cash http://www.visa.com/nt/cash/

main.html

474 Day 20

Other Kinds of Wallets

There are several emerging E-Commerce technologies based on SmartCards, plastic cards
the same size as a credit card which have a small computer embedded within. Although
SmartCards are not very common now, they are beginning to gain popularity with credit
card issuers and are contained in certain types of cellular phones and satellite dishes.
SmartCards’ increasing availability has encouraged technology vendors and banks to
develop E-Commerce applications that take advantage of their embedded microproces-
sors.

Perhaps the most interesting SmartCard-based applications from an E-Commerce point of
view are the so-called “electronic purses.” An electronic purse enables a user to down-
load cash into his or her SmartCard, and then transfer the downloaded cash directly to
another SmartCard, without having to make a round-trip transaction to a bank or other
server computer. Because transactions can be completed without the use of a central
clearing computer, these transactions should be much less expensive to complete, and
should therefore facilitate electronic payment for low-cost items. Some of the vendors of
E-Commerce SmartCard technologies are listed in Table 20.4.

 26 0672318989 ch20 3/30/00 8:14 AM Page 474

Working with Wallets 475

20

Wallet Standards
Internet analysts are predicting that customers will adopt wallets in greater numbers
between now and 2003, with a fairly large number of customers using them by 2001. At
publication of this book, it is unclear which wallet will be successful, in large part
because it is unclear how the general server-side wallet vendors plan to make money. All
vendors plan to make their wallets free to customers. Some vendors plan to charge mer-
chants a flat rate per month or per transaction; others plan to charge merchants a percent-
age of each transaction. Some plan to do both, and a fourth group plans to offer the pay-
ment information for free in the hope of selling other services to merchants and cus-
tomers.

If you plan to take advantage of wallets, it is best to evaluate wallet companies as you
would any other financial services vendor and make a selection based on more than sim-
ply price. Ultimately, you will get the most value from participation in a wallet scheme
that has a large number of members. The best strategy is to start early, while vendors are
aggressively recruiting vendors in order to establish a critical mass of merchant partners.
Seek out a wallet that seems likely to be successful in attracting your store’s target cus-
tomers. Wallet vendors will try to attract customers by offering a wide variety of added
benefits, so look for a vendor offering the kinds of added benefits that seem attractive to
your target customers.

Remember that the wallet vendors need to demonstrate their wallets’ utility
to consumers. In the early stages of wallet adoption, wallet utility will be
determined in large part by the number of merchant partners the vendors
successfully recruit. These early times offer merchants the greatest amount
of negotiating leverage with wallet vendors.

Note

Merchants will likely be able to align with more than one wallet vendor. If you choose to
participate in wallet programs that follow similar operating standards, you should be able
to successfully sell to customers of multiple wallet services with a minimum of addition-
al programming effort. There are a number of wallet standards, including Secure
Electronic Transactions (SET). But in October 1999, a group of major Internet and
E-Commerce vendors announced their endorsement of the E-Commerce Modeling
Language (ECML) standard for shipping, billing, and payment data interchange (see
Table 20.5). This standard is extremely simple to implement, and E-Commerce sites
that adhere to these standards will be able to receive customer data from any ECML-
compatible wallet, whether it is a client-side or server-side one.

 26 0672318989 ch20 3/30/00 8:14 AM Page 475

TABLE 20.5 Participants in E-Commerce Modeling Language as of January 2000

Company Name URL

American Express http://www.americanexpress.com

AOL http://www.aol.com

Beyond.com http://www.beyond.com

Brodia http://www.brodia.com

Compaq http://www.compaq.com

CyberCash http://www.cybercash.com

Dell http://www.dell.com

Discover http://www.discovercard.com

Fashionmall.com http://www.fashionmall.com

FSTC http://www.fstc.org

IBM http://www.ibm.com

MasterCard http://www.mastercard.com

Microsoft http://www.microsoft.com

Nordstrom http://www.nordstrom.com

Novell http://www.novell.com

Reel.com http://www.reel.com

SETCo http://www.setco.org

Sun Microsystems http://www.sun.com

Trintech http://www.trintech.com

VISA http://www.visa.com

The steps to implement ECML support on your store’s Web site are discussed later in
this chapter.

Your Own Store Wallet
As mentioned previously in the section “Single-Site Wallets,” the Candy Store
Registration page already implements a rudimentary single-site wallet that allows a cus-
tomer to identify himself with a username, to store shipping and payment information,
and to select a password to protect this information. The first version of ECML is simply
a prescription for how to name the input fields of your store’s forms. To enable your reg-
istration page to accept input from any ECML-compliant wallet, simply update the regis-
tration form implemented by register.asp and the checkout form implemented by
doCheckout.asp.

476 Day 20

 26 0672318989 ch20 3/30/00 8:14 AM Page 476

Working with Wallets 477

20

The changes to register.asp (see Listing 20.1) and doCheckout.asp (see Listing 20.2)
are, for the most part, changes to <INPUT> field names and values. These changes are
mandated by the ECML standard, the details of which are described in Table 20.6. The
standard also requires minor changes to the store database’s user table, the most signifi-
cant of which include modifying the type of the credit card type column (user_cctype)
from number to text, adding the fields user_street2 and user_street3, and changing
the representation of the expiration date from one Date/Time field (user_expires) to
three number fields (user_ccexpiredate, user_ccexpiremonth and
user_ccexpireyear). It also requires changes to the addUser and updateUser functions
of storeFuncs.asp (see Listings 20.3 and 20.4).

The changes to register.asp (see Listing 20.1) are, for the most part, changes to
<INPUT> field names and values.

LISTING 20.1 Register.asp Changes for Wallets

1 <%
2 Dim newusername, newpassword, email, street, street2, street3, city,

➥state, zip, cctype
3 Dim ccnumber, ccexpiremonth, ccexpiredate, ccexpireyear, ccname, html
4
5 newusername = TRIM(Request(“newusername”))
6 newpassword = TRIM(Request(“newpassword”))
7 email = TRIM(Request(“Ecom_BillTo_Online_Email”))
8 street = TRIM(Request(“Ecom_BillTo_Postal_Street_Line1”))
9 street2 = TRIM(Request(“Ecom_BillTo_Postal_Street_Line2”))
10 street3 = TRIM(Request(“Ecom_BillTo_Postal_Street_Line3”))
11 city = TRIM(Request(“Ecom_BillTo_Postal_City”))
12 state = TRIM(Request(“Ecom_BillTo_Postal_StateProv”))
13 zip = TRIM(Request(“Ecom_BillTo_Postal_PostCode”))
14 cctype = TRIM(Request(“Ecom_Payment_Card_Type”))
15 ccnumber = TRIM(Request(“Ecom_Payment_Card_Number”))
16 ccexpiremonth = Request(“Ecom_Payment_Card_ExpDate_Month”)
17 ccexpireyear = Request(“Ecom_Payment_Card_ExpDate_Year”)
18 ccexpiredate = Request(“Ecom_Payment_Card_ExpDate_Day”)
19 ccname = TRIM(Request(“Ecom_Payment_Card_Name”))
20 html = TRIM(Request (“html”))
21
22 submitpage = Request.ServerVariables(“SCRIPT_NAME”)
23 %>
24
25 <html>
26 <head><title>Register</title></head>
27 <body bgcolor=”white”>
28

INPUT

continues

 26 0672318989 ch20 3/30/00 8:14 AM Page 477

29 <center>
30 <table width=”500” border=0 cellpadding=4 cellspacing=0>
31 <tr><td bgcolor=”darkgreen”>Login

➥</td></tr>
32 <tr>
33 <td><form method=”post” action=”<%=submitpage%>”>
34 <input name=”login” type=”hidden” value=”1”>
35 <input name=”pid” type=”hidden” value=”<%=productID%>”>
36 Please enter your username and

➥password:
37 <p>username:<input

➥name=”username” size=”20”>
38
password:<input name=”password” size=”20”>
39 <input type=”submit” value=”Login”>
40
41 </form></td>
42 </tr>
43 <tr>
44 <td bgcolor=”darkgreen”>

➥Register</td>
45 </tr>
46 <tr>
47 <td><form method=”post” action=”<%=submitpage%>”>
48 <input name=”register” type=”hidden” value=”1”>
49 <input name=”pid” type=”hidden” value=”<%=productID%>”>
50
51 If you are a new user, please register by completing the

➥following form:
52
53 <p>Login Information:

➥
54
username:
55 <input name=”newusername” size=20 maxlength=20 value=”<%

➥=Server.HTMLEncode(newusername)%>”>
56
password:
57 <input name=”newpassword” size=20 maxlength=20 value=”

➥<%=server.HTMLEncode(newpassword)%>”>
58
email address:
59 <input name=”Ecom_BillTo_Online_Email” size=30 maxlength=75 value

➥=”<%=Server.HTMLEncode(email)%>”>
60
<input name=”html” type=”checkbox” value=”Yes”
61 <% if Server.HTMLEncode(html) = “Yes” then %>checked<% end if %>>
62 I can read E-Mail formatted in HTML.
63
64 <p>Address Information:

➥
65
street:
66 <input name=”Ecom_BillTo_Postal_Street_Line1” size=20 maxlength=50

➥value=”<%=Server.HTMLEncode(street)%>”>

478 Day 20

LISTING 20.1 continued

 26 0672318989 ch20 3/30/00 8:14 AM Page 478

Working with Wallets 479

20

67
street:
68 <input name=”Ecom_BillTo_Postal_Street_Line2” size=20 maxlength=50

➥value=”<%=Server.HTMLEncode(street2)%>”>
69
street:
70 <input name=”Ecom_BillTo_Postal_Street_Line3” size=20 maxlength=50

➥value=”<%=Server.HTMLEncode(street3)%>”>
71
city:
72 <input name=”Ecom_BillTo_Postal_City” size=20 maxlength=50 value=”<%

➥=Server.HTMLEncode(city)%>”>
73
state:
74 <input name=”Ecom_BillTo_Postal_StateProv” size=20 maxlength=2

➥value=”<%=Server.HTMLEncode(state)%>”>
75
zip:
76 <input name=”Ecom_BillTo_Postal_PostCode” size=20 maxlength=20 value

➥=”<%=Server.HTMLEncode(zip)%>”>
77
78 <p>Payment

➥Information:
79
type of credit card:
80 <select name=”Ecom_Payment_Card_Type”>
81 <option value=”VISA” <%=SELECTED(cctype, “VISA”)%> > VISA
82 <option value=”MAST” <%=SELECTED(cctype, “MAST”)%> >MasterCard
83 </select>
84
credit card number:
85 <input name=”Ecom_Payment_Card_Number” size=20 maxlength=20 value

➥=”<%=Server.HTMLEncode(ccnumber)%>”>
86
credit card expires:
87 <select name=”Ecom_Payment_Card_ExpDate_Month”>
88 <option value=1 <%=SELECTED(ccexpiremonth, 1)%>>01
89 <option value=2 <%=SELECTED(ccexpiremonth, 2)%>>02
90 <option value=3 <%=SELECTED(ccexpiremonth, 3)%>>03
91 <option value=4 <%=SELECTED(ccexpiremonth, 4)%>>04
92 <option value=5 <%=SELECTED(ccexpiremonth, 5)%>>05
93 <option value=6 <%=SELECTED(ccexpiremonth, 6)%>>06
94 <option value=7 <%=SELECTED(ccexpiremonth, 7)%>>07
95 <option value=8 <%=SELECTED(ccexpiremonth, 8)%>>08
96 <option value=9 <%=SELECTED(ccexpiremonth, 9)%>>09
97 <option value=10 <%=SELECTED(ccexpiremonth, 10)%>>10
98 <option value=11 <%=SELECTED(ccexpiremonth, 11)%>>11
99 <option value=12 <%=SELECTED(ccexpiremonth, 12)%>>12
100 </select>
101 <select name=”Ecom_Payment_Card_ExpDate_Year”>
102 <option value=2000 <%=SELECTED(ccexpiremonth, 2000)%>>2000
103 <option value=2001 <%=SELECTED(ccexpiremonth, 2001)%>>2001
104 <option value=2002 <%=SELECTED(ccexpiremonth, 2002)%>>2002
105 <option value=2003 <%=SELECTED(ccexpiremonth, 2003)%>>2003
106 <option value=2004 <%=SELECTED(ccexpiremonth, 2004)%>>2004
107 <option value=2005 <%=SELECTED(ccexpiremonth, 2005)%>>2005
108 </select>

continues

 26 0672318989 ch20 3/30/00 8:14 AM Page 479

109
name on credit card:
110 <input name=”Ecom_Payment_Card_Name” size=20 maxlength=30 value

➥=”<%=Server.HTMLEncode(ccname)%>”>
111 <input type=”submit” value=”Register”>
112 <input type=”hidden” name=”Ecom_SchemaVersion” value

➥=”http://www.ecml.org/version/1.0”>
113 <input type=”hidden” name=”Ecom_TransactionComplete”>
114
115 </form></td>
116 </tr>
117 </table>
118 </center>
119 </body>
120 </html>

register.asp is included by four files: account.asp, cart.asp, checkout2.asp,
and sometimes checkout.asp. When register.asp is included, it handles most

of the display and submission processing for these files. When the file is handling a
POST, lines 2–20 read the information submitted from the form in Listing 20.1. Line 22
reads the context of the running page, so that when the user submits the form it is sub-
mitted to the correct page (line 33 and line 47).

480 Day 20

LISTING 20.1 continued

ANALYSIS

register.asp is included by checkout.asp when the customer tries to buy
something but has not yet logged in.

Note

Lines 33–41 define a form that enables users to log in. Line 34 is a hidden field that indi-
cates that the form is being used to login customers. Line 35 is a hidden field that
remembers the product ID if the registration page is displayed because the user is trying
to buy a product but has not yet logged in.

Lines 47–115 define the registration form. Line 48 is a hidden field that identifies that
the action to be performed on the post is a registration, and if the user is registering as
the result of an attempted product purchase, line 49 remembers the product ID selected.
Lines 55–113 define input fields using ECML standard field names. Lines 80–83 define
a selection field that enables the customer to choose between VISA and MasterCard as a
credit card type, and submits the result using the ECML standard values. Lines 87–100
define a selection field that enables a customer to specify the month of expiration of his
or her credit card, and lines 101–108 define a selection field that enables specification of
the year of expiration. Note that the month and year are both specified as numbers, and
that the year is specified with four digits. Lines 112 and 113 define hidden fields that are
required by the ECML standard.

 26 0672318989 ch20 3/30/00 8:14 AM Page 480

Working with Wallets 481

20

You will also change <INPUT> field names and values in doCheckout.asp (see Listing
20.2).

LISTING 20.2 doCheckout.asp Changes for Wallets

1 <%
2 ‘ Retrieve Registration Information
3 sqlString = “SELECT * FROM users WHERE user_id=” & userID
4 SET RS = Con.Execute(sqlString)
5 IF NOT RS.EOF THEN
6 street = RS(“user_street”)
7 street2 = RS(“user_street2”)
8 street3 = RS(“user_street3”)
9 city = RS(“user_city”)
10 state = RS(“user_state”)
11 zip = RS(“user_zip”)
12 cctype = RS(“user_cctype”)
13 ccnumber = RS(“user_ccnumber”)
14 ccexpiremonth = RS(“user_ccexpiremonth”)
15 ccexpireyear = RS(“user_ccexpireyear”)
16 ccname = RS(“user_ccname”)
17 END IF
18
19 ‘ Hide Credit Card Number
20 ccnumber = LEFT(ccnumber, 2) & “************” & RIGHT(ccnumber, 2)
21 %>
22 <html>
23 <head><title>Checkout</title></head>
24 <body>
25 <center>
26 <table border=1 width=500 cellpadding=5 cellspacing=0>
27 <tr><td align=”center” bgcolor=”lightgreen”>Confirm Order</td></tr>
28 <tr><td>
29 Your order will be sent to the following address and charged to the

➥following credit card.
30 Please review your address and payment information
31 and click Confirm Order to finish placing your order.
32 <form method=”post” action=”checkout2.asp”>
33 <input name=”username” type=”hidden” value=”<%=username%>”>
34 <input name=”password” type=”hidden” value=”<%=password%>”>
35 <p>Address

➥Information:
36 <p>
street:
37 <input name=”Ecom_BillTo_Postal_Street_Line1” size=20 maxlength=50

➥value=”<%=Server.HTMLEncode(street)%>”>
38
street:
39 <input name=”Ecom_BillTo_Postal_Street_Line2” size=20 maxlength=50
40 <% IF street2 <> “” THEN %>
41 value=”<%=Server.HTMLEncode(street2)%>”

INPUT

continues

 26 0672318989 ch20 3/30/00 8:14 AM Page 481

42 <% END IF %> >
43

44 street:
45 <input name=”Ecom_BillTo_Postal_Street_Line3” size=20 maxlength=50
46 <% IF street3 <> “” THEN %>
47 value=”<%=Server.HTMLEncode(street3)%>”
48 <% END IF %> >
49
city:
50 <input name=”Ecom_BillTo_Postal_City” size=20 maxlength=50 value

➥=”<%=Server.HTMLEncode(city)%>”>
51
state:
52 <input name=”Ecom_BillTo_Postal_StateProv” size=20 maxlength

➥=2 value=”<%=Server.HTMLEncode(state)%>”>
53
zip:
54 <input name=”Ecom_BillTo_Postal_PostCode” size=20 maxlength

➥=20 value=”<%=Server.HTMLEncode(zip)%>”>
55
56 <p>Payment

➥Information:
57
type of credit card:
58 <select name=”Ecom_Payment_Card_Type”>
59 <option value=”VISA”<%=SELECTED(cctype, “VISA”)%>> VISA
60 <option value=”MAST”<%=SELECTED(cctype, “MAST”)%> >MasterCard
61 </select>
62
credit card number:
63 <input name=”Ecom_Payment_Card_Number” size=20 maxlength=20 value

➥=”<%=Server.HTMLEncode(ccnumber)%>”>
64
credit card expires:
65 <select name=”Ecom_Payment_Card_ExpDate_Month”>
66 <option value=1 <%=SELECTED(ccexpiremonth, 1)%>>01
67 <option value=2 <%=SELECTED(ccexpiremonth, 2)%>>02
68 <option value=3 <%=SELECTED(ccexpiremonth, 3)%>>03
69 <option value=4 <%=SELECTED(ccexpiremonth, 4)%>>04
70 <option value=5 <%=SELECTED(ccexpiremonth, 5)%>>05
71 <option value=6 <%=SELECTED(ccexpiremonth, 6)%>>06
72 <option value=7 <%=SELECTED(ccexpiremonth, 7)%>>07
73 <option value=8 <%=SELECTED(ccexpiremonth, 8)%>>08
74 <option value=9 <%=SELECTED(ccexpiremonth, 9)%>>09
75 <option value=10 <%=SELECTED(ccexpiremonth, 10)%>>10
76 <option value=11 <%=SELECTED(ccexpiremonth, 11)%>>11
77 <option value=12 <%=SELECTED(ccexpiremonth, 12)%>>12
78 </select>
79 <select name=”Ecom_Payment_Card_ExpDate_Year”>
80 <option value=2000 <%=SELECTED(ccexpireyear, 2000)%>>2000
81 <option value=2001 <%=SELECTED(ccexpireyear, 2001)%>>2001
82 <option value=2002 <%=SELECTED(ccexpireyear, 2002)%>>2002
83 <option value=2003 <%=SELECTED(ccexpireyear, 2003)%>>2003
84 <option value=2004 <%=SELECTED(ccexpireyear, 2004)%>>2004
85 <option value=2005 <%=SELECTED(ccexpireyear, 2005)%>>2005

482 Day 20

LISTING 20.2 continued

 26 0672318989 ch20 3/30/00 8:14 AM Page 482

Working with Wallets 483

20

86 </select>
87
name on credit card:
88 <input name=”Ecom_Payment_Card_Name” size=20 maxlength=20 value

➥=”<%=Server.HTMLEncode(ccname)%>”>
89 <p><input type=”submit” value=”Confirm Order”>
90 <input type=”hidden” name=”Ecom_SchemaVersion” value=

➥”http://www.ecml.org/version/1.0”>
91 <input type=”hidden” name=”Ecom_TransactionComplete”>
92
93 </form>
94 </td></tr>
95 </table>
96 </center>
97 </body>
98 </html>

doCheckout.asp is included by checkout.asp when a customer buys something
and has already logged in. When included, it handles the display processing for

that checkout.asp. It assumes that the customer’s user ID is set into the variable userID.
Lines 3–17 read the customer’s wallet information from the users table of the store
database for later display and use. Before displaying the credit card number, line 20
obscures it.

Lines 32–93 define a form that enables the customer to verify his payment and shipping
information before completing an order. The fields in the form are named according to
the ECML standard. Because the second and third lines of the address are optional, lines
40–42 and 46–48 handle the case when they are not specified in the database. Lines
58–61 define a selection field that enables the customer to verify or change the choice of
VISA or MasterCard as the purchase credit card type, and submits the result using the
ECML standard values. Lines 65–78 define a selection field that enables a customer to
verify or change the month of expiration of his or her credit card, and lines 79–86 define
a selection field that enables verification or change of the year of expiration. Note that
the month and year are both specified as numbers, and that the year is specified with four
digits. Lines 90 and 91 define hidden fields that are required by the ECML standard.

These changes are mandated by the ECML standard, the details of which are described
in Table 20.6. The standard also requires minor changes to the store database’s user
table, the most significant of which include

• Modifying the type of the credit card type column (user_cctype) from number to
text

• Adding the fields user_street2 and user_street3

• Changing the representation of the expiration date from one Date/Time field
(user_expires) to three number fields (user_ccexpiredate,
user_ccepxiremonth, and user_ccexpireyear)

ANALYSIS

 26 0672318989 ch20 3/30/00 8:14 AM Page 483

TABLE 20.6 ECML Fields

Field Name Explanation Minimum Size1

Ecom_ShipTo_Postal_Name_Prefix Title (Mr., Mrs., and 4

so on) for Ship To
address.

Ecom_ShipTo_Postal_Name_First First name for 15

Ship To address.

Ecom_ShipTo_Postal_Name_Middle Middle name or 15

initial for Ship
To address.

Ecom_ShipTo_Postal_Name_Last Last name for 15

Ship To address.

Ecom_ShipTo_Postal_Name_Suffix Suffix (PhD, 4

III, and so on) for
Ship To address.

Ecom_ShipTo_Postal_Street_Line1 First line of 20

Ship To address.

Ecom_ShipTo_Postal_Street_Line2 Second line of 20

Ship To address.

Ecom_ShipTo_Postal_Street_Line3 Third line of 20

Ship To address.

Ecom_ShipTo_Postal_City City for Ship 22

To address.

Ecom_ShipTo_Postal_StateProv State or province 2

abbreviation for
Ship To address.

Ecom_ShipTo_Postal_PostCode Postal or zip code 14

for Ship To address.

Ecom_ShipTo_Postal_CountryCode Two letter country 2

code for Ship To
address (for example,
US, CA, MX).

Ecom_ShipTo_Telecom_Phone_Number Telephone number 10

for Ship To address.

Ecom_ShipTo_Online_Email Email address 40

for Ship To address.

Ecom_BillTo_Postal_Name_Prefix Title (Mr., 4

Mrs., and so on) for
Bill To address.

484 Day 20

 26 0672318989 ch20 3/30/00 8:14 AM Page 484

Working with Wallets 485

20

Ecom_BillTo_Postal_Name_First First name for 15

Bill To address.

Ecom_BillTo_Postal_Name_Middle Middle name or initial 15

for Bill To address.

Ecom_BillTo_Postal_Name_Last Last name for 15

Bill To address.

Ecom_BillTo_Postal_Name_Suffix Suffix (PhD, 4

III, and so on) for
Bill To address.

Ecom_BillTo_Postal_Street_Line1 First line of 20

Bill To address.

Ecom_BillTo_Postal_Street_Line2 Second line of 20

Bill To address.

Ecom_BillTo_Postal_Street_Line3 Third line of 20

Bill To address.

Ecom_BillTo_Postal_City City for Bill To address. 22

Ecom_BillTo_Postal_StateProv State or province 2

abbreviation for
Bill To address.

Ecom_BillTo_Postal_PostCode Postal or zip code 14

for Bill To address.

Ecom_BillTo_Postal_CountryCode Two letter country 2

code for Bill To
address (for example,
US, CA, MX).

Ecom_BillTo_Telecom_Phone_Number Telephone number 10

for Bill To address.

Ecom_BillTo_Online_Email Email address 40

for Bill To address.

Ecom_ReceiptTo_Postal_Name_Prefix Title (Mr., Mrs., 4

and so on) for
Receipt To address.

Ecom_ReceiptTo_Postal_Name_First First name for Receipt 15

To address.

Ecom_ReceiptTo_Postal_Name_Middle Middle name or 15

initial for Receipt To
address.

Field Name Explanation Minimum Size1

continues

 26 0672318989 ch20 3/30/00 8:14 AM Page 485

Ecom_ReceiptTo_Postal_Name_Last Last name for 15

Receipt To address.

Ecom_ReceiptTo_Postal_Name_Suffix Suffix (PhD, 4

III, and so on) for
Receipt To address.

Ecom_ReceiptTo_Postal_Street_Line1 First line of 20

Receipt To address.

Ecom_ReceiptTo_Postal_Street_Line2 Second line of 20

Receipt To address.

Ecom_ReceiptTo_Postal_Street_Line3 Third line of 20

Receipt To address.

Ecom_ReceiptTo_Postal_City City for Receipt To 22

address.

Ecom_ReceiptTo_Postal_StateProv State or province 2

abbreviation for
Receipt To address.

Ecom_ReceiptTo_Postal_PostCode Postal or zip code for 14

Receipt To address.

Ecom_ReceiptTo_Postal_CountryCode Two letter country 2

code for Receipt To
address (for example,
US, CA, MX).

Ecom_ReceiptTo_Telecom_Phone_Number Telephone number 10

for Receipt To address.

Ecom_ReceiptTo_Online_Email Email address 40

for Receipt To address.

Ecom_Payment_Card_Name Name on credit 30

card used for payment.

Ecom_Payment_Card_Type First four letters of the 4

card association name
(for example, AMER,
JCB, MAST).

Ecom_Payment_Card_Number The number on 19

the credit card.

486 Day 20

TABLE 20.6 continued

Field Name Explanation Minimum Size1

 26 0672318989 ch20 3/30/00 8:14 AM Page 486

Working with Wallets 487

20

Ecom_Payment_Card_Verification Any verification 4

number defined
by the card issuing
organization.

Ecom_Payment_Card_ExpDate_Day Expiration date 2

(day of month).

Ecom_Payment_Card_ExpDate_Month Expiration month. 2

Ecom_Payment_Card_ExpDate_Year Expiration year 4

(always four digits).

Ecom_Payment_Card_Protocol The transmission 20

protocols available.
Currently defined
protocols are none
(field fill only), set
(using a set client-side
wallet), and setcert
(using a set client-side
wallet with a certificate).

Ecom_ConsumerOrderID A number the merchant 20

assigned to the order.

Ecom_SchemaVersion Should be http:// 30

www.ecml.org/version/

1.0. Usually contained
in a hidden field, and
must appear after the
<INPUT> tags for any
Ecom_field except
Ecom_Transaction

Complete.

Ecom_TransactionComplete Valueless <INPUT>
tag that indicates the
last page of a
multi-page form
set. Usually hidden.
If on a page, must be
the last <Ecom>
tag on that page.

1. Minimum Size is not the minimum database size, but simply the minimum field size. You should
be able to handle larger fields in your databases.

 26 0672318989 ch20 3/30/00 8:14 AM Page 487

ECML standard requires changes to the addUser functions of storeFuncs.asp (see
Listing 20.3).

LISTING 20.3 New addUser Function for storeFuncs.asp

1 SUB addUser
2 ‘ Get Registration Fields
3 newusername = TRIM(Request(“newusername”))
4 newpassword = TRIM(Request(“newpassword”))
5 email = TRIM(Request(“Ecom_BillTo_Online_Email”))
6 street = TRIM(Request(“Ecom_BillTo_Postal_Street_Line1”))
7 street2 = TRIM(Request(“Ecom_BillTo_Postal_Street_Line2”))
8 street3 = TRIM(Request(“Ecom_BillTo_Postal_Street_Line3”))
9 city = TRIM(Request(“Ecom_BillTo_Postal_City”))
10 state = TRIM(Request(“Ecom_BillTo_Postal_StateProv”))
11 zip = TRIM(Request(“Ecom_BillTo_Postal_PostCode”))
12 cctype = TRIM(Request(“Ecom_Payment_Card_Type”))
13 ccnumber = TRIM(Request(“Ecom_Payment_Card_Number”))
14 ccexpiremonth = Request(“Ecom_Payment_Card_ExpDate_Month”)
15 ccexpireyear = Request(“Ecom_Payment_Card_ExpDate_Year”)
16 ccname = TRIM(Request(“Ecom_Payment_Card_Name”))
17 html = TRIM(Request (“html”))
18
19 if html = “Yes” then
20 html = “1”
21 else
22 html = “0”
23 end if
24
25 ‘ Check For Required Fields
26 backpage = Request.ServerVariables(“SCRIPT_NAME”)
27 IF newusername = “” THEN
28 errorForm “You must enter a username.”, backpage
29 END IF
30 IF newpassword = “” THEN
31 errorForm “You must enter a password.”, backpage
32 END IF
33 IF email = “” THEN
34 errorForm “You must enter your email address.”, backpage
35 END IF
36 IF street = “” THEN
37 errorForm “You must enter your street address.”, backpage
38 END IF
39 IF city = “” THEN
40 errorForm “You must enter your city.”, backpage
41 END IF
42 IF state = “” THEN
43 errorForm “You must enter your state.”, backpage
44 END IF
45 IF zip = “” THEN
46 errorForm “You must enter your zip code.”, backpage
47 END IF

488 Day 20

INPUT

 26 0672318989 ch20 3/30/00 8:14 AM Page 488

Working with Wallets 489

20

48 IF ccnumber = “” THEN
49 errorForm “You must enter your credit card number.”, backpage
50 END IF
51 IF ccname = “” THEN
52 errorForm “You must enter the name that appears on your credit card.”,
➥ backpage
53 END IF
54
55 ‘ Check for Necessary Field Values
56 IF invalidEmail(email) THEN
57 errorForm “You did not enter a valid email address”, backpage
58 END IF
59 IF NOT validCCNumber(ccnumber) THEN
60 errorForm “You did not enter a valid credit card number”, backpage
61 END IF
62
63 ‘ Check whether username already registered
64 IF alreadyUser(newusername) THEN
65 errorForm “Please choose a different username.”, backpage
66 END IF
67
68 ‘ Add New User to Database
69 sqlString = “INSERT INTO users (“user_username, user_password,

➥ user_email, user_street, “ &_
70 “user_city, user_state, user_zip, user_ccnumber, user_cctype,

➥ user_ccexpiremonth,” &_
71 “user_ccexpireyear, user_ccname, user_HTML”) VALUES (“ &_
72 “ ‘“ & fixQuotes(newusername) & “‘, “ &_
73 “ ‘“ & fixQuotes(newpassword) & “‘, “ &_
74 “ ‘“ & fixQuotes(email) & “‘, “ &_
75 “ ‘“ & fixQuotes(street) & “‘, “ &_
76 “ ‘“ & fixQuotes(city) & “‘, “ &_
77 “ ‘“ & fixQuotes(state) & “‘, “ &_
78 “ ‘“ & fixQuotes(zip) & “‘, “ &_
79 “ ‘“ & fixQuotes(ccnumber) & “‘, “ &_
80 “ ‘“ & cctype & “‘, “ &_
81 “ ‘“ & ccexpiremonth & “‘, “ &_
82 “ ‘“ & ccexpireyear & “‘, “ &_
83 “ ‘“ & fixQuotes(ccname) & “‘, “ &_
84 “ “ & html & “)”
85
86 Con.Execute sqlString
87 CheckError
88
89 ‘ Use the new username and password
90 username = newusername
91 password = newpassword
92
93 ‘ Add Cookies
94 addCookie “username”, username
95 addCookie “password”, password
96 END SUB

 26 0672318989 ch20 3/30/00 8:14 AM Page 489

The addUser function assumes that it is being called as part of POST processing
for a register.asp submission. The function reads the new customer’s informa-

tion, most of which is submitted with ECML-compliant field names, into local variables,
trimming leading and trailing spaces and performing type conversions where appropriate
(lines 3–23). Line 26 stores the name of the file that included register.asp so that, in
case of an error in the following lines, the page can be redisplayed. Lines 27–61 verify
that all required information is filled in, and lines 64–66 verify that someone else hasn’t
registered with the same username. When the checks are complete, lines 69–86 insert the
new user into the database, and lines 90–95 set a cookie so that the user doesn’t have to
log in again.

The ECML standards also require changes to the updateUser functions of
storeFuncs.asp (see Listing 20.4).

LISTING 20.4 New updateUser Function for storeFuncs.asp

1 SUB updateUser
2 ‘ Get Registration Fields
3 street = TRIM(Request(“Ecom_BillTo_Postal_Street_Line1”))
4 street2 = TRIM(Request(“Ecom_BillTo_Postal_Street_Line2”))
5 street3 = TRIM(Request(“Ecom_BillTo_Postal_Street_Line3”))
6 city = TRIM(Request(“Ecom_BillTo_Postal_City”))
7 state = TRIM(Request(“Ecom_BillTo_Postal_StateProv”))
8 zip = TRIM(Request(“Ecom_BillTo_Postal_PostCode”))
9 cctype = TRIM(Request(“Ecom_Payment_Card_Type”))
10 ccnumber = TRIM(Request(“Ecom_Payment_Card_Number”))
11 ccexpiremonth = Request(“Ecom_Payment_Card_ExpDate_Month”)
12 ccexpireyear = Request(“Ecom_Payment_Card_ExpDate_Year”)
13 ccname = TRIM(Request(“Ecom_Payment_Card_Name”))
14
15 ‘ Check For Required Fields
16 backpage = “checkout.asp”
17 IF street = “” THEN
18 errorForm “You must enter your street address.”, backpage
19 END IF
20 IF city = “” THEN
21 errorForm “You must enter your city.”, backpage
22 END IF
23 IF state = “” THEN
24 errorForm “You must enter your state.”, backpage
25 END IF
26 IF zip = “” THEN
27 errorForm “You must enter your zip code.”, backpage
28 END IF
29 IF ccnumber = “” THEN
30 errorForm “You must enter your credit card number.”, backpage
31 END IF

490 Day 20

ANALYSIS

INPUT

 26 0672318989 ch20 3/30/00 8:14 AM Page 490

Working with Wallets 491

20

32 IF ccname = “” THEN
33 errorForm “You must enter the name that appears on your credit card.”,

➥backpage
34 END IF
35
36 ‘ Check for Necessary Field Values
37 IF INSTR(ccnumber, “*”) = 0 THEN
38 IF NOT validCCNumber(ccnumber) THEN
39 errorForm “You did not enter a valid credit card number”, backpage
40 ELSE
41 ccnumber = “‘“ & ccnumber & “‘“
42 END IF
43 ELSE
44 ccnumber = “user_ccnumber”
45 END IF
46
47 ‘ Update user information in the database
48 sqlString = “UPDATE users SET “ &_
49 “user_street=’” & fixQuotes(street) & “‘, “ &_
50 “user_city=’” & fixQuotes(city) & “‘,” &_
51 “user_state=’” & fixQuotes(state) & “‘,” &_
52 “user_zip=’” & fixQuotes(zip) & “‘,” &_
53 “user_ccnumber=” & ccnumber & “, “ &_
54 “user_cctype=’” & cctype & “‘, “ &_
55 “user_ccexpiremonth=’” & ccexpiremonth & “‘,” &_
56 “user_ccexpireyear=’” & ccexpireyear & “‘,” &_
57 “user_ccname=’” & fixQuotes(ccname) & “‘ “ &_
58 “WHERE user_id=” & userID
59
60 Con.Execute sqlString
61 END SUB

The updateUser function assumes that it is being called as part of POST processing
for a doCheckout.asp submission. The function reads the customer’s information,

which is submitted with ECML-compliant field names, into local variables, trimming lead-
ing and trailing spaces and performing type conversions where appropriate (lines 3–13).
Line 16 assumes that doCheckout.asp has been included by checkout.asp, and stores that
page’s name so that, in case of an error in the following lines, it can be redisplayed. Lines
17–45 verify that all required information is filled in. If the customer changed the obscured
credit card number (line 37), the function validates the entered number (line 38), and, if the
number is valid, sets ccnumber to a SQL fragment that will be used later to update the data-
base with the new credit card number (line 41). If the customer didn’t change the credit
card number, then the function sets ccnumber to a SQL fragment that leaves the contents of
the credit card column unchanged when the rest of the customer’s data is updated (line 44).
Once the checks are complete, lines 48–60 update the customer’s wallet information in the
database. Of special note is line 53, which updates the customer’s credit card number using
the SQL fragment from either line 41 or line 44.

ANALYSIS

 26 0672318989 ch20 3/30/00 8:14 AM Page 491

Accepting Information from Wallets
In principle, the changes you made in the previous section to your own store wallet
would be enough to enable users to start using wallets on your site. Unfortunately,
although ECML seems like a simple standard, invariably there are slight differences in
standards implementation between vendors. Describing the details of specific wallet
implementations is beyond the scope of this book (and, indeed, many wallet vendors
treat their wallet implementations as confidential information). However, you should plan
to create a separate page, similar to the register.asp and doCheckout.asp, for each
wallet that you intend to support. You should contact your preferred wallet vendor or
vendors for other implementation details after you have made your selection.

492 Day 20

The other customer information is safe to update “as-is,” but because
doCheckout.asp obscures the customer’s credit card number, if lines 37–45
didn’t check the credit card number, the customer’s credit card number
would be corrupted after any transaction in which the customer used the
credit card in her wallet!

Note

To maximize database scalability for a production system, you wouldn’t
want to perform a database update unless the customer had actually
changed some wallet information.

Caution

Except for the Ecom_SchemaVersion and Ecom_TransactionComplete tags, the
ECML specification does not require the presence of any <INPUT> tags, nor
does it specify an order for tag presentation. This means that wallet soft-
ware might not provide information about a customer that you require. In
addition, wallet customers might come from countries that you cannot ship
to or might hold a credit card that you cannot process. Therefore, you
should be sure to carefully validate all information presented to your sub-
mission forms by a wallet.

Caution

Summary
In today’s lesson, you learned about the difficulties consumers have had with online pur-
chasing, and the kinds of electronic wallets that are being developed in an attempt to
make Web stores easier and more enjoyable for Internet consumers to use. You also

 26 0672318989 ch20 3/30/00 8:15 AM Page 492

Working with Wallets 493

20

learned about the differences between client-side and server-side wallets, and about the
ECML standard that facilitates Web site interoperability with multiple wallets. Finally,
you learned how to modify the Candy Store example’s rudimentary wallet to be ready for
interaction with ECML-compliant wallets.

Q&A
Q The code in this chapter stores the customer’s credit card number in plain

text. Is this safe?

A It is never safe to store sensitive information like credit card numbers and pass-
words in plain-text databases. If your store database is ever compromised, you
might find your customers’ credit card numbers posted on a Web site. This actually
happened to at least one electronic commerce site in early 2000.

One possible solution is to use encryption to scramble each customer’s sensitive
information. Another is to work with a preferred wallet vendor and depend on the
vendor to store the credit card information. By delegating credit card number stor-
age to the wallet vendor, you can destroy the credit card number after the cus-
tomer’s order has been processed, and therefore mitigate some of your security
risk.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

Quiz
1. What is the difference between a client-side wallet and a server-side wallet?

2. What is the difference between a SmartCard and a wallet?

3. What is the ECML standard?

Exercises
1. Some credit cards specify an expiration day as well as a month and year. Other

cards don’t specify any expiration date. Extend the code in Listings 20.1–20.4 to
handle all these cases.

2. Enhance updateUser in Listing 20.4 so that it only performs a database transaction
when a piece of information about the user has changed. (Hint: You might have to
change more files than just updateUser.)

 26 0672318989 ch20 3/30/00 8:15 AM Page 493

 26 0672318989 ch20 3/30/00 8:15 AM Page 494

DAY 21

WEEK 3

Promoting Your Site and
Managing Banner
Advertising

“My store is open. Now, how do I make money?”

If you have ever run a physical store, you will have asked yourself that question
dozens of times before. When you open a store—after all the hard work of ren-
ovating, painting, ordering, stocking, and managing the thousands of other
details that come with a store—you nearly invariably have the same, opening
day experience: No customers, no cash flow.

As you have been learning all this week, there is much about Web commerce
that is like physical commerce, and this is another similarity. What makes Web
commerce appear more difficult is that on the Web, there is no sidewalk traffic.
What does a small Web business owner do? First, drive traffic. Second, maxi-
mize revenue.

 27 0672318989 ch21 3/30/00 8:25 AM Page 495

Today, you will learn

• Ways to make yourself attractive to search engines

• How to join a Web ring

• How to market your site with free banner ads

• How to buy banner ads

• How to encourage your customers to return with reward programs

• How to sell banner ads, and other ways to bring in revenues that aren’t sales

Search Engines
When you think about how you find information on the Web, you probably think about
search engines. According to the Georgia Tech Graphic, Visualization, and Usability
Center, search engines are one of the most common ways people find information on the
Web, second only to links from other Web pages. This means that, if you want people to
find your E-Commerce site, you need to get it into search engines.

How Do They Work?
Search engines are actually the product of a combination of two tasks: “spidering” and
“indexing.” First, the search engine must try to find every page on the Web. This is no
mean feat, as the Web grows and changes dramatically every month, and there is no cen-
tral list of all the pages. A search engine’s Web spider tries to build that central list by
periodically requesting every Web page with every URL it has ever seen. If there is no
longer a Web page at a URL, the spider deletes the URL from its list. If there is a Web
page, the spider scans the page for links to other pages and, if it finds any, adds those
URLs to its central list.

When the spider finds a URL, the search engine’s indexer goes to work. The indexer
scans each page for key words and stores them along with the page’s URL and a summa-
ry or abstract of the page. Thus, after a page has been spidered and indexed, it can be
found.

Nearly all the search engines automate the spidering process to some degree. Two major
kinds of search engines handle the indexing process: Web directories and Web indices.
Web directories, such as Yahoo! and the Open Directory Project, use people to place Web
sites into a search structure. Web indices use software to perform the same function.

What’s the Best Way to Get Listed?
Now that you know, in general, how the search engines work, it probably seems that get-
ting a site listed on a search engine should be very straightforward—just get your store’s

496 Day 21

 27 0672318989 ch21 3/30/00 8:25 AM Page 496

Promoting Your Site and Managing Banner Advertising 497

21

main URL onto the Web spider’s central list. Because search engines actually want to
index as many sites as they can, each of them makes it easy to do just that by providing
an Add URL link. Problem solved, right?

Unfortunately, no. Getting your URL onto a search engine spider’s central list is neces-
sary, but not sufficient, to meet your E-Commerce goals. To see why, try searching for
“Candy Store” using a search engine. As of the date this book was written, searching for
“Candy Store” on Google matched 107,000 pages (see Figure 21.1)! Imagine if your
candy store wound up as site number 105,523. Would anyone ever find it?

FIGURE 21.1
The results of search-
ing for “Candy Store”
on Google.

Suffice it to say that getting into a search engine’s results for appropriate search phrases
is only the smallest part of the battle to attract customers through search engines. If you
want to have any hope of customers actually finding your store by searching for the
products or services you sell, your page must not simply appear in the results list—it
must appear as close to the top of the results list as possible. Getting your site to appear
at the top of a search engine’s results page is part science, part art, and part plain hard
work. In general, there are three things to remember:

Not only were there 107,000 pages that matched “Candy Store” on Google,
but site number two, “Mark’s Candy Store,” does not actually have anything
to do with candy (The site lists DOS programming utilities).

Note

 27 0672318989 ch21 3/30/00 8:25 AM Page 497

• Shorter is better than longer.

• More is better than fewer.

• A few search engines handle most of the searches.

498 Day 21

The Search Engine Arms Race

In this section of the chapter, most of the discussion centers on the “more honest” things
you can do to get your site noticed. There’s a strong temptation to do even more to get
one’s site noticed, and an entire industry has developed around that temptation.
Consultants who specialize in getting Web sites ranked higher in search engine results
pages call themselves “optimization specialists.”

Optimization specialists spend countless hours designing pages that appear higher in
search engines result pages. The result is that pages “tuned” by optimization consultants
sometimes appear higher in a search engine result page than untuned pages, even
though the tuned pages are less relevant to the search phrase, and less useful to the user.
The most egregious examples of this are the “adult” sites, which usually try to get their
pages indexed toward the top of any search, whether or not it is adult-oriented.

You might have already experienced the results of an optimization consultant’s work
when performing one of your own searches. If you have, you know how frustrating that
can be to a search engine’s user, and how much less useful search engines seem as a
result. It is for this reason that the search engine companies have a less flattering term
for optimization consultants—”spammers”—and that companies like Inktomi and Lycos
have engineering teams dedicated to countering the work of the consultants. These engi-
neers perform search after search, examine the results, and adjust the indexing and
searching programs to return more useful results and to work around spammer tricks.

All of this probably seems a lot like an arms race, and in a lot of ways, it is. Each side
spends money and time trying to defeat the other. Before choosing to join this arms race,
it is important for the small business owner to learn the lesson of the Cold War—only a
true superpower can afford to spend its resources on an arms race. For the rest of us, it is
best to concentrate on getting sites noticed without the kinds of tricks that the search
engine companies will eventually learn to defeat.

Shorter Is Better Than Longer
If all a search engine did was index the words on a page, it wouldn’t be able to order the
results of a search in a meaningful way. In addition to indexing, search engines calculate
scores, or relevance metrics, for each page. These scores are computed with respect to
common search phrases. When you search for one of these phrases, the search results are
sorted by relevance metrics.

Search engine companies think of the formulas that they use to compute these relevance
metrics as the real value they add to searches, and so they guard the formulas carefully.

 27 0672318989 ch21 3/30/00 8:25 AM Page 498

Promoting Your Site and Managing Banner Advertising 499

21

In general, though, search engines first try to determine whether any part of a page is rel-
evant to a particular search phrase. Search engines consider a page to be relevant to a
search phrase if some or all of the phrase appears in the title, the keywords, the descrip-
tion, or, of course, the body, of the page.

As you already know, the title of a Web page is the text between the
<TITLE> and </TITLE> tags. Most browsers place the text inside these tags in
the browser title bar window when displaying a page.

In addition to the <TITLE> tag, there are two <META>tags that exist primarily
for indexers: the description tag and the keywords tag. These tags take the
formats

<META NAME=”description” content=”this is the description of the page”>

and

<META NAME=”keywords” content=”these are keywords for this page”>

In addition to using the text marked by these tags for indexing, nearly every
search engine uses the text inside the <TITLE></TITLE> tags as the text for
the link to your site. The search engines also commonly uses the text in the
content property of the meta description tag as the abstract—that is, the
short description of the site presented below the title in a search results
page (see the abstracts in Figure 21.1).

The moral? Keep your marketing hat on when you write your page titles
and descriptions.

Note

When a search engine determines that a page is relevant to a search phrase, it uses its rel-
evance formulas to determine how much of the page is on the topic and, conversely, how
much of the page is not on the topic. Pages get a higher relevance metric with respect to
a search phrase when:

• The search phrase appears in one or more of the hot areas of the page.

Most search engines consider the hot areas to be the page title, the page
description and keywords, and the first few paragraphs of the body of the
page.

Note

• The search phrase appears in the document more than once. Up to a point, more
phrase appearances mean a higher score.

• There is less overall text in the document, especially in the hot areas of the page.

 27 0672318989 ch21 3/30/00 8:25 AM Page 499

More Is Better Than Fewer
If it is important to reduce the amount of off-topic text in a page in order to make it score
higher in a search, you might wonder how to make your site appear in more than one
search result set. The optimization consultants get around this by creating a separate page
that is optimized for each search phrase. For example, if you want your site to come up
high on the search results for “candy store”, “chocolate bar”, and “bubble gum”, make
three separate pages. Give each page a title and meta tags that are optimized to score
high for one of these phrases.

A Few Search Engines Handle Most of the Searches
After the pages are created, you need to let the search engines know about them.
Services exist that will submit your site to hundreds of search engines for a fee, but most
of the searches are done on a small number of search engines. In fact, according to
MediaMetrix, a ratings service for Web pages, the most popular search engine handles
more than 10 times as many searches as 15th most popular search engine. It is easy
enough for you to submit your site to the few engines that really matter. A list of popular
search engines, along with the URLs to their respective “Add a URL” pages, are listed in
Table 21.1.

TABLE 21.1 Twenty-five Popular Search Engines and Their “Add a URL” Pages

Search Engine Add a URL Page

About.com Find the appropriate category for your site at www.about.com and
email the page’s guide

AltaVista www.altavista.com/cgi-bin/query?pg=addurl

Britannica www.britannica.com/bcom/recommend/

DirectHit www.directhit.com/util/addurl.html

Excite www.excite.com/info/add_url

Go Network www.go.com/AddUrl?pg=SubmitUrl.html

Google www.google.com/addurl.html

Goto.com goto.com/d/about/advertisers/

HotBot hotbot.lycos.com/addurl.asp

Jump City www.jumpcity.com/start.shtml

500 Day 21

Because the relevance metric is an attempt to compute a ratio of how much
of the page is “on-topic” versus how much is “off-topic”, it is just as impor-
tant to make a document appear less off-topic as it is to make it seem more
on-topic.

Note

 27 0672318989 ch21 3/30/00 8:25 AM Page 500

Promoting Your Site and Managing Banner Advertising 501

21

LookSmart www.looksmart.com/aboutus/partners/ subsite2.html

Lycos www.lycos.com/addasite.html

Magellan magellan.excite.com/info/add_url

MSN Search search.msn.com/addurl.asp

National Directory www.nationaldirectory.com/addurl.html

Netscape home.netscape.com/netcenter/smallbusiness/

onlineessentials/addsite.html

Northern Light www.northernlight.com/docs/regurl_help.html

Open Directory (also AOL) dmoz.org/add.html

SearchIt www.searchit.com/addurl.htm

Snap home.snap.com/LMOID/resource/0,566,-1077,00.html

WebCrawler www.webcrawler.com/info/add_url

WhatsNu www.whatsnu.com/cgi-bin/addlink.cgi

Whatuseek www.whatuseek.com/addurl-tableset.shtml

Worldlight www.worldlight.com/addsite.html

or
worldlight.com/freesubmit

Yahoo! docs.yahoo.com/info/suggest

Figure 21.2 shows Excite’s version of this sort of page.

Search Engine Add a URL Page

FIGURE 21.2
Adding a URL to
Excite.

 27 0672318989 ch21 3/30/00 8:25 AM Page 501

Although you can individually add each page on your site to the search engines to ensure
that your entire site gets spidered, it is easier to build your own spider page, that is, a
page that lists the URLs of all the pages on your site. You can then just submit the URL
to that spider page to the search engines. When a search engine’s spider retrieves your
spider page, it will follow the URLs in the page and grab the rest of the pages from your
site for later indexing. This will ensure that the spider retrieves all your site’s pages
before exiting the site by following an external link.

One complication to getting the complete Candy Store site spidered is that much of it is
built dynamically. You could easily use VBScript to dynamically generate a spider page
like the one in Listing 21.1, which contains a URL for each product. Unfortunately, these
URLs contain a question mark (?), and many search engines will not index URLs with
question marks because the question mark signifies that the page is a CGI script.

LISTING 21.1 A Sample Spider Page That Won’t Work

1 Kisses
2

3 Jaw Breakers
4

...

To work around this problem, you can use ASP to generate a static search page for each
of your products. Listing 21.2 shows how to add a function to storeFuncs.asp that cre-
ates a crawler-optimized static page from added or updated product information, and
then stores that page in the search subdirectory. The function will be called from
donePost.asp.

LISTING 21.2 CreateStaticPage Function That Generates Static Pages for
Spidering

1 SUB createStaticPage (productID, productName, productPrice,_
2 productPicture, productCategory, productBriefDesc,

➥productFullDesc,_
3 productStatus)
4
5 Dim fs, file, path
6 Set fs = CreateObject(“Scripting.FileSystemObject”)
7 path = Server.MapPath(“/”) & “\static”
8 IF (fs.FolderExists(path) <> true) THEN
9 fs.CreateFolder(path)
10 END IF
11
12 ‘ Create or replace the static asp file for the product.
13 Set file = fs.CreateTextFile(path & “\pid” & productID & “.asp”, true)

502 Day 21

INPUT

INPUT

 27 0672318989 ch21 3/30/00 8:25 AM Page 502

Promoting Your Site and Managing Banner Advertising 503

21

14
15 file.WriteLine(“<html>”)
16 file.WriteLine(“<head>”)
17 file.WriteLine(“<title>” & productName & “ Candy</title>”)
18 file.WriteLine(“<meta name=””description”” content=””Purchase “ &

➥productName & “ Candy from Johnson’s Candy and Gifts “ & productBriefDesc &
➥” “ & productFullDesc & “””>”)

19 file.WriteLine(“<meta name=””keywords”” content=””Candy “ & productName &
➥” “ & productBriefDesc & “ “ & productFullDesc & “””>”)

20 file.WriteLine(“</head>”)
21 file.WriteLine(“<body link=””#ff4040”” vtext=””lightred””>”)
22 file.WriteLine(“<center>”)
23
24 file.WriteLine(“<table width=””640”” border=””0”” cellspacing=””0””

➥cellpadding=””0””>”)
25 file.WriteLine(“<tr>”)
26 file.WriteLine(“ <td>”)
27 file.WriteLine(“ ”)
28 file.WriteLine(“ </td>”)
29 file.WriteLine(“ <td align=””right”” valign=””bottom””>”)
30 file.WriteLine(“ shopping cart”)
31 file.WriteLine(“ | “)
32 file.WriteLine(“ account”)
33 file.WriteLine(“ </td>”)
34 file.WriteLine(“</tr>”)
35 file.WriteLine(“<tr>”)
36 file.WriteLine(“ <td colspan=””2””>”)
37 file.WriteLine(“ <hr width=””640””>”)
38 file.WriteLine(“ </td>”)
39 file.WriteLine(“</tr>”)
40 file.WriteLine(“</table>”)
41
42 file.WriteLine(“<table width=””640”” border=””0”” cellpadding=””0””

➥cellspacing=””0””>”)
43 file.WriteLine(“<tr><td valign=””top””>”)
44
45 file.WriteLine(“<table cellpadding=””0”” cellspacing=””0”” border=””0””>”)
46 file.WriteLine(“<tr>”)
47 file.WriteLine(“ <td valign=””bottom”” bgcolor=””pink””>”)
48 file.WriteLine(“

➥</td>”)
49 file.WriteLine(“</tr>”)
50 file.WriteLine(“<tr>”)
51 file.WriteLine(“ <td>”)
52 file.WriteLine(“ <table width=””200”” cellpadding=””4””

➥cellspacing=””0”” bgcolor=””lightyellow”” border=””1””>”)
53 file.WriteLine(“ <tr>”)
54 file.WriteLine(“ <td>”)
55 file.WriteLine(“ <form method=””post”” action=””../search.asp””

➥id=form1 name=form1>”)

continues

 27 0672318989 ch21 3/30/00 8:25 AM Page 503

56 file.WriteLine(“ <input name=””searchfor”” size=””15””>”)
57 file.WriteLine(“ <input type=””submit”” value=””Search””

➥id=submit1 name=submit1>”)
58 file.WriteLine(“ </form>”)
59 file.WriteLine(“ </td>”)
60 file.WriteLine(“ </tr>”)
61 file.WriteLine(“ </table>”)
62 file.WriteLine(“ </td>”)
63 file.WriteLine(“</tr>”)
64 file.WriteLine(“<tr>”)
65 file.WriteLine(“ <td> </td>”)
66 file.WriteLine(“</tr>”)
67 file.WriteLine(“<tr>”)
68 file.WriteLine(“ <td valign=””bottom””>”)
69 file.WriteLine(“ <img src=””../Categories.gif”” vspace=””0””

➥border=””0””></td>”)
70 file.WriteLine(“</tr>”)
71 file.WriteLine(“<tr>”)
72 file.WriteLine(“ <td>”)
73 file.WriteLine(“ <table width=””200”” cellpadding=””4””

➥cellspacing=””0”” bgcolor=””lightyellow”” border=””1””>”)
74 file.WriteLine(“ <tr>”)
75 file.WriteLine(“ <td>”)
76 file.WriteLine(“ ”)
77 file.WriteLine(“<SCRIPT Language=””VBScript”” RunAt=””Server””> Dim cat”)
78 file.WriteLine(“cat = “”” & productCategory & “”””)
79 file.WriteLine(“</SCRIPT>”)
80 file.WriteLine(“ <!— #INCLUDE FILE=””../CatList.asp”” —>”)
81 file.WriteLine(“ ”)
82 file.WriteLine(“ </td>”)
83 file.WriteLine(“ </tr>”)
84 file.WriteLine(“ </table>”)
85 file.WriteLine(“ </td>”)
86 file.WriteLine(“</tr>”)
87 file.WriteLine(“</table>”)
88
89 file.WriteLine(“</td><td valign=””top””>”)
90
91 file.WriteLine(“<table cellpadding=””10”” cellspacing=””0”” border=””0””>”)
92 file.WriteLine(“<tr>”)
93 file.WriteLine(“ <td>”)
94
95 If productPicture <> “?????” THEN
96 file.WriteLine(“ ”)
97 END IF
98 file.WriteLine(“ <p>”)
99 file.WriteLine(“ ”)
100 file.WriteLine(productName)
101 file.WriteLine(“ <p>”)

504 Day 21

LISTING 21.2 continued

 27 0672318989 ch21 3/30/00 8:25 AM Page 504

Promoting Your Site and Managing Banner Advertising 505

21

102 file.WriteLine(productBriefDesc)
103 file.WriteLine(“ <form method=””post”” action=””../cart.asp”” id=form1

➥name=form1>”)
104 file.WriteLine(“ <input name=””pid”” type=””hidden”” value=” & productID

➥& “>”)
105 file.WriteLine(“ <input type=””submit”” value=””Add To Cart”” id=submit1

➥name=submit1>”)
106 file.WriteLine(“ </form>”)
107 file.WriteLine(productFullDesc)
108 file.WriteLine(“ <form method=””post”” action=””../cart.asp”” id=form2

➥name=form2>”)
109 file.WriteLine(“ <input name=””pid”” type=””hidden”” value=” & productID

➥& “>”)
110 file.WriteLine(“ <input type=””submit”” value=””Add To Cart”” id=submit2

➥name=submit2>”)
111 file.WriteLine(“ </form>”)
112 file.WriteLine(“ </td>”)
113 file.WriteLine(“</tr>”)
114 file.WriteLine(“</table>”)
115 file.WriteLine(“</td></tr>”)
116 file.WriteLine(“</table>”)
117
118 file.WriteLine(“<hr width=””640””>”)
119 file.WriteLine(“Copyright © 2000 the Johnson Gift Company”)
120 file.WriteLine(“</center>”)
121 file.WriteLine(“</body>”)
122 file.WriteLine(“</html>”)
123 file.Close
124 Set file = Nothing
125 Set fs = Nothing
126 END SUB

The CreateStaticPage function first creates the static directory if it does not
already exist (lines 6–10). Line 13 creates the static, indexable page if it doesn’t

already exist, replacing it if it does. Lines 15–122 actually write the static page. Line 17
writes a <TITLE> tag that includes the product name. Line 18 writes a <META name=
”description”> tag that will provide a description of the page to a person using a search
engine; Line 19 writes a <META name=”keywords”> tag for searching that includes the
product name and product descriptions. Lines 77–79 write script into the file that sets the
product category into the cat variable; this is for code in the CatList.asp script that gets
included by line 80.

ANALYSIS

Lines 77–79 use the <SCRIPT RunAt=”Server”></SCRIPT> tags because the <%
%> delimiters get interpreted before the WriteLine method; the <SCRIPT>
and </SCRIPT> tags do exactly the same thing at the <% and %> script delim-
iters.

Caution

 27 0672318989 ch21 3/30/00 8:25 AM Page 505

Line 96 writes an tag that points to the appropriate image for the product.
Although the search engine will not look at the picture, it is necessary to write the tag, in
case a customer clicks through to the static page. Similarly, lines 104 and 109 write a
hidden product ID <INPUT> field, in case a customer decides to buy the product after
clicking through.

506 Day 21

The current Candy Store site does not make use of frames. If you decide to
implement your Web store using frames, you should be aware that many
search engines do not index text inside an HTML frameset. To work around
this, duplicate the text of the site, including <TITLE> and <META> tags inside
a <noframes></noframes> tag set. Most search engines will index content
between <noframes> tags.

Caution

After you have created your static pages, you need to make them visible to the search
engines. Listing 21.3, crawler.asp, is a simple ASP script that generates a spider file
from the current contents of the search subdirectory (The static directory). In addition to
your home page, you can submit crawler.asp to search engines as a URL to index.
When a crawler requests crawler.asp, it will get a file that contains links to each of the
static pages.

LISTING 21.3 crawler.asp, Which Generates Links to Each of the Static
Pages Generated by CreateStaticPage

1 <%@ Language=VBScript %>
2 <%
3 Dim fs, folder, files, fileName, path
4
5 Set fs = CreateObject(“Scripting.FileSystemObject”)
6 path = Server.MapPath(“/”) & “\static”
7 If (fs.FolderExists(path) = true) Then
8 Set folder = fs.GetFolder(path)
9
10 Set files = folder.Files
11 For Each fileName in files
12 %>
13 <a href=”/static/<%=fs.GetFileName(fileName)%>”><%=fs.GetFileName

➥(fileName)%>
14

15 <%
16 Next
17 End If
18 Set files = Nothing
19 Set folder = Nothing

INPUT

 27 0672318989 ch21 3/30/00 8:25 AM Page 506

Promoting Your Site and Managing Banner Advertising 507

21

20 Set fs = Nothing
21 %>

The script first makes sure that the static page directory exists (Lines 5–7). If it
does, it gets a Folder object (line 8) and retrieves the list of files from the object

(line 10). It then iterates through the list of files, creating a link for each file (lines
11–16).

Indexable Pages Are Not Enough
After you’ve created your static pages and submitted your home page and your crawler
page to the popular search engines, be patient. It can take weeks or even months to get
spidered for the first time. Unfortunately, you might also need to be persistent.

The Web has been growing at a geometric pace, and search sites are struggling to main-
tain the amount of disk space needed to hold indexing info about the Web. This means
that every time a search engine spiders and indexes a new page, it might have to throw
out the index information about an old page to make room. Typically, search engines try
to be smart about the pages that they throw away, throwing away pages that haven’t
changed or haven’t been accessed for a long time. This underscores the importance of
good <META name=”description”> tags that encourage users to click.

ANALYSIS

Geometric growth refers to growth rates that accelerate over time.Note

Another reason to have your marketing hat on when writing your <META name=
”description”> is the emergence of popularity algorithms. One of the ways that search
engine developers try to defeat index spammers and improve relevance algorithms is by
keeping track of the popularity of each link presented in a search result. For example, if
you search for Candy Corn at a search engine, you can see results like those in Listing
21.4. On most search engines, the ordering in that list changes depending in part on how
many users click through the title link. This might seem obvious, but many sites use their
<META name=”description”> tags the way the first site in the list does; that is, to deliver
some sort of uniform corporate branding message. Resist the temptation to be lazy when
composing descriptions: Better descriptions mean more click-throughs, and more click-
throughs mean better placement.

 27 0672318989 ch21 3/30/00 8:25 AM Page 507

LISTING 21.4 Sample Search Results for “Candy Corn”

1. Candy Corn
All items are and personalized. Home. Girls. Boys. Accessories. About
the Company. Reasons for Ordering. FAQ. Contact Us. Phone:...

2. Candy Corn
XXX pics jpg jpeg gif mp3 sex Candy Corn candyxxx.jpg ccorn001.jpg
pirate software warez naked

3. Candy Corn
If you love classic candy, your going to go crazy over this tasty
treat!1/2 Pound. Please order in 1/2# units (one pound = 2 units)$2.25.
the Goody...

Get Linked to Other Pages
A recent way that search engine developers have been trying to improve their search
results is by taking a lead from academia. One way that academics decide which papers
are important is to count how many other papers refer to them. The founders of Google
applied that technique to search engines and call it PageRank.

PageRank applies the academic technique to the Web by ordering a search result set by
link popularity. Pages with more links to them from other Web sites get listed higher than
pages with fewer links to them. The technique has the advantage of being difficult to
spam, and seems to be quite effective.

As search algorithms like PageRank become more popular on the Web, it will become
more important to invest time in getting other Web sites to link to your E-Commerce
store. Some ways to do this include cultivating relationships with people who operate
enthusiast sites, developing sales affiliate programs, and simply trading links.

Web Rings
Many people use search engines almost exclusively to find sites; however, recreational
Web surfers often use Web rings to find new sites that interest them. A Web ring, as its
name suggests, is a collection of Web sites that have something in common. The home
page of each of these sites is linked to two other sites on the same topic, so that it is pos-
sible to navigate among all the sites that belong to the ring. You can establish your own
Web ring or join an existing ring by visiting www.webring.org.

Try It Out!
Here is a demonstration Web ring that you can use to walk through the Web ring signup
process:

508 Day 21

INPUT

 27 0672318989 ch21 3/30/00 8:25 AM Page 508

Promoting Your Site and Managing Banner Advertising 509

21

1. Fill out the demonstration Web ring sign up form located at
http://www.levlin.com/demoring.asp.

2. Wait to receive an email message, which will include a site ID.

3. Add the HTML from Listing 21.5 to your site’s home page.

Don’t forget to substitute the site ID you received in email in the HTML in
Listing 21.5

Caution

4. Reply to the email you received in step 2 to let the ring owner know your site is
ready to participate in the ring.

5. In a day or so, the ring owner will approve your site.

LISTING 21.5 The HTML to Add to a Page to Allow It to Participate in the
Demonstration Web Ring

1 <!-- Begin HTML comment
2 This is an HTMLfragment to be pasted at the bottom
3 of your webpage for the Demonstration WebRing. It is what
4 links you to the rest of the ring. :)
5 End HTML comment -->
6
7 <P>
8 <CENTER>
9 This Demonstration WebRing

➥ site owned by
10 Jonathan Levine.
11

12 [<a href=”http://nav.webring.org/cgi-bin/navcgi?ring=demoring;

➥id=Site_ID_Here;prev5”>
13 Previous 5 Sites |
14 <a href=”http://nav.webring.org/cgi-bin/navcgi?ring=demoring;

➥id=Site ID Here;prev”>
15 Previous |
16 <a href=”http://nav.webring.org/cgi-bin/navcgi?ring=demoring;

➥id=Site ID Here;next”>Next |
17 <a href=”http://nav.webring.org/cgi-bin/navcgi?ring=demoring;

➥id=Site ID Here;next5”>
18 Next 5 Sites |
19

➥Random Site |
20

➥List Sites]
21 </CENTER>

INPUT

 27 0672318989 ch21 3/30/00 8:25 AM Page 509

All Web rings are managed by servers at webring.org. Lines 8–20 produce the
links you see in Figure 21.3. Lines 12–17 enable the user to navigate through the

Web ring by passing the current site ID and an operation (prev, next, prev5, or next5)
to the webring.org servers. Lines 19–20 enable the user to see all the sites or navigate to
a random site; neither operation requires a site ID.

510 Day 21

ANALYSIS

FIGURE 21.3
The Web Ring naviga-
tion bar for the demon-
stration Web ring.

Banner Ads
Another way to increase the traffic to your Web store is to advertise. If you have used the
Internet at all, you are familiar with the most common way to advertise on the Internet—
the banner advertisement (see Figure 21.4). Banner ads are available for purchase, but
are also available through advertising-sharing programs known as link exchanges.

FIGURE 21.4
A sample banner
advertisement.

Link Exchanges
As with other advertising, you can easily pay for Internet advertising; however, the
Internet makes cooperative advertising available to everyone.

Cooperative advertising is the practice of sharing advertising space and
advertising costs. In the computer hardware industry, Intel is a ubiquitous
example of a cooperative advertiser; in exchange for placing the “Intel
inside” logo on computers and advertisements, Intel pays PC manufacturers
to defray the cost of that advertising.

Note

 27 0672318989 ch21 3/30/00 8:25 AM Page 510

Promoting Your Site and Managing Banner Advertising 511

21

With Internet banner advertising, cooperative advertising manifests itself in link
exchanges. Link exchanges provide an easy way for Web site operators to trade advertis-
ing impressions with each other. A Webmaster signs up with a link exchange, uploads a
banner, and inserts some exchange-provided HTML on his Web site. The HTML that the
exchange provides automatically downloads a banner from the exchange and records an
impression on behalf of the site. For each banner impression on the Webmaster’s site, the
exchange credits the member Web site with some number of ad impressions. The
exchange then shows the Webmaster’s banner on another exchange member site once for
each full credit.

The size and format standards for Internet advertising are developed by the
Internet Advertising Bureau (www.iab.net).

Most banner advertisers limit the size of banners files to 10K or smaller in
order to reduce the impact of the banner download on the user.

Note

An impression is an industry standard term for the number of times a ban-
ner advertisement has been displayed. For example, if you display a banner
advertisement five times, that counts as five impressions (even if the same
person views the ad all five times).

Impressions are often contrasted with what are variously called transfers or
click-throughs. Impressions measure the number of times that an ad has
been displayed; transfers and click-throughs measure the number of times
that an ad has been clicked.

Note

Exchanges typically require that a Web site display more than one ad in order to earn a
display credit. The exchange finances its operations by selling the resulting additional
inventory. The ratio of impressions-required to impressions-granted is known as the
exchange rate.

As with everything on the Web, there are many, many link exchanges, each
of which offers a variety of exchange rates. Some popular exchanges and
their rates are shown in Table 21.2.

Note

 27 0672318989 ch21 3/30/00 8:25 AM Page 511

TABLE 21.2 Some Popular Banner Exchange Cooperatives

Company Exchange Rate URL

123Banners 2 for 1 www.123banners.com

1for1.com About 1.7 for 11 www.1for1.com

AdSwap 2 for 12 www.adswap.com

Ad-Xchange 2 for 14 www.ad-xchange.com

abe 1to1 1 for 15 abe.com.au/121/index.html

BannerSwap 2 for 12 www.bannerswap.com

BannerWomen 2 for 1 www.bannerwomen.com

CyberLink Exchange 2 for 13, 5, 6 cyberlinkexchange.usww.com

Disney Banner 1 for 17 www.disneybanner.net

Network

Exchange-it 2 for 1 www.exchange-it.com

Free Banners 2 for 1 www.free-banners.com

EIS Banner Exchange Varies, as high as 5 www.lycos.com/addasite.html

for 4

HyperBanner 2 for 1 www.hyperbanner.com

LinkBuddies Varies depending www.linkbuddies.com

on click-through rate

LinkExchange 2 for 1 www.linkexchange.com

MS-Links Exchange 4 for 3 msbannerexchange.com

SmartAge 2 for 1 www.smartage.com

TradeBanners 2 for 18 resource-marketing.com/banner.shtml

Web Resources 3 for 2 exchange.Web-resources.com

Webmaster Exchange 1 for 19 www.webmasterexchange.com

1. Gives 2-for-1 exchange rate except for 5 days a month, when the exchange rate is 1 for 1. Also
offers $0.10 advertising credit for each banner click-through.

2. Gives 1-for-1 exchange credit for each banner that is clicked.

3. Gives 500 free banner impressions for signing up.

4. Gives 1,000 free banner impressions for signing up.

5. Uses non–standard-sized banners.

6. Also offers “Premium Membership” with higher exchange rates and click-through bonuses.

7. Disney-related sites only.

8. Paid membership upgrades ratio to 4 for 3.

9. Webmaster-oriented sites only.

512 Day 21

 27 0672318989 ch21 3/30/00 8:25 AM Page 512

Promoting Your Site and Managing Banner Advertising 513

21

Paying for Banner Ads
One disadvantage to using a link exchange is that you have to show banner ads in order
to earn banner ads. This makes link exchanges a poor choice if what you really want to
do is jump start page views for a new E-Commerce site. Of course, it is easy enough to
purchase banner advertisements. The banner exchanges all offer banner advertisements
for low prices. There are also a large number of Internet advertising agencies, some of
which are shown in Table 21.3.

TABLE 21.3 Internet Advertising Agencies

Company URL

AdAuction.com www.adauction.com

AdBase.net www.adbase.net

AdForce www.adforce.com

DoubleClick www.doubleclick.net

Flycast www.flycast.com

Microsoft bCentral store.linkexchange.com

Pegasus Ad Network www.pegasusads.com

ValueClick www.valueclick.com

Each Internet advertising agency handles ad placements on its own exclusive sites, and
each agency offers more or less sophisticated ad targeting. They also offer a very wide
variety of pricing models and costs per unit of advertising. The most common pricing
models are cost-per-click-through and cost-per-thousand-impressions (CPM), as
described in Chapter 19, “Generating Store Reports”.

Ad targeting is the practice of only displaying ads to a limited audience.
Internet ad agencies target ads by placing cookies on a user’s browser, and
then tracking the user’s Internet surfing patterns, click-through patterns,
and any other information they can gather about the user.

Note

Participating in Reward Programs
1999 was the year of the Internet loyalty program. In a loyalty program, customers are
rewarded for visiting your site. Participating in a loyalty program is easy and relatively
inexpensive. These programs are of two major types: Customers receive cash, and

 27 0672318989 ch21 3/30/00 8:25 AM Page 513

customers receive points (points are typically exchanged for such things are gift certifi-
cates, CDs, and movie tickets). Some of them are listed in Table 21.4.

TABLE 21.4 Internet Loyalty Programs

Company Program Reward URL

Beenz Points www.beenz.com

CyberGold Cash www.cybergold.com

Dash Cash www.dash.com

FreeRide Points www.freeride.com

iPoints Points www.ipoints.co.uk

MyPoints Points www.mypointsinc.com

NetCentives Points and Miles www.netcentives.com

Other Ways to Increase Revenue
You will, of course, endeavor to earn most of your revenue by selling items or services
on your Web site. However, if your Web site gains popularity, you might want to join
another retailer’s affiliate program, use some of your Web site’s space to sell advertising,
sell your customer email lists, or develop some other enterprise based at your site.

Affiliate Programs
Joining an affiliate program is probably the easiest way to add supplementary revenues to
your site. Nearly every merchandiser offers a commission on referrals that result in sales;
however, other companies are offering commissions on clicks, registrations, and more.
Because of the dynamic nature of these programs, it is best to research them when you
are ready to sign up and to monitor them closely. www.affiliatesdirectory.com is a
useful place to learn about these programs.

Running Your Own Advertising
There are several ways that you can run advertising on your own Web site. Any of the
advertising agencies listed in Table 21.3 will likely to be happy to help you, providing
that your Web site generates enough traffic. Otherwise, you can use the Ad Rotator com-
ponent that comes with IIS to schedule and deliver advertisements to your visitors.

514 Day 21

 27 0672318989 ch21 3/30/00 8:25 AM Page 514

Promoting Your Site and Managing Banner Advertising 515

21

Using the Ad Rotator is simple: First, create a redirection file, which enables you to mea-
sure click-throughs. Then create a schedule file, which enables you to define the ads to
show, the links for the ads, and the relative weight of each ad. Finally, on each page
where you want to display an advertisement, you simply create an instance of the Ad
Rotator object and call AdRotator.GetAdvertisement.

The Redirection File
When people click on an advertisement displayed through the Ad Rotator component,
they are sent to the redirection file. You can place any content that you please in the redi-
rection file. Typically, however, you include a script that records the number of times that
an ad has been clicked. You can record this information in a database table.

Next, the redirection file will need to redirect the user to the Web site associated with the
banner. When you click on an ad displayed by the Ad Rotator component, the path to the
site associated with the ad is passed to the redirection file as a query string variable. This
query string variable is named URL. Listing 21.6 illustrates how to create a simple redi-
rection file, named adredir.asp, that transfers the user using the URL query string
variable.

LISTING 21.5 adredir.asp—The Simplest Redirection File

1 <%@ Language=VBScript %>
2 <% Response.Redirect(Request.QueryString(“url”)) %>

The Schedule File
A schedule file (see Listing 21.6) contains information that the Ad Rotator component
uses to manage and display advertisement images. It has two sections: One applies to all
the advertisements in the schedule; the other defines each individual ad. The general sec-
tion enables you to specify the URL for the redirection script and the width, height, and
border width for each ad. The specific section specifies the image files to use, the pages
to be linked to, and the relative percentage of time that each ad will be displayed.

Although implementing and using the Ad Rotator component is easy
enough, actually managing advertising traffic is exceedingly difficult. That
can explain why there are so many successful public companies that out-
source advertising management!

Caution

INPUT

 27 0672318989 ch21 3/30/00 8:25 AM Page 515

LISTING 21.6 A Sample Schedule File

1 REDIRECT /adredir.asp
2 WIDTH 468
3 HEIGHT 60
4 BORDER 0
5 *
6 http://www.levlin.com/images/yawn.gif
7 http://www.levlin.com/
8 Check out the most boring site on the Internet!
9 80
10 http://www.mcp.com/images/informit_ad/enman_blk.gif
11 -
12 InformIT from Macmillian
13 20

Lines 1–4 define the common parameters for each ad: the redirection page (line
1), the width and height of each ad (lines 2–3), and the thickness of the border

(line 4). The values of lines 2–4 are in pixels. The single asterisk in line 5 separates the
general section from the per-ad section. Line 6–9 and lines 10–13 both define individual
ads. Lines 6 and 10 are URLs to the banner advertisements. Lines 7 is the URL to a
page that the line 6 banner links to. If the banner doesn’t link , it shows a hyphen as in
line 11. Lines 8 and 12 are text displayed for browsers that don’t display graphics.
Finally, lines 9 and 13 indicate the relative weights of each advertisement.

516 Day 21

INPUT

ANALYSIS

The way that relative weights work is that the Ad Rotator takes the sum of
all the relative weights and displays each ad in proportion to its relative
weight. For example, if a Rotator Schedule file contains two ads with the
impressions set to 80 and 20, the first ad is displayed 80 percent of the time
and the second is displayed 20 percent of the time.

Note

If the sum of the impressions parameters for all items exceeds 10,000, an
error will be generated the first time the Rotator Schedule file is accessed by
a call to the GetAdvertisement method.

Caution

The Ad Rotator
The last step to implementing the Ad Rotator is to add the code from Listing 21.7 to the
body of each Web page in which you want to display an ad. The results look like this:
<AHREF=”/adredir.asp?url=http://www.levlin.com/&image=http://www.levlin.com/

images/yawn.gif” ><IMG SRC=”http://www.levlin.com/images/yawn.gif”

 27 0672318989 ch21 3/30/00 8:25 AM Page 516

Promoting Your Site and Managing Banner Advertising 517

21

ALT=”Check out the most boring site on the Internet!” WIDTH=468 HEIGHT=60

BORDER=1>.

LISTING 21.7 Code to Implement the Ad Rotator on a Web Page

1 <%
2 Dim ad
3 Set ad = Server.CreateObject(“MSWC.AdRotator”) %>
4 <%=ad.GetAdvertisement(“/schedule.txt”) %>
5 <% Set ad = Nothing %>

Line 3 creates an instance of the Ad Rotator, and line 4 uses the schedule file
from Listing 21.6 to display the advertisement. Finally, line 5 cleans up the Ad

Rotator instance.

Summary
In today’s lesson, you learned the basics of Internet marketing—both getting your site
noticed, and getting people to pay you for exposure. You learned how to make your site
attractive to search engines and how to join a Web ring. You then learned how to promote
your site with free and paid-for advertising. Finally, you learned how to rotate ads, bring
in revenue through affiliate programs, and how to encourage your customers to return
with reward programs.

Q&A
Q How does (pick your favorite search engine) index its sites?

A Nearly every search engine guards its indexing algorithm as carefully as Coca-Cola
guards its secret recipe. One exception is Google, whose founders presented an
overview of their algorithms at the WWW7 conference. This overview is available
on the Web at http://www7.scu.edu.au/programme/fullpapers/1921/
com1921.htm.

Workshop
The Quiz and Exercise questions are designed to test your knowledge of the material
covered in this chapter. The answers are in Appendix A, “Quiz Answers.”

INPUT

ANALYSIS

 27 0672318989 ch21 3/30/00 8:25 AM Page 517

Quiz
1. What is a “spider”?

2. What is a relevance metric?

3. What is a Web ring?

4. What is a link exchange?

Exercises
1. The CreateStaticPage script is only called when a product is added or updated.

Write a script that initializes the static directory by iterating through each product
in the database and calling CreateStaticPage.

2. Write a Web-based interface that enables you to maintain the ad rotation schedule
file schedule.txt.

518 Day 21

 27 0672318989 ch21 3/30/00 8:25 AM Page 518

WEEK 3

In Review
This week, you learned how to maintain and market your Web site. In the first
lesson, you learned how to secure your Web site from malicious users. On the
following day, you learned several valuable techniques for debugging your Web
site with Microsoft Visual InterDev’s integrated debugger and a library of stan-
dard Active Server Pages debugging subroutines.

Next, you learned how to promote your Web site through email marketing. You
learned how to use the CDO for NTS to bulk email personalized messages to
potential customers.

Later in the week, you were introduced to several methods for maintaining your
Web site remotely. You learned how to administer your Web server from a
remote location through a Web browser. You also learned how to use the FTP
service to remotely manage your Web site files.

Next, you were given an overview of the different log file formats supported by
your Web server. You learned how to extract and analyze information from your
log files to monitor the performance of your site.

 28 0672318989 w3 in review 3/30/00 8:32 AM Page 519

Finally, you learned how to display banner advertisements at your Web site. You learned
how to rotate through different advertisements and track how often each advertisement is
displayed.

Bonus Project
Sending Customer Feedback Acknowledgement
Emails
In this week’s bonus project, you’ll modify the customer feedback form that you created
in the two previous bonus projects to support sending email. In the lesson on Day 18,
“Using Email with Active Server Pages”, you learned how to use the CDO for NTS to
send email from an Active Server Page. You’ll apply this knowledge in this bonus project
by incorporating the CDO for NTS into the customer feedback pages.

When customers submit feedback, they will automatically receive an email message
informing them that the feedback was received. The purpose of this acknowledgement
email is to reassure the customer that their feedback hasn’t been lost. You could also
include information in this message such as answers to frequently asked questions and
additional support options.

You’ll remember from last week’s bonus project that the customer feedback pages rely
on the following database table (named feedback):

• feedback_id—an AutoNumber field that uniquely identifies each row in the table.

• feedback_email—a Text field that contains the customer’s email address.

• feedback_comment—a Memo field that contains the text of the customer’s feed-
back.

• feedback_entrydate—a Date/Time field that automatically contains the date the
feedback is entered. This field should have a default value of NOW().

A customer submits his feedback through an ASP page named feedback.asp. This page
contains a simple HTML form with no ASP scripts. The customer feedback form is con-
tained in Listing BP3.1 (It’s the same page as used in the bonus projects for the previous
two weeks).

LISTING BP3.1 The Customer Feedback Form

1 <HTML>
2 <HEAD><TITLE>Customer Feedback</TITLE></HEAD>
3 <BODY>

520 Week 3

 28 0672318989 w3 in review 3/30/00 8:32 AM Page 520

In Review 521

4
5 Thank you for leaving customer feedback on our Web site.
6
Please enter your feedback in the form below:
7
8
9 <FORM METHOD=”post” ACTION=”saveFeedback.asp”>
10 <P>Your Email Address:
11
<INPUT NAME=”email” size=”50” maxlength=”255”>
12 <P>Your Feedback:
13
<TEXTAREA NAME=”comment” COLS=50 ROWS=4
14 WRAP=”Virtual”></TEXTAREA>
15 <P><INPUT TYPE=”submit” VALUE=”Submit Feedback”>
16 </FORM>
17
18 </BODY>
19 </HTML>

When a customer submits the customer feedback form, the data is submitted to the save-
feedback.asp page. The savefeedback.asp page has been modified in this bonus pro-
ject to send email. The new version of the savefeedback.asp page is contained in
Listing BP3.2.

LISTING BP3.2 The Save Feedback Page with Email

1 <%@ TRANSACTION=REQUIRED %>
2 <%
3 Response.Buffer = TRUE
4
5 SUB OnTransactionAbort
6 Response.Clear
7 %>
8 <HTML>
9 <HEAD><TITLE>Problem</TITLE></HEAD>
10 <BODY>
11
12 An error was encountered while submitting your feedback.
13
Please call our customer support number at:
14 <BLOCKQUOTE>
15 (555) 555-8989
16 </BLOCKQUOTE>
17
18 </BODY>
19 </HTML>
20 <%
21 END SUB
22
23 FUNCTION fixQuotes(theString)

continues

 28 0672318989 w3 in review 3/30/00 8:32 AM Page 521

24 fixQuotes = REPLACE(theString, “‘“, “‘’”)
25 END FUNCTION
26
27 email = TRIM(Request(“email”))
28 comment = TRIM(Request(“comment”))
29 IF email <> “” AND comment <> “” THEN
30 Set Con = Server.CreateObject(“ADODB.Connection”)
31 Con.Open “accessDSN”
32 sqlString = “INSERT INTO feedback (feedback_email, feedback_comment) “ &_
33 “VALUES (‘“ & fixQuotes(email) & “‘,’” & fixQuotes(comment) & “‘)”
34 Con.Execute sqlString
35 Set myMail = Server.CreateObject(“CDONTS.NewMail”)
36 myMail.From = “feedback@yourdomain.com”
37 myMail.To = email
38 myMail.Subject = “Your feedback was received!”
39 myMail.Body = “Thank you for submitting feedback. “ &_
40 “Your feedback will be reviewed by our customer support department. “ &_
41 “You should expect an email response to your feedback with the next 2

➥business days.”
42 myMail.Send
43 END IF
44 %>
45 <HTML>
46 <HEAD><TITLE>Save Feedback</TITLE></HEAD>
47 <BODY>
48
49 Thank you for submitting your feedback!
50
51 </BODY>
52 </HTML>

The CDO for NTS is used in this page in lines 35–42. In line 35, an instance of
the NewMail object is created. Next, in line 36, the From property is assigned the

sender’s email address (This should be your store’s email address). In line 37, the To
property is assigned the customer’s email address. In line 38–41, the Subject and Body
properties of the NewMail object are assigned values. Finally, in line 42, the email mes-
sage is sent.

You can modify the email message sent from the customer feedback form in any way
you please. To change the body of the email message, simply modify the text in lines
39–41.

522 Week 3

LISTING BP3.2 continued

ANALYSIS

 28 0672318989 w3 in review 3/30/00 8:32 AM Page 522

APPENDIX A
Quiz Answers
Answers for Day 1

Quiz
1. What are the three types of E-Commerce?

Business-to-consumer, business-to-business, and consumer-to-consumer.

2. Can Microsoft Personal Web Server be used to create a commercial Web
site that supports thousands of visitors a day?

No. Microsoft Personal Web Server can only be used for prototyping a
Web site or running a very lightly used Web site.

3. Can Microsoft Access be used in a commercial Web site that supports
thousands of visitors a day?

No. Microsoft Access is a desktop database and not a client/server data-
base.

4. Do you need Visual InterDev to create Active Server Pages?

No. Microsoft Visual InterDev is a development environment for creating
Active Server Pages. You can create an ASP page using any standard text
editor.

 29 0672318989 app a 3/30/00 8:33 AM Page 523

5. How does a Web server distinguish an ASP Page from a normal HTML page?

Active Server Pages end with the extension .ASP whereas normal HTML files end
with the extension .HTML or .HTM.

6. Are Active Server Pages compatible with all Web browsers?

Yes. An ASP page is processed on the Web server and not the Web browser.

7. Can you create ASP scripts using any language other than VBScript?

Yes, some other examples of scripting languages that you can use with Active
Server Pages are JScript and PerlScript.

Answers for Day 2
Quiz

1. Is there any difference between using the Write method of the Response object to
send output to the browser and using the <%= and %> output delimiters?

No, there is no difference between outputting content to the browser using the
Write method of the Response object and using the <%= and %> output delimiters.

2. The following ASP page passes a query string variable named myvar that has the
value Active Server Pages. However, there is an error in this page that will prevent
the query string variable from being passed. How would you fix this page?
<html>
<head><title>Fix Me!</title></head>
<body>
<%
myvar = “Active Server Pages”
%>
<a href=”page2.asp?myvar=<%=myvar%>”>click here
</body>
</html>

The error results from the spaces that appear in the string “Active Server
Pages”. Before you can pass this string, you must first URL-encode it using the
URLEncode() method of the Server object. Here’s how the script should be rewrit-
ten:
<html>
<head><title>Fix Me!</title></head>
<body>
<%
myvar = “Active Server Pages”
myvar = Server.URLEncode(myvar)
%>

524 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 524

Quiz Answers 525

A
<a href=”page2.asp?myvar=<%=myvar%>”>click here
</body>
</html>

3. How can you output the string “He said, “Hello World!” “ using the Write
method of the Response object?

There are two solutions. First, you can use two quotation marks in a row:

Response.Write “He said, “”Hello World!”” “

You can also output a quotation mark by using the CHR() function like this:

Response.Write “He said, “ & CHR(34) & “Hello World” & CHR(34)

4. How would you write a script that displays all the variables in the Form collection
of the Request object?

You can display all the variables in the form collection in a FOR...EACH loop like
this:

<%
FOR EACH thing IN Request.Form
Response.Write thing & Request(thing) & “
”

NEXT
%>

Answers for Day 3
Quiz

1. Suppose that you want to create a cookie which lasts longer than a particular user
session. What attribute of the Cookies collection must you set to cause the cookie
to persist until a certain date?

You must set the Expires attribute. For example, to create a cookie named pass-
word that doesn’t expire until December 25, 2002, you would use:
<%
Response.Cookies(“password”) = “secret”
Response.Cookies(“password”).Expires = “12/25/2002”
%>

2. Suppose that Andrew requests an ASP page which assigns the value red to a
Session variable named color. Now, suppose that Ruth requests an ASP page
which assigns the value blue to the Session variable named color. If Andrew
requests an ASP page which outputs the value of the color Session variable, what
value will be displayed?

The Session variable would have the value red. Session variables are created rel-
ative to a particular user.

 29 0672318989 app a 3/30/00 8:33 AM Page 525

3. How can you remove all the Session variables associated with a particular user
from memory?

You can remove all Session variables associated with a particular user by calling
the Abandon() method of the Session object.

4. Suppose that Andrew requests an ASP page which assigns the value red to an
Application variable named color. Now, suppose that Ruth requests an ASP page
which assigns the value blue to the Application variable named color. If Andrew
requests an ASP page which outputs the value of the color Application variable,
what value will be displayed?

The Application variable would have the value blue. Application variables can
be shared among all the users of a Web site.

5. What’s wrong with the following Global.asa file?
<%
Sub Session_OnStart
Application.Lock
Application(“customerCount”) = Application(“customerCount”) + 1
Application.UnLock

End Sub

Sub Session_OnEnd
Application.Lock
Application(“customerCount”) = Application(“customerCount”) - 1
Application.UnLock

End Sub

Sub Application_OnStart
Application(“customerCount”) = 0

End Sub
%>

You cannot use the script delimiters <% and %> within the Global.asa file. You must
use the HTML <SCRIPT> tag instead.

Exercise
Create an ASP page that lists the SessionID and the entry time of all the customers
who have visited your Web site. To do this, you will need to create a Global.asa
file to detect when the customer arrives and an ASP page to display the list of
SessionIDs and entry times.

Here’s the Global.asa file:
<SCRIPT LANGUAGE=”VBScript” RUNAT=”SERVER”>
Sub Session_OnStart
Application.Lock

526 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 526

Quiz Answers 527

A
Application(“customers”) = Application(“customers”)

➥ & Session.SessionID & “ (“ & NOW() & “)
”
Application.UnLock

End Sub
</SCRIPT>

Here’s the ASP page that displays the customers:

<HTML>
<HEAD><TITLE>Customers</TITLE></HEAD>
<BODY>

Customers:
<p><%=Application(“customers”)%>

</BODY>
</HTML>

Answers for Day 4
Quiz

1. What’s the difference, if any, between using the FILE attribute of the #INCLUDE
directive and the VIRTUAL attribute of the #INCLUDE directive?

You use the FILE attribute when you want to include a file that is located in the
same directory or in a subdirectory of the directory that contains the ASP page that
has the #INCLUDE directive. You use the VIRTUAL attribute when you want to
include a file by specifying its full virtual path.

2. There is a problem with the following script. How can the script be rewritten so
that it works as intended?
<%
answer = Request(“answer”)
IF answer = “yes” THEN
displayPage = “page1.asp”

ELSE
displayPage = “page2.asp”

END IF
%>
<!-- #INCLUDE VIRTUAL=”<%=displayPage%>” -->

Because Active Server Pages doesn’t support dynamic includes, you cannot use a
variable as the value of the #INCLUDE directive. The script should be written like
this:
<%
answer = Request(“answer”)
IF answer = “yes” THEN

 29 0672318989 app a 3/30/00 8:33 AM Page 527

%>
<!-- #INCLUDE FILE=”page1.asp” -->
<%

ELSE
%>
<!-- #INCLUDE FILE=”page2.asp” -->
<%

END IF
%>

3. How would you rewrite the following script so that it does not use the Redirect
method?
<%
username = TRIM(Request(“username”))
IF username = “” THEN
Response.Redirect “/login.asp”

END IF
%>

Instead of using the Redirect method, you can use the #INCLUDE directive like
this:
<%
username = TRIM(Request(“username”))
IF username = “” THEN
%>
<!-- #INCLUDE FILE=”login.asp” -->
<%
Response.End

END IF
%>

4. What method of the FileSystemObject object do you use to detect whether a file
exists?

You use the FileExists() method of the FileSystemObject object to detect
whether a file exists.

Exercise
Create an ASP page that displays its own source code. Use the FileSystemObject
and TextStream objects in the page.

The following ASP page, named myself.asp, displays its own source:

<HTML>
<HEAD><TITLE>MySelf</TITLE></HEAD>
<BODY>

<PRE>
<%

528 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 528

Quiz Answers 529

A
myPath = “c:\myself.asp”
Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
Set mySource = fs.OpenTextFile(myPath)
WHILE NOT mySource.AtEndOfStream
Response.Write Server.HTMLEncode(mySource.ReadLine) & vbNewline

WEND
%>
</PRE>

</BODY>
</HTML>

Answers for Day 5
Quiz

1. If you move your Microsoft Access database, what do you need to do to allow your
ASP scripts to find the database at its new location?

If you move a Microsoft Access database, then you will need to update the System
DSN by using the ODBC Data Sources applet in the Control Panel.

2. What’s wrong with the following SQL INSERT INTO statement?

INSERT INTO Products (product_name) VALUES (Holiday Gift Basket)

The text Holiday Gift Basket must be enclosed in single quotation marks. The
INSERT INTO statement should be written like this:

INSERT INTO Products (product_name) VALUES (‘Holiday Gift Basket’)

3. Why do single quotation marks (‘) cause problems when inserting or updating
records in a database?

Microsoft Access uses a single quotation mark to mark the beginning and end of
text. If the text itself contains a quotation mark, Microsoft Access will mistakenly
interpret it as marking the end of the text. To get around this problem, you must
double all the quotation marks that occur in the string.

4. Why do quotation marks (“) cause problems when displaying a variable with the
VALUE attribute of an HTML form?

HTML uses quotation marks to mark the beginning and end of text. So, if the value
of a variable includes a quotation mark, it will be incorrectly interpreted as mark-
ing the end of the text. To get around this problem, you need to HTML encode
variables before you display them.

 29 0672318989 app a 3/30/00 8:33 AM Page 529

Exercise
How can you add additional product information to your online store? For exam-
ple, suppose that you want to add a field named product_sku to track a product’s
SKU. How would you modify the database table and Active Server Pages dis-
cussed in this chapter to include the new field?

You can add one or more additional columns to the Products table by launching
Microsoft Access and opening the Products table in Design View. After you have
added a new column, you will need to make the following modifications to the
Active Server Pages discussed in this chapter:

addProduct.asp—Add the new field to the HTML form.

updateProduct.asp—You’ll need to add the new field to the list of fields retrieved
from the database. Add this line:

productSKU = RS(“product_sku”)

Next, you’ll need to add a new form field to the HTML form. The VALUE attribute
of the new form field should have the productSKU variable as its value.

manageproducts.asp—Add the new field to the list of variables retrieved when an
HTML form is submitted. Use the following statement:

productSKU = TRIM(Request(“productSKU”))

Next, you’ll need to create a default value for the productSKU variable if it doesn’t
have a value. Use the following statements:
IF productSKU = “” THEN
productSKU = “?????”

END IF

Finally, you’ll need to modify both the SQL string used to add a new product to
the database and the SQL string used to update a product in the database. Both of
these strings will need to be modified to include the productSKU variable.

Answers for Day 6
Quiz

1. What is the correct SQL SELECT statement for retrieving the name of every product
from the Products table that costs more than $20.25?
SELECT product_name FROM Products
WHERE product_price > 20.25

2. What method do you use to move to the next row in a Recordset?

To move to the next row in a Recordset, you use the MoveNext method.

530 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 530

Quiz Answers 531

A
3. What do you need to include in a script before you can use ADO constants such as

adOpenStatic?

Before you can use ADO constants, you must include the ADOVBS.inc file in your
ASP script.

4. Which default property of a Recordset do you need to change before you can use
Recordset properties such as RecordCount and PageSize?

You need to change the CursorType of the Recordset from a forward-only cursor
to a richer type of cursor such as a Static cursor.

Exercise
In today’s lesson, you learned how to modify the CatList.asp page so that the list
of product categories is retrieved from memory rather than the database. Modify
the ProductList.asp page so that the list of products is retrieved from memory
rather than the database.

Storing the list of products in memory is more difficult than storing the list of
product categories in memory because the products need to be divided into differ-
ent categories. The trick is to create different Application arrays for each of the
various categories. The following script correctly transfers the list of products to
memory:

<%
IF NOT isArray(Application(cat)) THEN
Set prodRS = Server.CreateObject(“ADODB.Recordset”)
prodRS.ActiveConnection = Con

sqlString = “SELECT product_id, product_picture, product_name,
➥product_briefDesc “ &_

“FROM Products WHERE product_category=’” & cat & “‘ “ &_
“AND product_status=1 “ &_
“ORDER BY product_name “

prodRS.Open sqlString

prodList = prodRS.GetRows()
Application(cat) = prodList
prodRS.Close

END IF
%>
<table width=”350” border=0
cellpadding=5 cellspacing=0>
<%
FOR i = 0 TO UBOUND(Application(cat), 2)
productID = Application(cat)(0, i)
productPicture = Application(cat)(1, i)
productName = Application(cat)(2, i)

 29 0672318989 app a 3/30/00 8:33 AM Page 531

productBriefDesc = Application(cat)(3, i)
%>
<tr>
<td>
<% IF productPicture <> “?????” THEN %>
<IMG SRC=”<%=productPicture %>”
HSPACE=4 VSPACE=4 BORDER=0 align=”center”>
<% END IF %>
</td>
<td>
<a href=”product.asp?pid=<%=productID %>”>
<%=productName %>

<%=productBriefDesc %>

<a href=”product.asp?pid=<%=productID %>”>
get more information
</td>

</tr>
<tr>
<td colspan=2 align=”center”>

</td>

</tr>
<%
NEXT
%>
</table>

Answers for Day 7
Quiz

1. How do I transfer the contents of a Recordset into an array?

You can transfer the contents of a Recordset into an array by using the GetRows()
method of the Recordset object.

2. The following SQL SELECT statement is intended to retrieve all the records from
the Products table where the product_name column contains the word “candy”.
What’s wrong with this statement?

SELECT * FROM Products WHERE product_name = ‘%candy%’

This SELECT statement retrieves only those records where the product name equals
%candy%. To retrieve the product names that contain the phrase candy, you need to
use the SQL LIKE operator in the following manner:

SELECT * FROM Products WHERE product_name LIKE ‘%candy%’

3. When using the Internet Information Server’s Custom Errors feature to automati-
cally redirect to a new page, how do I determine the name of the original page
requested?

532 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 532

Quiz Answers 533

A
The path of the original page is passed to the new page within the page’s query
string. Therefore, you can determine the name of original page requested by
accessing the QueryString collection of the Request object.

Exercise
The search page described in this chapter matches search terms in either the prod-
uct_name or the product_briefDesc database fields. How would you modify the
search page (Search.asp) so that it would also match terms appearing in the prod-
uct_fulldesc field?

To match search terms in the product_fulldesc field, you would need to modify
the SQL string used to perform the search in the following manner:

sqlString = “SELECT product_id, product_picture, product_name,
➥product_briefDesc “ &_
“FROM Products “ &_
“WHERE product_status = 1 “ &_
“AND (product_name LIKE ‘%” & searchFor & “%’ “ &_
“OR product_briefDesc LIKE ‘%” & searchFor & “%’ “ &_
“OR product_fullDesc LIKE ‘%” & searchFor & “%’) “ &_
“ORDER BY product_name “

Answers for Day 8
Quiz

1. The following script was designed to conditionally display one of two pages
depending on the value of the variable named showPage. What’s wrong with this
script?
<%
IF DATE() > “12/25/1999” THEN
showPage = “page1.asp”

ELSE
showPage = “page2.asp”

END IF
%>
<!-- #INCLUDE FILE=”<%=showPage%>” -->

This script will attempt to include a file named <%=showPage%>. The #INCLUDE
directive is processed before any Active Server Page scripts. Therefore, you cannot
use a variable as the value of an #INCLUDE directive.

2. How can I add a cookie to a customer’s browser named customerID that has the
value 17?

You can add a new cookie by using the Cookies collection of the Response object.

 29 0672318989 app a 3/30/00 8:33 AM Page 533

The following script adds a cookie named customerID that has the value 17:
Response.Cookies(“customerID”) = “17”
Response.Cookies(“customerID”).Expires = “July 31, 2001”
Response.Cookies(“customerID”).Path = “/”
Response.Cookies(“customerID”).Secure = FALSE

3. What do I need to do in order to request a page named confidential.asp using
the Secure Sockets Layer?

After you have installed SSL, you can request the confidential.asp page using
SSL like this:

https://www.yourdomain.com/confidential.asp

Exercise
The registration form described in this chapter has fields for login information,
payment information, and address information. How would you add additional
fields such as customer first and last name to this form?

To add additional fields to the registration page, you will need to modify the Users
database table, the register.asp page, and the storefuncs.asp file.

First, you will need to add two additional columns to the table named Users in the
storeDB database. You’ll need to add a column named user_firstname and a col-
umn named user_lastname.

Next, you must modify the register.asp form to include a form field named first-
name and lastname. Both of the new fields will need to be added to the list of form
fields retrieved at the top of the page. You’ll also need to actually add the firstname
and lastname form fields to the HTML form.

Finally, you will need to modify the addUser subroutine so that it will add the two
new form fields to the Users database table.

Answers for Day 9
Quiz

1. The following script assigns the value “Hello World” to an element in an array
stored in a Session variable. What’s wrong this script?

Session(“myarray”)(2) = “hello world!”

You cannot update an array stored in a Session array. Before you modify any of
the elements of a Session array, you must copy the array to a local variable like
this:

534 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 534

Quiz Answers 535

A
myarray = Session(“myarray”)
myarray(2) = “hello world!”
Session(“myarray”) = myarray

2. Before you can add new records or update existing records in a Recordset, you
must modify a property of the Recordset object. What is the name of this proper-
ty?

Before you can modify the records contained in a Recordset, you must modify the
Recordset’s LockType property. By default, the LockType property is read-only.

Exercise
Assume that you wanted to add a new button to the shopping cart labeled Clear
Cart that enables customers to remove all the existing items from their shopping
cart. Describe the script that needs to be executed to remove the items from both
shopping carts.

In the case of the Session shopping cart, you simply need to erase the Session
variable that contains the shopping cart (If a customer adds a new item to the shop-
ping cart in the future, this Session variable is automatically re-created).
Therefore, you can clear the shopping cart with the following statement:

Session(“cart”) = “”

In the case of the database shopping cart, you will need to remove all the items
associated with the customer in the cart database table. The following line of code
will remove all the items associated with the current customer:

Con.Execute “DELETE FROM cart WHERE cart_userID=” & userID

Answers for Day 10
Quiz

1. What’s wrong with the following script?
<%
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “accessDSN”
SET RS = Server.CreateObject(“ADODB.Recordset”)
RS.ActiveConnection = Con
RS.BeginTrans
RS.Open “select * FROM Orders”
RS.CommitTrans
%>

The BeginTrans() and CommitTrans() methods are methods of the Connection
object and not the Recordset object.

 29 0672318989 app a 3/30/00 8:33 AM Page 535

2. Suppose that you want to copy a particular row from the Orders table to a second
table named Orders_bak. The Orders_bak table is used to backup the data in the
Orders table. How can you copy the row from the Orders table in which the value
of the order_id column is 17 to the Orders_bak table?

The following SQL INSERT INTO statement selects the proper row from the Orders
table and inserts it into the Orders_bak table.

INSERT INTO Orders_bak (
order_id,
order_userID,
order_quantity,
order_productID,
order_entrydate,
order_status
) SELECT
order_id,
order_userID,
order_quantity,
order_productID,
order_entrydate,
order_status
FROM Orders
WHERE order_id=17

Exercise
The processOrders.asp page discussed in today’s lesson enables you to assign
one of four status values to an order: Pending, Credit Card Declined, Not in Stock
or Shipped. How would you modify the processOrders.asp page (contained in
Listing 10.8) to enable a fifth status value, Back Ordered, to be selected?

To add an additional order status value, you’ll need to make two changes. First,
directly below line 202, you’ll need to add the following statements:
<% IF RS(“order_status”) = 4 THEN %>
<td bgcolor=”lightblue”>
Back Ordered
</td>
<% ELSE %>
<td>
<a href=”processOrders.asp?showpage=<%=showPage%>&
➥ oid=<%=RS(“order_id”)%>&os=4&showOrders=<%=showOrders%>”>
Back Ordered
</td>
<% END IF %>

Next, you’ll need to add the following line to the section that creates the HTML
pick list (after line 88):

<option value=”4” <%=SELECTED(“4”, showOrders)%>>
➥ Back Ordered

536 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 536

Quiz Answers 537

A
Answers for Day 11

Quiz
1. Where is my merchant configuration information stored on my server when I use

the CyberCash service?

Your merchant configuration information is stored in a file named merchant_conf.
The CyberCash Socket component loads this file when it sends messages to the
CyberCash service.

2. What are the names of the two CyberCash components used when sending an
authorization request to the CyberCash service?

The CyberCash Merchant Connection Kit uses the MessageBlock and the Socket
components.

3. After a transaction is authorized, what other steps must I take to transfer the money
from the customer’s credit card account to my merchant account?

After you authorize a transaction, the transaction must be captured and settled.
How this is done depends on your credit card processing model: AuthCapture,
Auth/PostAuthCapture, or TerminalCapture.

Answers for Day 12
Quiz

1. Is the iisCARTship component included with Active Server Pages?

No. The iisCARTship component is a third-party ASP component. You must pur-
chase the component by visiting the following Internet address:

http://www.iisCart.com

2. What four properties of the iisCARTship component must you set before you can
query rate information from any of the shipping companies?

Before you can query the shipping companies, you must set the following four
components:

OrigPostal—The postal code of the sender of the package (must be in United
States).

DestPostal—The postal code of the recipient of the package (may be outside
United States).

Weight—The weight of the package (by default, in pounds).

DestCountry—The country code for the destination of the package.

 29 0672318989 app a 3/30/00 8:33 AM Page 537

3. What is the name of the collection returned by the ShipCalc() method that con-
tains the shipping rates?

The ShipCalc() method returns a collection named ShipInfo that contains the
shipping rates.

Answers for Day 13
Quiz

1. Can you use HTTP Authentication with the Netscape Navigator browser?

Yes. Basic Authentication is part of the HTTP specification and it is supported by
almost every browser.

2. Why is it considered a security risk to use Basic Authentication?

When usernames and passwords are transmitted across the Internet using Basic
Authentication, they are simply base64 encoded. Because it is so easy to decode
text that is base64 encoded, the usernames and passwords might as well be sent as
plain text.

3. How can I force a password dialog box to appear on a Web browser?

By sending a 401 Not Authorized Status Code and adding a WWW-Authenticate
header like this:
Response.Status = “401 Not Authorized”
Response.AddHeader “WWW-Authenticate”, “Basic realm=””localhost”””
Response.End

4. When using Basic Authentication, how is a username and password passed from
page to page?

Usernames and passwords are passed from page to page within the AUTHORIZA-
TION browser header.

Answers for Day 14
Quiz

1. What purpose does the retrieveFavorites function serve?

We use the retrieveFavorites function to query the user table of the database
and retrieve the comma separated list of categories in the user_favorites column.
We then use the returned value to determine what featured items to display to the
customer.

538 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 538

Quiz Answers 539

A
2. Why don’t we store product categories as numeric identifiers in our example?

In our example, our product database uses a full-text name for each category. In
this case, we would need to add another column to the database representing
columns and then carry out a query to convert the numeric category identifier into
a readable string. For our small example, it proves more efficient to use a full-text
name.

Answers for Day 15
Quiz

1. What version of Windows NT or Windows 2000 should you be using for your E-
Commerce Web server?

Windows NT Server or Windows 2000 Server with the latest service pack and hot-
fixes. If you are in the United States or Canada, you should install the 128-bit ver-
sion of the latest service pack.

2. What ports need to be allowed through your firewall?

Ports 80 and 443 are the only ports that should be allowed through your firewall.

3. What is Spoofing?

Spoofing is when a con artist or a hacker copies your Web site in order to fool your
customers into entering private information like credit card numbers.

4. How large of a key should you use for a certificate signing request?

You should use the largest key size available. As of the writing of this book, that
was 1024 bits.

5. What are three ways to improve the security of your Web site’s Access database?

Don’t keep your Access database in the same directory as your Web site, make sure
to keep your server logged off and locked up when not using it, and keep your
Access database in a directory that isn’t shared.

Answers for Day 16
Quiz

1. Why is it important to keep separate development and production Web sites?

So that any development and testing you do doesn’t impact your customers
adversely.

 29 0672318989 app a 3/30/00 8:33 AM Page 539

2. What is a breakpoint?

An instruction to the debugger to stop at a particular line of script so that you can
look at the contents of variables and watch the line-by-line execution of scripts.

3. Can I install the debugger on my production server?

No.

4. Why should I keep all my debugging routines in a single script?

So that changes to the debugging scripts are available to all the scripts that call
them.

5. How much load should I plan to handle?

As a rule of thumb, imagine how much traffic you would need to have to feel real-
ly successful; then multiply that traffic by 10.

Exercise
Update the CheckError function so that it writes log files into a directory on your
Web site.

To update the CheckError function to save error messages to a custom log directo-
ry, you’ll need to replace the expression fs.GetTempName() in both places where it
occurs in the CheckError function with the path to your log file.

Answers for Day 17
Quiz

1. What are three administrative tasks that the Internet Service Manager (HTML) can-
not perform?

The Internet Service Manager (HTML) cannot manage Web sites other than the
default Web site, cannot start or stop a Web service and cannot change the physical
directories for Web site virtual directories.

2. What is FTP? Is it advisable to allow anonymous access to your FTP service?

FTP stands for File Transfer Protocol, which is a standard way to transfer files
between two servers on the Internet. It is not advisable to allow anonymous access
to an FTP service unless the service is being used to host a download site (some-
thing like download.com).

3. What is the Posting Acceptor?

The Posting Acceptor is a component of IIS that allows users to submit files via a
standard HTML form.

540 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 540

Quiz Answers 541

A
4. What happens if a user submits a form to the Posting Acceptor that doesn’t include

one or more files for upload?

The Posting Acceptor sends back an error message if a user submits a form that
doesn’t include a file for upload. To work around this, use a script like that found
in upload.asp, which checks to see if a file is specified and, if not, programmati-
cally changes the attributes of the form.

Answers for Day 18
Quiz

1. What is an SMTP server?

An SMTP server is a server that stores and forwards messages using the Simple
Mail Transport protocol.

2. Why is it important to restrict relaying on your SMTP server?

If relaying isn’t restricted on your SMTP server, spammers will be able to exploit
your server by using it as an origination point for bulk email. This ties up your
bandwidth and leaves you open for the possibility of having your SMTP server
black-holed by being added to the Realtime Blackhole List.

3. What is the difference between text and MIME mail messages? How do you send
one or the other?

Text messages are simple, unformatted messages, whereas MIME mail can have
attachments and formatted HTML text. You can use CDONTS to send text mes-
sages by setting the BodyFormat attribute of the new message to
CdoBodyFormatText, and setting the MailFormat attribute to CdoMailFormatMime.
You can use CDONTS to send formatted messages by setting the BodyFormat to
CdoBodyFormatHTML and the MailFormat attribute to CdoMailFormatMime.

4. What happens if more than one <INPUT> tag in a form has the same name attribute?

If more than one <INPUT> tag in a form has the same name attribute, when the
form is posted, the various values are added to a subcollection of the
Request.Form item that has that name. For example, if the following two lines
appear in an HTML form
<INPUT type=”hidden” name=”foo” value=”bar”>
<INPUT type=”hidden” name=”foo” value=”baz”>

Request.Form(“foo”) will contain a collection that has two members.
Request.Form(“foo”)(1) will equal bar; Request.Form(“foo”)(2) will equal
baz.

 29 0672318989 app a 3/30/00 8:33 AM Page 541

Answers for Day 19
Quiz

1. What is the difference between a hit, a page view and a unique user? For what is
each useful?

A hit is a browser’s request for a file from a Web server. A page view is the deliv-
ery to the user of an entire Web page, including graphics elements. A unique user
is a different person who visited a site within a specific period. Hits are the most
useful measurement for estimating the technical requirements of a site, whereas
page views and unique users are useful for marketing and strategic planning pur-
poses.

2. What are the different log file formats that IIS 4.0 supports? Which ones are you
likely to want to use? Why?

IIS 4.0 can write log files in one of four different formats: NCSA Common Log
File Format, ODBC Logging Format, Microsoft IIS Log File Format, or W3C
Extended Log File Format. The most useful of these are ODBC Logging and W3C
Extended Log File Format. ODBC Logging Format allows multiple Web sites to
log information to the same database table, and allows you to report on Web site
statistics in real-time. W3C Extended Log File Format allows you to record the
most information, and allows you to save space by recording only the information
that you are interested in.

3. Why is log file analysis an unreliable way to measure site traffic?

Log files are an inexact way to measure site traffic because browsers, proxy
servers, and firewalls tend to make traffic seem lower, whereas bots and Web spi-
ders tend to make traffic seem higher. Still, log file analysis is more useful than not
having any information at all.

Answers for Day 20
Quiz

1. What is the difference between a client-side wallet and a server-side wallet?

A client-side wallet is a relatively large piece of software that must be downloaded
onto a computer. The software stores a customer’s credit card and other personal
information in an encrypted file on that computer’s hard disk, and submits the
information to electronic stores upon the customer’s request.

542 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 542

Quiz Answers 543

A
A server-side wallet has little or no software to be downloaded onto a computer.
Instead, the wallet vendor provides a Web site where the customer can enter his
information, which is then stored encrypted on the wallet vendor’s servers. The
wallet vendor submits the customer’s information upon the customer’s request.

2. What is the difference between a SmartCard and a wallet?

A SmartCard is a computer that is the size of a credit card, whereas a wallet is a
piece of software. SmartCards can be used instead of (or in addition to) usernames
and passwords to help secure client-side or server-side wallets. They can also run
client-side wallets or “electronic purse” software. Electronic purse software enables
consumers to download small amounts of electronic money directly into the
SmartCard, and transfer the electronic money to merchants or other electronic
purse users without involving a bank or other clearing company.

3. What is the ECML standard?

The ECML standard is a defined set of names for the <INPUT> fields on an elec-
tronic order form. It facilitates the compatibility of electronic wallets with E-
Commerce sites.

Answers for Day 21
Quiz

1. What is a “spider”?

There is no central index to the Web. A spider is the part of a search engine that
tries to finds as many Web sites as it can, by starting with a group of known Web
pages and following all the links it can find.

2. What is a relevance metric?

A relevance metric computes how well a particular page answers a query string. It
takes into account the structure and contents of the page, sometimes including
<TITLE>, <META name=”keywords”>, and <META name=”description”> tags.

3. What is a Web ring?

A Web ring is an alternative to search engines and Web directories that makes
browsing the Web on particular topics easier. A particular Web ring is an informal
association of Web sites on a single topic that enables a surfer to navigate between
all the sites in the ring.

 29 0672318989 app a 3/30/00 8:33 AM Page 543

4. What is a link exchange?

A link exchange enables Web site owners to cross-promote their sites with banner
advertisements. For each banner ad the Web site owner displays, he gets a fraction-
al credit toward displaying his own banner on another exchange member’s Web
site.

544 Appendix A

 29 0672318989 app a 3/30/00 8:33 AM Page 544

APPENDIX B
Frequently Asked
Questions About Active
Server Pages

This appendix addresses the questions that are most frequently posted on the
Active Server Pages newsgroups and the ASPSite (the companion Web site to
this book at www.aspsite.com). When appropriate, references are provided to
specific chapters in this book where more information can be found. For updat-
ed information, please visit http://www.aspsite.com/answers.

Installation Questions
Which Operating Systems Support Active Server
Pages?
Active Server Pages runs natively on Microsoft Windows NT Server 4.0,
Microsoft Windows NT Workstation 4.0 with Peer Web Services, and Windows
95/98 with the Personal Web Server.

 30 0672318989 app b 3/30/00 8:31 AM Page 545

Using Chili!Soft’s Chili!ASP (see http://www.chilisoft.com), you also can use Active
Server Pages with SUN Solaris and IBM AIX. Chili!ASP enables Active Server Pages to
run on Apache servers, Netscape Enterprise and FastTrack servers, the Lotus Domino Go
Webserver, and O’Reilly Website Pro.

How Do I Get the Latest Version of Internet
Information Server and Active Server Pages?
You can download the latest version of Active Server Pages and Internet Information
Server at the Microsoft Web site. Go to http://www.microsoft.com/iis and select
Downloads. Download the Windows NT Server 4.0 Option Pack. You will be provided
with the option of downloading either the Windows NT or Windows 95/98 version of the
Option Pack.

How Do I Get the Latest Version of the ActiveX Data
Objects (ADO)?
The latest version of the ActiveX Data Objects (ADO) is available at the Microsoft Web
site. Go to http://www.microsoft.com/data and download the Microsoft Data Access
Components (MDAC).

General Scripting Questions
How Do I Add a Quotation Mark to a VBScript String?
There are two ways to add a quotation mark to a VBScript string:

myVar = “He said, “”Hello!”” “
myVar = “He said, “ & CHR(34) & “Hello!” & CHR(34)

The first method uses two quotation marks in a row to create a single quotation mark.
The second method uses the ASCII value of the quotation mark character.

How Can I Break a Single VBScript Statement into
Multiple Lines?
You can break a single VBScript statement into multiple lines by using the _ underscore
character. For example, the string in the following statement is broken into several lines
of code by using the &_ character combination:

myVar = “When in the Course of human events, “ &_
“it becomes necessary for one people to “ &_
“dissolve the political bands which have “ &_

546 Appendix B

 30 0672318989 app b 3/30/00 8:31 AM Page 546

Frequently Asked Questions About Active Server Pages 547

B

“connected them with another, and to assume “ &_
“among the powers of the earth, the separate “ &_
“and equal station to which the Laws of “ &_
“Nature and of Nature’s God entitle them, “ &_
“a decent respect to the opinions of “ &_
“mankind requires that they should declare “ &_
“the causes which impel them to the separation. “

What Is the Proper Method of Comparing Strings in
VBScript?
When you compare two strings with the identity operator, the comparison is case sensi-
tive. For example, the following statement returns the value false:

<%= “apple” = “APPLE” %>

There are two methods of performing a case-insensitive comparison of two strings:

<%= StrComp(“apple”, “APPLE”, vbTextCompare)%>
<%= UCASE(“apple”) = UCASE(“APPLE”) %>

The first method uses the VBScript StrComp function with the vbTextCompare constant.
The second method forces both strings into uppercase.

You should be aware that several other VBScript string functions, such as the InStr and
Replace functions, are also case sensitive. To perform case-insensitive comparisons with
these functions, you must use the vbTextCompare constant.

How Can I Re-enable Errors After Using ON ERROR
RESUME NEXT?
The VBScript ON ERROR RESUME NEXT statement suppresses errors in your script. If you
include the statement outside any functions or subroutines, the statement will apply to
every statement that follows it (otherwise, it will apply only within the function or sub-
routine). To re-enable the reporting of errors, use the ON ERROR GOTO 0 statement like
this:

<%
ON ERROR RESUME NEXT
‘ The following error is ignored
fakeOBJ.Blah
ON ERROR GOTO 0
‘ The following error is reported
fakeOBJ2.Blah
%>

 30 0672318989 app b 3/30/00 8:31 AM Page 547

How Can I Prevent My Script from Timing Out?
By default, an Active Server Page script will stop executing and time out after 90 sec-
onds. If you have a long running script, the script may stop executing too early. You can
extend the amount of time a script is allowed to run by using the ScriptTimeout proper-
ty of the Server object. Here’s an example:

<% Server.ScriptTimeout = 200 %>

This statement changes the timeout period to 200 seconds.

When Do I Need to Explicitly Convert a Variable to a
Particular Data Type?
If you are comparing numbers or dates and times and there is a danger that VBScript
might interpret the values as strings, you should use one of the VBScript conversion
functions. For example, suppose an HTML form contains two input boxes for two num-
bers, and you execute the following script:

<%
firstNum = Request(“firstNum”)
secondNum = Request(“secondNum”)
%>
<%=firstNum > secondNum %>

If you enter 32 for the first number and 223 for the second number into the form, the
script will output the wrong result. The script will return the value TRUE because the
string 32 is greater than the string 223, even though the number is not. To force an inte-
ger comparison, rather than a string comparison, use a script like this:

<%
firstNum = CInt(Request(“firstNum”))
secondNum = CInt(Request(“secondNum”))
%>
<%=firstNum > secondNum %>

The CInt function converts a value to the Integer subtype (also see the CDate, CCur,
IsNumeric, and IsDate functions).

When Should I Pass a Variable by Value and When by
Reference?
When you pass a variable by value to a subroutine or function, a new instance of the vari-
able is created. Any changes made to the value of the variable do not affect the value of
the original variable. On the other hand, when you pass a variable by reference, changes
made to the variable do affect the value of the original variable. Here’s an example:

548 Appendix B

 30 0672318989 app b 3/30/00 8:31 AM Page 548

Frequently Asked Questions About Active Server Pages 549

B

<%
SUB addOne(ByVal fvar, ByRef svar)
fvar = fvar + 1
svar = svar + 1

END SUB
firstvar = 0
secondvar = 0
addOne firstvar, secondvar
%>

After this script is executed, the variable named firstvar has the value 0 and the vari-
able named secondvar has the value 1.

How Can I Add a Space Between the Output of Two
Variables?
For some mysterious reason, when you output two variables in a row in an Active Server
Page, any spaces that appear between the variables will disappear. For example, the fol-
lowing script outputs “AndrewJones” rather than “Andrew Jones”:

<%
fname = “Andrew”
lname=”Jones”
%>
<%=fname%> <%=lname%>

The easiest way to get around this problem is to use a script like the following:

<%
fname = “Andrew”
lname=”Jones”
%>
<%=fname & “ “ & lname%>

Does Active Server Pages Support Dynamic Includes?
Some server-side scripting environments, such as Cold Fusion, support dynamic
includes. A dynamic include enables you to use a variable for the name of the file to
include in a page. Active Server Pages does not support dynamic includes. The following
script will not work:

<%
myFile = “firstpage.asp”
%>
<!-- #INCLUDE FILE=”<%=myFile%>” -->

This include directive will attempt to include a file named “<%=myFile%>”, which proba-
bly does not exist. The problem is that all server-side directives, including the #INCLUDE
directive, are processed before Active Server Page scripts. If you must dynamically

 30 0672318989 app b 3/30/00 8:31 AM Page 549

include different pages within an Active Server Page, consider using a script like the fol-
lowing:

<%
myFile = “firstpage.asp”
if myFile = “firstpage.asp” then
%>
<!-- #INCLUDE FILE=”firstpage.asp” -->
<%
end if
if myFile = “secondpage.asp” then
%>
<!-- #INCLUDE FILE=”secondpage.asp” -->
<%
end if
if myFile = “thirdpage.asp” then
%>
<!-- #INCLUDE FILE=”thirdpage.asp” -->
<%
end if
%>

This script conditionally displays one of three different pages. The version of Active
Server Pages bundled with IIS 5.0 will include better methods for dynamically including
files.

How Do I Use the Option Explicit Statement in an
Active Server Page?
The Option Explicit statement forces you to declare all your variables. Using this
statement can make it easier to program complicated Active Server Pages because mis-
spelled variable names will generate errors.

You must use the Option Explicit statement before any other VBScript statement or
HTML content in a script. If you don’t, you’ll receive an error like the following:

Microsoft VBScript compilation error ‘800a0400’
Expected statement
/test.asp, line 5
Option Explicit
^

Here’s an example that uses the Option Explicit statement correctly:

<Option Explicit %>
<html>
<head><title>My Page</title></head>
<body>
<%

550 Appendix B

 30 0672318989 app b 3/30/00 8:31 AM Page 550

Frequently Asked Questions About Active Server Pages 551

B

DIM myVar
myVar = “Hello!”
%>
</body>
<html>

Session and Application Variables Questions
Why Do Session Variables Sometimes Fail to Work?
Session variables depend on browser cookies. If a browser does not support cookies, or a
user has turned off cookies or the user’s cookie file is corrupted, Session variables will
not work.

How Can I Remove an Application Variable?
The current version of Active Server Pages, included with IIS 4.0, does not contain a
method for removing Application variables. After you create one, it remains in memory
until the Internet Service is stopped, the Global.asa file is changed, or the current appli-
cation is unloaded.

The version of Active Server Pages included with IIS 5.0, on the other hand, includes
two new methods for removing Application variables: the Remove and RemoveAll
methods.

File Questions
How Do I Detect Whether a File Exists?
You can check whether a file exists by using the FileExists method of the
FileSystemObject. The following script detects whether a file named test.txt exists:

<%
Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
if fs.FileExists(“c:\test.txt”) then
Response.Write “File Exists!”

else
Response.Write “No File!”

end if
%>

 30 0672318989 app b 3/30/00 8:31 AM Page 551

How Can I Automatically Display a List of Files in a
Directory?
You can display a list of files in a folder by using the FileSystemObject and the Folder
object like this:

<%
Set fs = Server.CreateObject(“Scripting.FileSystemObject”)
Set folder = fs.GetFolder(“c:\myfolder”)
For Each thing In folder.Files
Response.Write thing.name & “
”

Next
%>

This script lists the names of all the files in a folder named myfolder located on the c:
drive.

Image Questions
How Can I Store an Image in a Database Table?
Although you can store an image in a SQL Server BLOB column, it is almost always
better to store the URL of an image in a database table rather than the image itself.
(Storing an image in a database table places unnecessary work on your database server.)
For example, the following script displays several images in a row by retrieving the URL
of each image from a database table named myImages:

<%
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL”
mySQL = “SELECT image_URL from myImages”
Set RS = Con.Execute(mySQL)
While Not RS.EOF
%>
<img src=”<%=RS(“image_URL”)%>”>
<%
RS.MoveNext
Wend
%>

How Can I Dynamically Generate a Graph or Image in
an Active Server Page?
Several third-party Active Server Pages components enable you to dynamically create
custom images.

552 Appendix B

 30 0672318989 app b 3/30/00 8:31 AM Page 552

Frequently Asked Questions About Active Server Pages 553

B

Browser Questions
How Do I Detect the Type of Browser a Person Is
Using to Visit My Web Site?
The USER-AGENT header indicates the type of browser. The following script captures the
value of the USER-AGENT header from the ServerVariables collection and displays it:

<%
browserType = Request.ServerVariables(“HTTP_USER_AGENT”)
Response.WRite browserType
%>

How Can I Detect the Page From Which a Person
Originated?
The REFERER header contains the URL of the last page the person visited. This header
can be retrieved from the ServerVariables collection. The following script displays the
value of the REFERER header:

<%
browserType = Request.ServerVariables(“HTTP_REFERER”)
Response.WRite browserType
%>

ActiveX Data Objects Questions
Why Do I Sometimes Receive an Error When Using the
Connection Object to Execute a SQL String?
Consider the following script. It retrieves a user’s first name from an HTML form and
inserts it into a database table:

<%
firstname = Request(“firstname”)
mySQL = “INSERT myTable (firstname) VALUES “
mySQL = mySQL & “(‘“ & firstname & “‘)”
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL”
Con.Execute mySQL
%>

Suppose, however, that the user entered a single quote when entering a first name. For
example, the user entered the name O’Reilly. Because SQL uses a single quote to mark
the beginning and end of a string value, the single quote would generate an error.

 30 0672318989 app b 3/30/00 8:31 AM Page 553

Before entering a string into a database table with the Connection object, you must first
translate any single quotes into two quotes in a row. The following script avoids errors
caused by a quotation mark:

<%
FUNCTION fixQuotes(theVar)
fixQuotes = REPLACE(theVar, “‘“, “‘’”)

END FUNCTION
firstname = Request(“firstname”)
firstname = fixQuotes(firstname)
mySQL = “INSERT myTable (firstname) VALUES “
mySQL = mySQL & “(‘“ & firstname & “‘)”
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL”
Con.Execute mySQL
%>

In this example, the fixQuotes function replaces any single quote with two quotes.
Doubling the quotes enables you to enter single quotes into a database table.

How Do I Retrieve a TEXT Field in an Active Server
Page?
If you do not take special precautions when retrieving a TEXT field from a database
table, the value of the TEXT field might be truncated. If you are using a forward-only
cursor type, you should list the TEXT field as the very last field in your select list.
Alternatively, consider using a richer cursor type when opening a Recordset that contains
a TEXT field. The following script will correctly retrieve and display a TEXT field:

<!-- #INCLUDE VIRTUAL=”/adovbs.inc” -->
<%
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL”
Set RS = Server.CreateObject(“ADODB.RecordSet”)
RS.CursorType = adOpenDynamic
RS.Open “Select TextColumn FROM mytable”, Con
%>

Why Does RecordCount Always Return the Value -1?
The RecordCount property returns the number of rows in a Recordset after it has been
opened. You cannot use this property with a forward-only cursor when using SQL Server
(it will always return -1). To use this property, open a Recordset with a richer cursor type
like this:

<!-- #INCLUDE VIRTUAL=”/adovbs.inc” -->
<%
mySQL = “SELECT * FROM WebUsers”

554 Appendix B

 30 0672318989 app b 3/30/00 8:31 AM Page 554

Frequently Asked Questions About Active Server Pages 555

B

Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL”
Set RS = Server.CreateObject(“ADODB.Recordset”)
RS.CursorType = adOpenDynamic
RS.Open mySQL, Con
Response.Write RS.RecordCount
%>

Why Do I Receive an Error Whenever I Try to Update
the Value of a Field in a Recordset?
By default, when you open a Recordset, it is opened with a forward-only cursor and
read-only lock type. To update a Recordset, you must open a Recordset that is not read-
only. Here is an example:

<!-- #INCLUDE VIRTUAL=”/adovbs.inc” -->
<%
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL”
Set RS = Server.CreateObject(“ADODB.Recordset”)
RS.LockType = adLockOptimistic
RS.Open “SELECT * FROM Webusers WHERE 1<>1”, Con
RS.AddNew
RS(“username”) = “Andrew Jones”
RS(“password”) = “won’t say”
RS.Update
%>

This script opens a Recordset with an optimistic locking type and adds a new record to a
table named Webusers.

How Can I Limit the Number of Rows Returned by a
Database Query?
If you are using Microsoft SQL 7.0 or Microsoft Access, you can use the SQL TOP key-
word to limit the number of records returned. Otherwise, if you are using Microsoft SQL
6.5, use the MaxRecords property of the Recordset object like this:

<%
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL;DATABASE=pubs”
Set RS = Server.CreateObject(“ADODB.Recordset”)
RS.MaxRecords = 15
RS.Open “SELECT * FROM Authors ORDER BY au_lname”, Con
While not RS.EOF
Response.Write RS(“au_lname”) & “
”
RS.MoveNext

Wend
%>

 30 0672318989 app b 3/30/00 8:31 AM Page 555

How Do I Retrieve the Value from a SQL Statement
That Uses COUNT(*), MAX, MIN, or @@IDENTITY?
There are two methods that you can use to retrieve the value from a SQL function or a
SQL global variable. You can either use an alias for the value or refer to the value by its
ordinal position in the Recordset. The following example displays the value returned
from SQL COUNT(*) using both methods:

<%
mySQL = “SELECT COUNT(*) theCount from Authors”
Set Con = Server.CreateObject(“ADODB.Connection”)
Con.Open “FILE NAME=c:\myDataLink.UDL;DATABASE=pubs”
SET RS = Con.Execute(mySQL)
Response.Write RS(“theCount”)
Response.Write RS(0)
%>

The first Response.Write statement uses the alias theCount. The second
Response.Write statement uses the ordinal position of the value.

How Do I Retrieve an Output Parameter from a SQL
Stored Procedure Within an Active Server Page Script?
To retrieve an output parameter or a return code, you must use the ADO Command and
Parameter objects.

Form and Query String Questions
What Causes the Value of a Form Field to Become
Truncated?
HTML uses quotation marks to mark the beginning and end of a value. So, if a variable
contains quotation marks in its value, the value of the variable will be truncated when
displayed. For example, the HTML form in the following script will not display
correctly:

<%
myVar = “He said, “”Hello!”””
%>
<form method=”post” action=”page.asp”>
<input name=”myfield” type=”text”
value=”<%=myVar%>”>

556 Appendix B

 30 0672318989 app b 3/30/00 8:31 AM Page 556

Frequently Asked Questions About Active Server Pages 557

B

<input type=”submit” value=”Enter”>
</form>

Instead of displaying the string He said, “Hello!” as the value of the form element, the
value He said, appears. Every character after and including the “ is cut off. To get
around this problem, HTML encode the string before displaying it, like this:

<%
myVar = Server.HTMLEncode(“He said, “”Hello!”””)
%>
<form method=”post” action=”page.asp”>
<input name=”myfield” type=”text”
value=”<%=myVar%>”>

<input type=”submit” value=”Enter”>
</form>

How Can I Include Spaces or Other Special Characters
in a Query String?
To include spaces or other special characters—such as periods and quotation marks—in a
query string, URL encode the query string. The following example correctly encodes a
query string before displaying it:

<%
myVar = Server.URLEncode(“He said, “”Hello!”””)
%>
<a href=”page.asp?qvar=<%=myVar%>”>Go

Questions About Active Server Pages Web
Sites

Do Any Internet Service Providers Host Active Server
Pages?
Several good Internet service providers host sites that use Active Server Pages and
SQL Server. Two examples are Bitshop (www.bitshop.com) and Data Return
(www.datareturn.com). Both companies enable you to administer an Active Server
Page site remotely using Microsoft Visual InterDev and Microsoft SQL Server
Enterprise Manager.

 30 0672318989 app b 3/30/00 8:31 AM Page 557

What Good Web Sites Have Information on Active
Server Pages?
The number of good Web sites that have information on Active Server Pages is growing
quickly. Here is a list of some of the Web sites that I visit on a weekly basis:

www.aspsite.com The companion Web site to this book.

www.15seconds.com This Web site has thousands of pages of information
on Active Server Pages.

www.activeserverpages.com This Web site has a great component section and sev-
eral interesting articles.

www.asphole.com This Web site contains lists of components and arti-
cles related to Active Server Pages.

www.swynk.com Good site for information on Active Server Pages and
SQL Server.

www.microsoft.com/iis Microsoft’s Internet Information Server site.

558 Appendix B

 30 0672318989 app b 3/30/00 8:31 AM Page 558

APPENDIX C
SQL Reference

This appendix provides a brief reference for the Microsoft SQL Server state-
ments and stored procedures that you will find yourself using most often while
programming Active Server Pages. However, SQL is a complicated language,
and this appendix cannot even begin to cover all its nuances. The syntax of
many of the SQL statements and functions has been simplified in this appendix.
To learn everything you’d ever need to know about using SQL with Microsoft
SQL Server, rush to your local bookstore and buy Microsoft SQL Server 7.0
Unleashed by Greg Mable, et al. (1999, Sams Publishing, ISBN 0-672-31227-1).

SQL Statements
The following SQL statements enable you to create and remove database tables
and stored procedures, retrieve data from a database table, modify table data,
and grant permissions on database objects.

SELECT
SELECT [TOP [PERCENT]] select_list
FROM table_source
WHERE search_condition
ORDER BY order_by_expression

 31 0672318989 app c 3/30/00 8:32 AM Page 559

The SELECT statement is used to retrieve one or more rows from a database table. Instead
of listing particular column names in the select_list, you can also use * as a wildcard
character to represent all columns.

Examples
• Using SELECT to retrieve all the columns and all the rows from the Authors table:

SELECT * FROM Authors

• Using SELECT to retrieve the last name of the author who has the first name
Andrew:
SELECT au_lname
FROM Authors
WHERE au_fname = ‘Andrew’

• Using SELECT to retrieve a list of publishers and book titles. The results are ordered
by the name of the publisher:
SELECT pub_name, title
FROM publishers,titles
WHERE publishers.pub_id = titles.pub_id
ORDER BY pub_name

• Using SELECT to retrieve the names of the first 10 authors from the Authors table
in order of the last name.

SELECT TOP 10 au_fname, au_lname
FROM Authors
ORDER BY au_lname

INSERT
INSERT table_name (column_list)
VALUES (value_list)

The INSERT statement is used to insert one or more rows into a database table (Microsoft
Access uses INSERT INTO).

Examples
• Using INSERT to add a new username and password to a Passwords table.

INSERT Passwords (username, password)
VALUES (‘Andrew’, ‘Jones’)

• Using INSERT with SELECT to insert multiple rows into the newPasswords table
from the oldPasswords table:

INSERT newPassword (username, password)
SELECT username, password
FROM oldPasswords

560 Appendix C

 31 0672318989 app c 3/30/00 8:32 AM Page 560

SQL Reference 561

C

UPDATE
UPDATE table_name
SET column_name = value
WHERE search_condition

The UPDATE statement is used to update one or more rows in a database table.

Examples
• Using UPDATE to change the password in every row in a table named Passwords

where the username column has the value Andrew Jones:
UPDATE Passwords
SET password = ‘secret’
WHERE username = ‘Andrew Jones’

• Using UPDATE to change the values of multiple columns all at once:

UPDATE Passwords
SET username = ‘Bill Gates’,

password = ‘Billions’
WHERE username = ‘Andrew Jones’

DELETE
DELETE table_name
WHERE search_condition

The DELETE statement is used to delete one or more rows from a database table.

Example
• Using DELETE to remove all the rows from the Passwords table in which the pass-
word column has the value secret:

DELETE Passwords
WHERE password = ‘secret’

TRUNCATE TABLE
TRUNCATE TABLE table_name

This statement efficiently removes all the rows from a table.

Example
• Using TRUNCATE TABLE to remove all the rows from the Passwords table:

TRUNCATE TABLE Passwords

 31 0672318989 app c 3/30/00 8:32 AM Page 561

CREATE TABLE
CREATE TABLE table_name
(column_name data_type [,...n])

The CREATE TABLE statement is used to create a new database table. See the later section,
“SQL Server Data Types,” for a list of data types that you can use when defining the
columns for a table.

Examples
• Using CREATE TABLE to create a table named Passwords that contains usernames

and passwords:
CREATE TABLE Passwords
(username VARCHAR(50), password VARCHAR(50))

• Using CREATE TABLE to create a table with an IDENTITY column:
CREATE TABLE WebUsers
(user_id INT IDENTITY, username VARCHAR(50))

• Using CREATE TABLE to create a table with a column with a default value of the
current data and time:

CREATE TABLE WebUsers
(
username VARCHAR(50),
entrydate DATETIME DEFAULT GETDATE()

)

CREATE PROCEDURE
CREATE PROCEDURE procedure_name
[@parameter_name data_type [OUTPUT]]
[,...n]
AS
sql_statement [,...n]

The CREATE PROCEDURE statement is used to create a new SQL Server stored procedure.

Examples
• Using CREATE PROCEDURE to create a new stored procedure that retrieves all the

rows from the Passwords table:
CREATE PROCEDURE getPasswords
AS
SELECT * FROM Passwords

• Using CREATE PROCEDURE to create a new stored procedure that accepts an input
parameter and returns an output parameter:

562 Appendix C

 31 0672318989 app c 3/30/00 8:32 AM Page 562

SQL Reference 563

C

CREATE PROCEDURE getUsername
(
@password VARCHAR(50),
@username VARCHAR(50) OUTPUT

)
AS
SELECT @username = username
FROM Passwords
WHERE password = @password

GRANT
GRANT ALL | permission
ON table | stored_procedure
TO security_account

The GRANT statement assigns permissions to use a database object to a database user or
role.

Examples
• Using GRANT to give SELECT permission to the database user named WebUser for the

table named Passwords:

GRANT SELECT ON Passwords TO WebUser

• Granting all permissions on a table named Passwords to the public role.

GRANT ALL ON Passwords TO public

DROP TABLE
DROP TABLE table_name

This statement permanently removes a database table.

Example
• Using DROP TABLE to permanently remove a table named Passwords:

DROP TABLE Passwords

DROP PROCEDURE
DROP PROCEDURE procedure_name

This statement permanently removes a stored procedure.

Example
• Using DROP PROCEDURE to permanently remove a stored procedure named
getPasswords:

DROP PROCEDURE getPasswords

 31 0672318989 app c 3/30/00 8:32 AM Page 563

EXECUTE
EXECUTE
[@return_code =] procedure_name
[@parameter = value | @variable [OUTPUT]]
[,...n]

The EXECUTE statement is used to run a SQL stored procedure.

Examples
• Using EXECUTE to execute the getPasswords stored procedure:

EXECUTE getPasswords

• Using EXECUTE to execute a stored procedure named getValue that returns a return
code:
DECLARE @returnCode INT
EXECUTE @returnCode = getValue
SELECT @returnCode

• Using EXECUTE to execute a stored procedure that has both an input parameter and
an output parameter:

DECLARE @password VARCHAR(20)
EXECUTE getPassword ‘Andrew Jones’, @password OUTPUT
SELECT @password

USE
USE database_name

The USE statement is used to specify the database in which subsequent SQL statements
will be executed.

Example
• In this example, the USE statement switches the database to the master database.

The sp_help statement is used to display all the objects in the database.

USE Master
sp_help

SQL Functions
All the following functions can be used with the SELECT statement. The majority of these
functions can be used to retrieve summary information about the data stored in a table
column.

564 Appendix C

 31 0672318989 app c 3/30/00 8:32 AM Page 564

SQL Reference 565

C

GETDATE
GETDATE()

This function returns the current date and time.

Example
• Using GETDATE() to display the current date and time:

SELECT GETDATE()

AVG
AVG(column_name)

The AVG function is used to retrieve the average value for a table column.

Example
• Using AVG to return the average number of times that all users have visited a Web

site.

SELECT AVG(user_numvisits)
FROM WebUsers

COUNT
COUNT(* | column_name)

The COUNT function is used to retrieve either a count of the number of rows in a database
table or a count of the number of rows in which a certain column has a value.

Examples
• Using COUNT to return the number of rows in a table named WebUsers:

SELECT COUNT(*)
FROM WebUsers

• Using COUNT to return the number of rows in a table named WebUsers where the
username column does not have a NULL value:

SELECT COUNT(username)
FROM WebUsers

MAX
MAX(column_name)

The MAX function is used to retrieve the maximum value for a table column.

 31 0672318989 app c 3/30/00 8:32 AM Page 565

Example
• Using MAX to return the maximum number of times that any user has visited a Web

site:

SELECT MAX(user_numvisits)
FROM WebUsers

MIN
MIN(column_name)

The MIN function is used to retrieve the minimum value for a table column.

Example
• Using MIN to return the minimum number of times that any user has visited a Web

site:

SELECT MIN(user_numvisits)
FROM WebUsers

SUM
SUM(column_name)

The SUM function is used to add the values of a column.

Example
• Using SUM to return total number of times that a Web site has been visited:

SELECT SUM(user_numvisits)
FROM WebUsers

SQL Global Variables
The following two global variables can be used with the SELECT statement.

@@IDENTITY
The SQL Server global @@IDENTITY variable contains the value of an IDENTITY column
after a row has been inserted.

Example
• This example assumes that the table named WebUsers has an IDENTITY column

named user_id. After a row is inserted into the table, the value of the IDENTITY
column for the new row is returned with the @@IDENTITY variable:

566 Appendix C

 31 0672318989 app c 3/30/00 8:32 AM Page 566

SQL Reference 567

C

INSERT WebUsers (username) VALUES (‘Andrew Jones’)
SELECT @@IDENTITY

@@ROWCOUNT
This variable contains a value representing the number of rows that the last statement
affected.

Example
• This example displays the number of rows that were modified by an UPDATE state-

ment using the @@ROWCOUNT variable:

UPDATE Passwords
SET username = ‘Bill Gates’
WHERE password = ‘Billions’
SELECT @@ROWCOUNT

SQL Server Stored Procedures
The following two system stored procedures can be used to retrieve information about
the objects in a database.

sp_help
sp_help [table_name | procedure_name]

The sp_help system stored procedure is used to display information on database objects.
When used without a table or procedure name, it lists the properties of all the objects in
the current database.

Examples
• Using sp_help to display information about the WebUsers table (Returns informa-

tion including the table columns, indexes and constraints):

sp_help WebUsers

• Using sp_help to display information about the stored procedure named
getAuthors (Returns information including the date and time the procedure was
created):

sp_help getAuthors

sp_helptext
sp_helptext procedure_name

The sp_helptext system stored procedure can be used to display the SQL statements
that constitute a SQL stored procedure.

 31 0672318989 app c 3/30/00 8:32 AM Page 567

Examples
• Using sp_helptext to display the contents of the getAuthors stored procedure:

sp_helptext getAuthors

• Using sp_helptext to display the contents of the sp_helptext system stored pro-
cedure:

USE master
sp_helptext sp_helptext

SQL Server Data Types
You can use any of the data types in Tables D.1–D.6 when defining table columns or
local variables:

TABLE C.1 Character Data Types

Data Type Description

CHAR Fixed-length character data with a maximum size of 8,000 characters.

VARCHAR Variable-length character data with a maximum size of 8,000 characters.

TEXT Variable-length character data with a maximum size of 2,147,483,647 characters.

NCHAR Unicode fixed-length character data with a maximum size of 4,000 characters.

NVARCHAR Unicode variable-length character data with a maximum size of 4,000 characters.

NTEXT Unicode Variable-length character data with a maximum size of 1,073,741,823 char-
acters.

TABLE C.2 Numeric Data Types

Data Type Description

BIT Has the value 0 or 1.

INTEGER Integer data between –2,147,483,648 and 2,147,483,647.

SMALLINT Integer data between –32,768 and 32,767.

NUMERIC Fixed precision and scale numeric data between –10^38 –1 and 10^38 –1.

DECIMAL Same as NUMERIC

FLOAT Floating precision data type between –1.79E + 308 through 1.79E + 308.

REAL Floating precision data type between –3.40E + 38 through 3.40E + 38.

568 Appendix C

 31 0672318989 app c 3/30/00 8:32 AM Page 568

SQL Reference 569

C

TABLE C.3 Date and Time Data Types

Data Type Description

DATETIME Can have a value between January 1, 1753, and December 31, 9999 (accurate
to 3.33 milliseconds)

SMALLDATETIME Can have a value between January 1, 1900, through June 6, 2079 (accurate to
one minute)

TABLE C.4 Money Data Types

Data Type Description

MONEY Can have a value between –922,337,203,685,477.5808 and
922,337,203,685,477.5807.

SMALLMONEY Can have a value between –214,748.3648 and 214,748.3647.

TABLE C.5 Binary Data Types

Data Type Description

BINARY Fixed-length binary data with a maximum size of 8,000 bytes.

VARBINARY Variable-length binary data with a maximum size of 8,000 bytes.

IMAGE Variable-length binary data with a maximum size of 2,147,483,647 bytes.

TABLE C.6 Miscellaneous Data Types

Data Type Description

CURSOR Used with stored procedures that have a reference to a cursor as an OUTPUT
parameter.

TIMESTAMP Provides a database-wide unique identifier.

UNIQUEIDENTIFIER Provides a Globally Unique Identifier (GUID).

 31 0672318989 app c 3/30/00 8:32 AM Page 569

 31 0672318989 app c 3/30/00 8:32 AM Page 570

AbsolutePage property
(Recordset object), 134

abstracts, 499
Access, 11

disadvantages, 118
product catalog databases

connecting to, 93-95
creating, 89-90
manageproducts.asp

page, 100-102,
113-117

Products table, 91-93
records, adding, 95-100
retrieving information

from, 106-108
updating, 104-105,

109-112
upgrading to SQL

Server, 90
quotation marks, 102-104
starting, 90

access control, Internet
Service Manager, 379-384

Account page (order track-
ing), 260

account.asp page, 260-261
showorders.asp page,

262-263
showOrderStatus method,

263-264
accounts

Administrator, 331-332
CyberCash, 241-242

ACID test, 214
acquiring financial institu-

tions (CyberCash), 241
active customers, display-

ing, 64-65
Active Data Objects. See

ADOs
Active Server Pages. See

ASPs
Ad Rotator component, 16,

514-515
implementing, 516-517
redirection files, 515
schedule files, 515-516

Symbols

#INCLUDE directive, 70
“ (quotation marks), 24-25

Access databases and,
102-104

displaying, 24-25
HTML forms and,

112-113
<%=...%> output delim-

iters, 26
% (percent sign), 153
@TRANSACTION direc-

tive, 215, 234

A

Abandon method, 56-57
abandoned transactions,

467-468

INDEX

 32 0672318989 index 3/30/00 8:32 AM Page 571

ad targeting, 513
Add User script (database

authentication), 281-282
addCart.asp page, 206-211
addCookie method, 181
addForm method, 247
AddNew method, 201-202
addProduct.asp page,

97-100, 396-397
addresses (IP)

retrieving, 41-42
second IP addresses,

347-349
addUser method, 176-178,

488-489
administration

Administrator accounts,
331-332

ASP (Active Server Page)
administrative pages,
389

addProduct.asp,
396-397

adminPage.asp,
405-406

donePost.asp, 401-405
passwords, 390
Posting Acceptor,

391-395
storeFuncs.asp, 393
updateProduct.asp,

398-401
upload.asp, 393-394

FTP (File Transport
Protocol) Service, 385

anonymous access, 386
configuring, 386-387
CuteFTP, 389
file uploads, 387-389
installing, 385-386

Internet Service Manager
(HTML), 377-378

access restrictions,
379-384

installing, 378-379
remote administration

tasks, 384
Administrator accounts,

331-332
adminPage.asp page,

405-406
ADO (Active Data Objects)

database updates, 200
adding records,

201-202
deleting records,

203-204
editing records,

202-203
Recordset object, 119

displaying records in,
119-121

methods, 148-149,
201-203

opening, 121-122
properties, 122-123,

134, 200-201
transactions, 218-219, 234

example of, 218-219
marking end of, 218
stopping, 218

Advanced Server (Windows
2000), 11

advertising, 495-496
Ad Rotator component,

514-515
implementing, 516-517
redirection files, 515
schedule files, 515-516

ad targeting, 513
affiliate programs, 514

banner ads, 510
link exchanges,

510-512
purchasing, 513

bulk mailings, 428
marketing, 438
message composition,

432-435
recipients, 429-432
sending messages,

435-437
Children’s Advertising

Review Unit, 342-343
favorite product categories

(customized ads), 307
default.asp page modi-

fications, 315-316
displaying featured

products, 313-315
retrieving, 310-311
saving, 311-312
selecting, 308-310
storing, 307
updating, 312

reward/loyalty programs,
513-514

search engines, 496
listing sites with,

496-508
spidering process, 496

Web rings, 508-510
affiliate programs, 514
algorithms

Luhn check, 189
popularity algorithms,

507-508
alreadyUser method, 180
analyzing site usage logs,

455
ASPs (Active Server

Pages), 462-464
commercial log-analysis

tools, 464

572 ad targeting

 32 0672318989 index 3/30/00 8:32 AM Page 572

anonymous access
FTP (File Transport

Protocol) Service, 386
Posting Acceptor, 393

appending text files, 81
Application arrays, 60

creating, 60
modifying elements in, 61

application fees (banks), 241
Application objects, 15
Application variables, 57

creating, 57-58
hit counter applications,

58-60
locking, 60
removing from memory

Remove method, 61
RemoveAll method, 62

storing arrays in, 60-61
Application_OnEnd events,

63
Application_OnStart events,

63
applying for server certifi-

cates, 186-187
arrays

Application arrays, 60
creating, 60
modifying elements in,

61
localCart, 198
Session arrays, 198-199

changing value of, 55
creating, 54-55

asLockBatchOptimistic
value (Recordset
LockType property), 201

asLockOptimistic value
(Recordset LockType
property), 201

asLockPessimistic value
(Recordset LockType
property), 201

asLockReadOnly value
(Recordset LockType
property), 201

asp filename extension, 71
ASPError objects, 15
ASPs (Active Server Pages),

13-14. See also names of
specific pages

administrative pages, 389
addProduct.asp,

396-397
adminPage.asp,

405-406
donePost.asp, 401-405
passwords, 390
Posting Acceptor,

391-395
storeFuncs.asp, 393
updateProduct.asp,

398-401
upload.asp, 393-394

components
Ad Rotator, 16,

514-517
Browser Capabilities,

16
Content Linking, 16
definition of, 15
File Access. See File

Access component
third-party compo-

nents, 17
current page name, retriev-

ing, 39-40
customer survey form, 84

form data, saving,
85-86

marketing form, 84

database access, 17
definition of, 13
files

appending, 81
copying, 81-82
creating, 78-79
deleting, 82
including, 69-74
listing, 83-84
moving, 82
reading, 79-80
redirection, 75-76
verifying existance of,

83
writing to, 79

last page visited, retriev-
ing, 41

limitations of, 18
objects. See names of

specific objects
operating system compata-

bility, 18
physical path, 40-41
scripting languages, 14
security, 428-429
sending email from, 415

CDONTS constants,
417-419

HTML mail, 423-428
Newmail.Send method,

415-416
on errors, 419-420
to new users, 421-422
verbose option,

416-417
SSL (Secure Sockets

Layer) and, 187-188
transactional pages, 214

error handling,
215-218

example of, 215

ASPs 573

 32 0672318989 index 3/30/00 8:32 AM Page 573

AtEndOfLine property
(FileSystemObject object),
80

AtEndOfStream property
(FileSystemObject object),
80

Auth/PostAuthCapture
model (CyberCash), 254

AuthCapture model
(CyberCash), 254

authentication
database authentication,

276-277
Add User scripts,

281-282
example of, 284-285
login pages, 278-280
login validation,

283-284
registration forms, 278
server load, 295
user authentication,

282
HTTP (Hypertext

Transport Protocol), 274
basic authentication,

274, 288
digest authentication,

274
enabling, 275-276
integrated authentica-

tion, 274
when to use, 276

hybrid
decoding AUTHO-

RIZATION headers,
290-292

forcing password
dialogs, 288-289

hybrid.asp example,
292-294

security information, pass-
ing from page to page,
285

cookies, 286
hidden form fields, 287
query strings, 286-287
Session variables, 286

AUTHORIZATION head-
ers, decoding, 290

Decode method, 291-292
UUEncoding, 290-291

authorize method, 250
Authorize.asp page, 245-248
Authorize.Net WebLink ser-

vice, 238
authorizeFunction.asp page,

249-250
authorizing transactions

(CyberCash), 245
Authorize.asp page,

245-248
authorizeFunction.asp

page, 249-250
MessageBlock component,

245
processCards.asp page,

250-252
processCards2.asp page,

252-253
Socket component, 245

B

banks (CyberCash), 241
banner ads, 510

link exchanges, 510-512
purchasing, 513

base64 text, decoding, 290
Decode method, 291-292
UUEncoding, 290-291

basic authentication
(HTTP), 274, 288

batches of email. See bulk
mailings

BBBOnline privacy pro-
gram, 341

beginning ADO (ActiveX
Data Object) transactions,
218

BeginTrans method, 218
Better Business Bureau

Children’s Advertising
Review Unit, 342-343

Reliability Program,
338-339

bots, 456
breakpoints

definition of, 354
setting, 357

Browser Capabilities com-
ponent, 16

browsers
cookies

adding, 50-51
displaying, 52
reading, 51-52
storing, 49

redirecting, 75
alternatives to, 76
disadvantages of, 75-76
example of, 75

retrieving type of, 42-43
built-in objects. See names

of specific objects
bulk mailings, 428

marketing, 438
message composition,

432-435
recipients, 429-432
sending messages,

435-437

574 AtEndOfLine property

 32 0672318989 index 3/30/00 8:32 AM Page 574

business transactions. See
transactions

business-to-business
E-Commerce, 8

buttons, radio, 33
buying banner ads, 513
Bytes Received property

(W3C Extended Log File
format), 453

Bytes sent property (W3C
Extended Log File
format), 453

C

c-ip element (W3C
Extended Log Files), 453

calculating shipping costs
iisCARTship component,

264-269, 272
sample application,

269-271
capturing

credit card transactions
(CyberCash), 254-256

errors, 366
CheckError method,

367-368
log files, 369-372
manageProducts.asp

page, 368-369
On Error Resume Next

statement, 366
Cart table, 170, 205
cart.asp page, 172-174, 205
cart_id column (Cart table),

205
cart_productID column

(Cart table), 205

cart_quantity column (Cart
table), 205

cart_userID column (Cart
table), 205

CARU (Children’s
Advertising Review Unit),
342-343

catalogs
administration. See admin-

istration
product catalog databases,

89
adding records to,

95-100
connecting to, 93-95
creating, 89-90
manageproducts.asp

page, 100-102,
113-117

Products table, 91-93
quotation marks,

102-104
retrieving information

from, 106-108
updating, 104-105,

109-112
upgrading to SQL

Server, 90
categories of products,

designing, 125-126
CatList.asp page, 124-126
CDONTS (Collaborative

Data Objects for NT
Server)

bugs, 414
constants, 417-419

certificate authorities, 186
Certificate Request Files,

185-186
Certificate Signing Requests

(CSRs), 185-186

certificates (server certifi-
cates)

applying for, 186-187
installing, 187

Certification Authorities,
336-337

changing. See editing
charge cards. See credit

card transactions
CheckError method, 367-

368
checkout pages (shopping

cart), 213
address/payment informa-

tion
retrieving, 220-221
updating, 221-224

customer items, transfer-
ring to Orders table,
224-226

order completion, 219-220
order processing, 226

order status values, 226
processOrders.asp

page, 227-234
checkpassword method, 174
Children’s Advertising

Review Unit, 342-343
Chili!Soft’s ChiliASP, 18
ChiliASP, 18
clauses (SQL)

ORDER BY, 122
WHERE, 121

cleanCCNum method, 180
click-throughs, 511
Client IP Address property

(W3C Extended Log File
format), 453

client processes, 387
client-server protocols, 387
client-side scripts, 408

client-side scripts 575

 32 0672318989 index 3/30/00 8:32 AM Page 575

client-side wallets, 469
advantages/disadvantages,

470-471
obtaining, 469-470

code listings. See listings
Collaborative Data Objects

for NT Server. See
CDONTS

collections
Form, 31
ServerVariables, 39
ShipInfo, 267

Column property
(FileSystemObject object),
80

columns
Cart table, 205
Products table, 91

CommitTrans method, 218
compareShip.asp page,

269-271
completing orders, 219-220

address/payment informa-
tion, 220-224

Orders table, transferring
information to, 224-226

component-based solutions
(credit card processing),
239-240. See also
CyberCash

components
Ad Rotator, 16, 514-515

implementing, 516-517
redirection files, 515
schedule files, 515-516

Browser Capabilities, 16
Content Linking, 16
definition of, 15
File Access, 16, 77

appending files, 81
copying files, 81-82

creating files, 78-79
customer survey form,

84
marketing form, 84
deleting files, 82
Drive object, 78
File object, 77
FileSystemObject

object, 77-83
Folder object, 77
listing files, 83-84
moving files, 82
permissions, 77
reading files, 79-80
saving form data,

85-86
TextStream object, 77,

80
verifying file existance,

83
writing to files, 79

iisCARTship, 264
installing, 265
instantiating, 265
methods, 266-269
properties, 265-266
sample application,

269-271
ShipInfo collection,

267
troubleshooting, 272

third-party components,
17

composeMsg.asp page, 434
configLoc variable

(CyberCash), 246
configuring

FTP (File Transport
Protocol) Service,
386-387

SMTP Service , 411-413

connecting to databases,
93-95

consumer-to-consumer
E-Commerce, 8

contants (CDONTS),
417-419

Content Linking compo-
nent, 16

converting UPS shipping
codes, 267

Cookie Central Web site, 48
Cookie property (W3C

Extended Log File for-
mat), 454

cookies, 48, 286. See also
Session variables

adding to customers’
browsers, 50-51

alternatives to, 66
Cookie Central Web site,

48
displaying, 52
persistent cookies, 49
reading, 49-52
session cookies, 48
storing, 49
support for, 50

cooperating with other
e-businesses

affiliate programs, 514
cooperative advertising,

510
link exchanges, 510-512
Web rings

definition of, 508
example of, 508-510

cooperative advertising,
510-512

CopyFile method, 81
copying text files, 81-82

576 client-side wallets

 32 0672318989 index 3/30/00 8:32 AM Page 576

cost of shipping, calculating
iisCARTship component,

264-269, 272
sample application,

269-271
cost per mille (CPM), 443
counter application (page

hits), 58-60
counting customers, 63-64
country codes (shipping),

269
CountryList method,

268-269
CPA WebTrust privacy pro-

gram, 341
CPM (cost per mille), 443
crawler.asp page, 506-507
Create parameter

(OpenTextFile method), 81
CreateStaticPage method,

502-505
CreateTextFile method, 78
Credit Card Declined status

(order processing), 226
credit card merchant

accounts (CyberCash),
241-242

credit card transactions, 237
credit card form, 37
CyberCash, 240

acquiring financial
institutions, 241

authorizing transac-
tions, 245-253

capturing transactions,
254-256

credit card merchant
accounts, 241-242

installation, 243-244
MCK (Merchant

Connection Kit), 243
MessageBlock compo-

nent, 245

registration, 242-243
security, 256
Socket component, 245

processing systems, 237
choosing, 240
component-based

solutions, 239-240
offsite payment proces-

sors, 238-239
payment terminal

solutions, 239
security

Luhn check, 189
SSL (Secure Sockets

Layer), 183-188
SET (Secure Electronic

Transaction) stan-
dard, 256

SmartCards, 474
standards, 475-476

Crocker, David, 410
cs-method element (W3C

Extended Log Files), 453
cs-uri-query element

(W3C Extended Log
Files), 453

cs-uri-stem element (W3C
Extended Log Files), 453

cs-username element
(W3C Extended Log
Files), 453

cs-version element (W3C
Extended Log Files), 453

cShipCompany property
(ShipInfo collection), 267

CSRs (Certificate Signing
Requests), 185-186

cTotalCharge property
(ShipInfo collection), 267

current ASP (Active Server
Page) name, retrieving,
39-40

current time, displaying,
13-14

cursors, 122-123
CursorType property

(Recordset object),
122-123

custom store wallets, 476
addUser method, 488-489
doCheckout.asp page,

481-483
ECML (E-Commerce

Modeling Language)
standards, 483-487

register.asp page, 477-480
updateUser method,

490-491
customer interfaces

dynamic content, 22
date/time, 22
long strings, 23
output delimiters, 26
quotation marks (“),

24-25
special characters,

23-24
Write method, 22-23

favorite product categories
(customized ads), 307

default.asp page modi-
fications, 315-316

displaying featured
products, 313-315

retrieving, 310-311
saving, 311-312
selecting, 308-310
storing, 307
updating, 312

forms, 31
credit card form, 37
customer registration

forms. See registra-
tion forms

customer interfaces 577

 32 0672318989 index 3/30/00 8:32 AM Page 577

customer survey forms,
84-86

empty fields, 33-35
redisplaying field data

in, 35-37
radio buttons, 33
Rate Our Store form,

32-33
retrieving information

from, 31-32
simple HTML form

example, 31
variables, 38-39

multiple-page product list-
ings, 134-137

order tracking, 260
account.asp page,

260-261
advantages, 259-260
showorders.asp page,

262-263
showOrderStatus

method, 263-264
past purchases, displaying,

302-306
product displays, 123-124

lists of all products,
126-128, 137-139

main store page,
128-130

product categories,
125-126

product details,
130-134

product names, 1
20-121

shopping carts. See
shopping carts

script execution, ending,
26-27

user settings, 297
displaying, 300-301
retrieving, 298-300

wallets, 469
accepting information

from, 492
client-side, 469-471
customizing. See

custom store wallets
definition of, 469
server-side, 471-473
SmartCards, 474
standards, 475-476

customer survey form,
84-86

customers
registering, 172

cart.asp page, 172-174
error handling,

181-183
register.asp page,

174-175
security (SSL),

183-188
storefuncs.asp page,

176-181
returning formation about

browser types, 42-43
Internet addresses,

41-42
selecting for bulk mail-

ings, 429-432
tracking

Application variables,
57-62

cookies, 48-52
Global.asa files, 62-65
Session variables,

52-57
CuteFTP, 389

CyberCash, 240
acquiring financial institu-

tions, 241
authorizing transactions,

245
Authorize.asp page,

245-248
authorizeFunction.asp

page, 249-250
processCards.asp page,

250-252
processCards2.asp

page, 252-253
capturing transactions,

254-256
credit card merchant

accounts, 241-242
installation, 243-244
MCK (Merchant

Connection Kit), 243
MessageBlock component,

245
registration, 242-243
security, 256
Socket component, 245

D

data alteration, 336
Data Source Names (DSNs),

93
configuring, 277
creating, 93

database authentication,
276-277

Add User scripts, 281-282
example of, 284-285
login pages, 278, 280
login validation, 283-284
registration forms, 278

578 customer interfaces

 32 0672318989 index 3/30/00 8:32 AM Page 578

server load, 295
user authentication, 282

databases
Access, 11
accessing with ADOs

(Active Data Objects),
17

product catalog databases,
89

adding records to,
95-100

connecting to, 93-95
creating, 89-90
manageproducts.asp

page, 100-102,
113-117

Products table, 91-93
rretrieving information

from, 106-108
updating, 104-105,

109-112
upgrading to SQL

Server, 90
quotation marks, 102-104
records

adding, 201-202
deleting, 203-204
updating, 202-203

recordsets, 119
cursors, 122-123
displaying records in,

119-121
opening, 121-122
paging through,

134-137
security, 337-338
shopping carts, creating

with, 204
addCart.asp page,

206-211
Cart table, 205
cart.asp page, 205
Product.asp page, 205

site usage logs, loading,
460-461

SQL Server, 11-12
transaction databases,

169-171, 219
date element (W3C

Extended Log Files), 452
Date property (W3C

Extended Log File for-
mat), 452

date/time, displaying, 22
debug libraries, 366
debug.asp page, 370-371
debugging, 345-346

development systems,
346-347

deploying applications
to, 350-353

IP (Internet Protocol)
addresses, 347-349

Web sites, 349-350
production servers, 361

capturing errors,
366-372

debug libraries, 366
session variables,

362-366
scalability, 372-374
Visual InterDev integrated

debugger, 354
breakpoints, 357
enabling, 355
Locals window,

360-361
permissions, 356-357
watch window,

358-359
Decode method, 291-292
decoding AUTHORIZA-

TION headers, 290
Decode method, 291-292
UUEncoding, 290-291

Default SMTP Sites, 411
default.asp page, 315-316
Default.asp page, 124,

128-130
Delete method, 203-204
DeleteFile method, 82
deleting

Application variables, 61
Remove method, 61
RemoveAll method, 62

Session variables, 192
text files, 82

deploying applications
definition of, 350
Visual InterDev, 350-353

DestCountry property
(iisCARTship component),
265

Destination parameter
CopyFile method, 82
MoveFile method, 82

DestPostal property
(iisCARTship component),
265

development systems,
346-347

definition of, 346
deploying applications to,

350-353
IP (Internet Protocol)

addresses, 347-349
Web sites, 349-350

digest authentication
(HTTP), 274

directives
#INCLUDE, 70
@TRANSACTION, 215,

234
directories, Products direc-

tory, 158
discount rates (banks), 241

discount rates 579

 32 0672318989 index 3/30/00 8:32 AM Page 579

Disk Administrator utility,
332

Disk Management utility,
332

displaying
active customers, 64-65
cookies, 52
dynamic content, 22

date/time, 22
long strings, 23
output delimiters, 26
quotation marks (“),

24-25
special characters,

23-24
Write method, 22-23

form fields, 35-37
lists of featured products,

146-149
password dialog boxes,

288-289
past purchases, 302-306
products, 123-124

lists of all products,
126-128

main store page,
128-130

multiple-page product
listings, 134-137

product categories,
125-126

product details,
130-134

records, 119-121
Session variables, 53-54
SessionIDs, 56
time, 13-14
user settings, 300-301

doCheckout.asp page,
481-483

domain names, registering,
326

Control Panel settings,
327-328

domain name registrars,
327

foreign domains, 326-327
donePost.asp page, 401-405
downloading

Personal Web Server, 10
SQL Server, 12

Drive object, 78
DSNs (Data Source Names),

93
configuring, 277
creating, 93

dynamic content, 22
date/time, 22
long strings, 23
output delimiters, 26
quotation marks (“), 24-25
special characters, 23-24
Write method, 22-23

dynamically including files,
73-74

E

e-businesses, cooperation
among

affiliate programs, 514
cooperative advertising,

510
link exchanges, 510-512
Web rings, 508-510

e-commerce
business-to-business trans-

actions, 8
business-to-consumer

transactions, 8

compared to physical
commerce, 468-469

consumer-to-consumer
transactions, 8

definition of, 8
overview of, 7-8

ECML (E-Commerce
Modeling Language) stan-
dards

custom store wallet appli-
cation, 483-487

participating companies,
475-476

Ecom_* fields (User table),
484-487

EDI (Electronic Data
Interchange), 9

editing
address/payment informa-

tion, 221-224
Administrator account

name, 331-332
database records

UPDATE statement,
104-105

updateProduct.asp
page, 109-112

favorite product list, 312
Electronic Commerce Policy

Web site, 9
Electronic Data Interchange

(EDI), 9
electronic mail. See email
electronic wallets. See wal-

lets
email, 409-410

bulk mailings, 428
marketing , 438
message composition,

432-435

580 Disk Administrator utility

 32 0672318989 index 3/30/00 8:32 AM Page 580

recipients, 429-432
sending messages,

435-437
sending from ASPs

(Active Server Pages)
CDONTS constants,

417-419
on errors, 419-420
HTML mail, 423-428
Newmail.Send method,

415-416
to new users, 421-422
verbose option,

416-417
SMTP Service

configuring, 411-413
installing, 412

empty form fields, checking
for, 33-35

enabling
HTTP authentication,

275-276
SSL (Secure Sockets

Layer), 185
Visual InterDev debug-

ging, 355
End of File (EOF), 120
ending user sessions, 56-57
enumerating site usage logs,

457-459
EOF (End of File), 120
error handling

ASP page transactions,
215

OnTransactionAbort
event, 216-218

OnTransactionCommit
event, 218

capturing errors, 366
CheckError method,

367-368
log files, 369-372

manageProducts.asp
page, 368-369

On Error Resume Next
statement, 366

customer registration
forms, 181-183

sending email on errors,
419-420

errorForm method, 181-183
errors occurred (error mes-

sage), 211
events

Application_OnEnd, 63
Application_OnStart, 63
OnTransactionAbort,

216-218
OnTransactionCommit,

218
Session_OnEnd, 63
Session_OnStart, 63

exchange rates, 511
Execute method, 77

F

failure-badmoney status
code (CyberCash), 248

failure-hard status code
(CyberCash), 247

failure-q-or-cancel status
code (CyberCash), 247

failure-q-or-discard status
code (CyberCash), 247

failure-swversion status
code (CyberCash), 248

FalseSpecifier parameter
(OpenTextFile method), 81

FastCatList.asp page, 138

favorite products
default.asp page modifica-

tions, 315-316
displaying featured prod-

ucts, 313-315
retrieving, 310-311
saving, 311-312
selecting, 308-310
upating, 312

favorites.asp page, 308-310
FDXpack property

(iisCARTship component),
266

FDXPick property
(iisCARTship component),
266

featured products lists,
143-144

displaying on Web page,
146-149

optimizing display,
149-152

selecting products for,
144-146

featured.asp page, 313-315
fees (banking), 241
fields (form)

credit card form, 37
empty fields, 33-35
Rate Our Store form,

32-33
redisplaying data in,

35-37
retrieving information

from, 31-32
File Access component, 16,

77
appending files, 81
copying files, 81-82
creating files, 78-79

File Access component 581

 32 0672318989 index 3/30/00 8:32 AM Page 581

customer survey form, 84
form data, saving,

85-86
marketing form, 84

deleting files, 82
Drive object, 78
File object, 77
FileSystemObject object,

77
methods, 78-83
properties, 80

Folder object, 77
listing files, 83-84
moving files, 82
permissions, 77
reading files, 79-80
TextStream object, 77, 80
verifying file existance, 83
writing to files, 79

FILE attribute
#INCLUDE directive), 70
<INPUT> tag, 391

File DSNs (Data Source
Names), 93

File New Database dialog
box (Access), 90

File object, 77
file systems, NTFS (NT File

System), 332-333
File Transport Protocol. See

FTP Service
FileExists method, 83
files. See also names of

specific files
appending, 81
Certificate Request Files,

185-186
copying, 81-82
creating, 78-79
deleting, 82

including in ASPs (Active
Server Pages), 69

#INCLUDE directive,
70

advantages, 70
dynamic includsion,

73-74
examples, 70-73

listing, 83-84
logs. See log files
moving, 82
reading, 79-80
redirection files, 75, 515

alternatives to, 76
disadvantages of, 75-76
example of, 75

schedule files, 515-516
uploading

ASPs (Active Server
Pages), 396-401

FTP (File Transport
Protocol) Service,
387-389

Posting Acceptor,
391-395

third-party upload
components, 392

verifying existance of, 83
writing to, 79

FileSpecifier parameter
(CreateTextFile method),
78

FileSystemObject object, 77,
370

methods
CopyFile, 81
CreateTextFile, 78
DeleteFile, 82
FileExists, 83
MoveFile, 82

properties, 80

firewalls, 334
fixQuotes method, 103-104
Folder object, 77
FOR...NEXT loops (shop-

ping cart application), 198
forcing password dialog

boxes, 288-289
Form collection, 31. See also

forms
Format parameter

(OpenTextFile method), 81
formats (log files)

Microsoft IIS Log File
format, 449-451

NCSA Common Log File
format, 444-446

ODBC Logging format,
446-449

W3C Extended Log File
format, 451-455

formFields method, 183
forms, 31. See also ASPs

(Active Server Pages)
credit card form, 37
customer registration

forms, 172
cart.asp page, 172-174
error handling,

181-183
register.asp page,

174-175
security (SSL),

183-188
storefuncs.asp page,

176-181
customer survey form,

84-86
empty fields, 33-35
hidden fields, 287
radio buttons, 33

582 File Access component

 32 0672318989 index 3/30/00 8:32 AM Page 582

Rate Our Store form,
32-33

redisplaying field data in,
35-37

retrieving information
from, 31-32

simple HTML form exam-
ple, 31

variables, 38-39
FrontPage, 12
FTP (File Transport

Protocol) Service, 385
anonymous access, 386
configuring, 386-387
CuteFTP, 389
file uploads, 387-389
installing, 385-386

Full-text Search Service,
157

functions. See methods

G

general server-side wallets,
472-473

GetRows method
(Recordset object),
148-149

Global.asa file, 62-63
counting customers, 63-64
displaying active cus-

tomers, 64-65
GUIs (graphical user

interfaces). See customer
interfaces

H

header files
AUTHORIZATION head-

ers, decoding, 290
Decode method,

291-292
UUEncoding, 290-291

including in ASPs (Active
Server Pages)

header files with vari-
ables, 71-72

#INCLUDE directive,
70

standardheader.asp file,
71

Hello, World program, 16
hidden form fields, 287
hit counter application,

58-60
hits, 443
home pages, creating,

128-130
hot areas, 499
hot fixes, 330-331
HTML (Hypertext Markup

Language)
HTML mail, sending, 423

register.asp, 423-425
sendNewUserMail

method, 426-428
storeFuncs.asp,

423-425
tags

<INPUT>, 391
<META>, 72, 499
<TITLE>, 499

HTMLEncode method, 113,
116

HTTP (Hypertext Transport
Protocol) authentication,
274

basic authentication, 274,
288

digest authentication, 274
enabling, 275-276
integrated authentication,

274
when to use, 276

Http Status property (W3C
Extended Log File for-
mat), 453

hybrid.asp page (hybrid
authentication), 292-294

I

iBill service, 238
ICVerify software, 239
iDebugLevel variable

resetting in
adminPage.asp, 363-364

setting to 0, 362
IDs, SessionIDs, 56
IIS (Internet Information

Server), 10
Internet Service Manager

(HTML), 377-378
access restrictions,

379-384
installing, 378-379
remote administration

tasks, 384
site usage logs, 441-444

analyzing, 455,
462-464

enumerating, 457-459
limitations of, 456

IIS 583

 32 0672318989 index 3/30/00 8:32 AM Page 583

loading into databases,
460-461

Microsoft IIS Log File
format, 449-451

NCSA Common Log
File format, 444-446

ODBC Logging for-
mat, 446-449

W3C Extended Log
File format, 451-455

iisCARTship component,
264

installing, 265
instantiating, 265
methods

CountryList, 268-269
LimitServices, 268
ShipCalc, 266-267
UPSproductConver-

sion, 267
properties, 265-266
sample application,

269-271
ShipInfo collection, 267
troubleshooting, 272

impressions, 443, 511
#INCLUDE directive, 70
Index Server, 157
indexable Web pages,

158-159
indexing (search engines),

496
<INPUT> tag (HTML), 391
INSERT INTO statement

(SQL), 95-96
installing

CyberCash, 243-244
FTP (File Transport

Protocol) Service,
385-386

iisCARTship component,
265

Internet Service Manager
(HTML), 378-379

server certificates, 187
SMTP Service , 412
Windows NT Server, 330

instantiating iisCARTship
component, 265

integrated authentication
(HTTP), 274

Internet Information Server.
See IIS

Internet mail. See email
Internet Protocol. See IP

addresses
Internet Service Manager

(HTML), 377-378
access restrictions,

379-384
installing, 378-379
remote administration

tasks, 384
invalidEmail method, 178
IOMode parameter

(OpenTextFile method), 81
IP (Internet Protocol)

addresses
retrieving, 41-42
second IP addresses,

347-349
isArray method, 198
ISPs (Internet Service

Providers), outsourcing
server operations to, 329,
335

J-L

legal issues
SQL Server licensing

requirements, 12
United States Government

Electronic Commerce
Policy Web site, 9

LIKE operator (SQL), 152
LimitServices method, 268
Line property

(FileSystemObject object),
80

link exchanges, 510-512
list of featured products,

143-144
displaying on Web page,

146-149
optimizing display,

149-152
selecting products for,

144-146
listing files, 83-84
listings

Abandon method, 56
Ad Rotator component, 16

implementing, 517
redirection file, 515
schedule file, 516

administrative pages
addProduct.asp,

396-397
adminPage.asp, 406
donePost.asp, 402-405
storeFuncs.asp, 393
updateProduct.asp,

398-400
upload.asp, 394

ADO (ActiveX Data
Object) transactions, 218

584 IIS

 32 0672318989 index 3/30/00 8:32 AM Page 584

Application arrays
creating, 60
modifying elements in,

61
ASP page transactions

example of, 215
OnTransactionAbort

event, 216
transaction.asp,

216-217
AUTHORIZATION head-

ers, decoding
Decode method,

291-292
UUEncoding, 291

bulk mailings
message composition,

434
selecting recipients,

429-431
sending messages, 435,

437
checkout page

processOrders.asp,
228-233

retrieving customer
data, 220-221

transferring items to
Orders table, 225

updating customer
data, 222-223

cookies, displaying, 52
customer registration form

addCookie subroutine,
181

addUser subroutine,
176-178

alreadyUser subrou-
tine, 180

cart.asp page, 172-173

cleanCCNum subrou-
tine, 180

errorForm subroutine,
182-183

formFields subroutine,
183

invalidEmail subrou-
tine, 178

validCCNumber
subroutine, 179

customer survey form
marketing form, 84
saving form data, 85

customized ads
favorites.asp page,

308-309
featured.asp page,

313-314
retrieveFavorites

method, 310
savefavorites.asp page,

311-312
updateFavorites

method, 312
CyberCash

Authorize.asp page,
245-246

authorizeFunction.asp
page, 249-250

processCards.asp page,
251-252

processCards2.asp
page, 253

DailyHits.asp, 462-463
database authentication

Add User script, 281
Login page, 279
Registration page, 278
user authentication,

282
username/password

validation, 283

debugging
CheckError method,

367-368
debug.asp page,

370-371
iDebugLevel, 362-364
manageProducts.asp

page, 369
updateProducts.asp

page, 365
dynamic content

HTML-encoding
strings, 24

long strings, 23
multiple values, 26
output delimiters, 26
quotation marks, 24-25
time/date display, 22
Write method, 23

email, sending from ASPs
(Active Server Pages)

CDONTS constants,
418

on errors, 419-420
HTML mail, 424-427
to new users, 422
simple example, 415
verbose option, 417

file redirection
alternative to, 76
example of, 75

files, including in ASPs
(Active Server Pages)

header file with vari-
ables, 72

header files, 70
improper dynamic

include, 73
proper dynamic

include, 74

listings 585

 32 0672318989 index 3/30/00 8:32 AM Page 585

standard functions, 73
standardfooter.asp

page, 71
standardfuncs.asp page,

73
standardheader.asp

page, 71
forms

Credit Card form, 34,
37

empty form fields,
34-35

HTML form and query
string, 38

radio buttons, 33
Rate Our Store from,

32-33
redisplaying field data,

36
retrieving information

from, 31
simple HTML form,

31
variables, retrieving, 38

Global.asa files
counting customers,

63-64
displaying count of

customers, 64
Hello, World program, 16
hybrid authentication,

292-293
iisCARTship component

compareShip.asp page,
269-271

CountryList method,
269

Federal Express prop-
erties, 266

LimitServices method,
268

ShipCalc method,
266-267

UPSproductConversion
method, 268

list of featured products
displaying, 147-148
optimizing display,

150-151
reset featured products,

151
ListLogs.asp, 457-459
log files, loading into

databases, 460-461
mypage.asp

displaying user set-
tings, 300-301

retrieving user settings,
298-299

order tracking (Account
page)

account.asp page,
261

showorders.asp page,
262-263

showOrderStatus
method, 263-264

page counters
better page counter, 59
simple page counter,

58
password dialogs, forcing,

289
pastpurchases.asp page,

303-305
product catalog database

addProduct.asp page,
98-100

adding records to,
95-96

connecting to, 94
displaying links, 108

fixQuotes method, 104
manageproducts.asp

page, 100-102,
113-116

retrieving product
names, 106

retrieving product
names as links, 107

table updates, 105
updateProduct.asp

page, 109-112
product IDs, retrieving,

159
products, displaying

fast product category
list, 138

lists of products,
126-127, 147-148,
150-151

main store pages,
128-130

multi-page product list-
ings, 135-136

product categories,
125

product details,
131-134

product names, 120
resetting product

categories, 139
query strings

example of, 28
multiple query string

variables, 29
query strings with

spaces, 30
retrieving, 28
URL-encoding a query

string, 30
variables, retrieving, 38

586 listings

 32 0672318989 index 3/30/00 8:32 AM Page 586

Recordset object
AddNew method,

201-202
Delete method, 204
Update method, 203

Remove method, 62
RemoveAll method, 62
script execution, ending,

27
search engine results, 508
search pages, 153-157
security information,

passing
hidden form fields, 287
query strings, 286-287

server variables
REFERRER, 41
REMOTE_ADDR, 42
SCRIPT_NAME,

39-40
USER_AGENT, 42

Session arrays
changing value of, 55
creating, 55

Session variables
creating, 53
displaying, 54

SessionIDs, displaying, 56
shopping cart

addCart.asp page,
206-209

sessionCart.asp page,
194-196

showtime.asp
content after process-

ing, 14
source code, 13

spider pages
crawler.asp, 506-507
CreateStaticPage

method, 502-505
example that won’t

work, 502

static cursors, 122
store wallet, creating

addUser method,
488-489

doCheckout.asp page,
481-483

register.asp page,
477-480

updateUser method,
490-491

text files
appending to, 81
copying, 82
creating, 78
deleting, 82
listing, 83
moving, 82
reading, 79
verifying existance of,

83
Web rings, participating

in, 509
lists of products

catalog lists
displaying, 126-128
ordering, 140
storing in memory,

137-139
featured products (cus-

tomized ads), 143-144
displaying on Web

page, 146-149
optimizing display,

149-152
selecting products for,

144-146
loading site usage logs into

databases, 460-461
localCart array, 198
Locals window (Visual

InterDev debugger),
360-361

locking
Application variables, 60
recordsets, 200-201

LockType property
(Recordset object),
200-201

log files
capturing errors to,

369-372
definition of, 443
site usage logs, 441-444

analyzing, 455,
462-464

enumerating, 457-459
limitations of, 456
loading into databases,

460-461
Microsoft IIS Log File

format, 449-451
NCSA Common Log

File format, 444-446
ODBC Logging for-

mat, 446-449
W3C Extended Log

File format,
451-455

login pages (database
authentication), 278-279

logs. See log files
loops

FOR...NEXT, 198
WHILE...WEND

paging through record-
sets, 120

shopping cart applica-
tion, 210

loyalty programs, 513-514
Luhn check, 189

Luhn check 587

 32 0672318989 index 3/30/00 8:32 AM Page 587

M

MailFormat property
(NewMail object), 422

main store pages, creating,
128-130

manageproducts.asp page,
100-102, 113-117, 368-369

MapPath method, 80
marketing form, 84
mass mailings. See bulk

mailings
MCK (CyberCash), 243
memory

Application variables,
removing from, 61

Remove method, 61
RemoveAll method, 62

lists of products, storing
in, 137-139

merchandise. See products
Merchant Connection Kit

(CyberCash), 243
MessageBlock component

(CyberCash), 245
<META> tag (HTML), 72,

499
Method property (W3C

Extended Log File for-
mat), 453

methods
Abandon, 56-57
addCookie, 181
addForm, 247
addUser, 176-178,

488-489
AddNew, 201-202
alreadyUser, 180
authorize, 250
BeginTrans, 218
CheckError, 367-368

checkpassword, 174
cleanCCNum, 180
CommitTrans, 218
CopyFile, 81
CountryList, 268-269
CreateStaticPage, 502-505
CreateTextFile, 78
Decode, 291-292
Delete, 203-204
DeleteFile, 82
errorForm, 181-183
Execute, 77
FileExists, 83
fixQuotes, 103-104
formFields, 183
GetRows, 148-149
HTMLEncode, 113, 116
including in ASPs (Active

Server Pages), 72-73
invalidEmail, 178
isArray, 198
LimitServices, 268
MapPath, 80
MoveFile, 82
OpenTextFile, 81
Read, 80
ReadAll, 80
ReadLine, 80
Redirect, 75
Remove, 61
RemoveAll, 62
retrieveFavorites, 310-311
RollbackTrans, 218
Send, 415-416
SendCCServer, 247
sendNewUserMail,

421-422, 426-428
SetAbort, 218
SetComplete, 218
ShipCalc, 266-267
Skip, 80

SkipLine, 80
showOrderStatus, 263-264
Transfer, 77
Update, 202-203
updateFavorites, 312
updateUser, 222-223,

490-491
UPSproductConversion,

267
validatelogin, 282-283
validCCNumber, 179
Write, 22-23, 79
WriteBlankLines, 79
WriteLine, 78-79

Microsoft Access. See Access
Microsoft FrontPage, 12
Microsoft IIS Log File for-

mat, 449
naming conventions, 449
sample entry, 450-451

Microsoft Index Server, 157
Microsoft Internet

Information Server. See
IIS

Microsoft Personal Web
Server. See Personal Web
Server

Microsoft Posting Acceptor,
391-395

Microsoft SQL Server. See
SQL Server

Microsoft Visual InterDev.
See Visual InterDev

Microsoft WCAT (Web
Capacity Analysis Tool),
372-373

Microsoft Web site
Personal Web Server, 10
Upsizing Tools, 90

mo.cybercash.id field
(CyberCash MessageBlock
component), 247

588 MailFormat property

 32 0672318989 index 3/30/00 8:32 AM Page 588

mo.order-id field
(CyberCash MessageBlock
component), 247

mo.price field (CyberCash
MessageBlock compo-
nent), 247

mo.version field
(CyberCash MessageBlock
component), 247

monthly minimum fees
(banks), 241

MoveFile method, 82
moving text files, 82
MPProduct.asp page,

134-137
multihoming, 347
mypage.asp page

displaying user settings,
300-301

retrieving user settings,
298-300

N

names
Administrator account

name, 331-332
domain names, 326-328
DSNs (Data Source

Names), 93
configuring, 277
creating, 93

product names, displaying,
120-121

NCSA (National Center for
Supercomputing
Applications), 444

NCSA Common Log File
format, 444-446

new users, sending email to,
421-422

Newmail object, 415-416
Not in Stock status (order

processing), 226
NT File System (NTFS),

332-333
NTFS (NT File System),

332-333

O

ObjectContect object, 15
OnTransactionAbort event,

216-218
OnTransactionCommit

event, 218
ObjectContext objects
objects. See names of specif-

ic objects
ODBC Logging format,

446-449
offsite payment processors,

238-239
On Error Resume Next

statement, 366
online stores, 7-8

administration. See admin-
istration

checkout pages, 213
order completion,

219-220
order processing, 226
processOrders.asp

page, 227-234
retrieving customer

information, 220-221
transferring items to

Orders table, 224-226

updating customer
information, 221-224

customer registration
forms, 172

cart.asp page, 172-174
error handling,

181-183
register.asp page,

174-175
security (SSL),

183-188
storefuncs.asp page,

176-181
indexable pages, 158-159
list of featured products,

143-144
displaying on Web

page, 146-149
optimizing display,

149-152
selecting products for,

144-146
monitoring use of. See site

usage logs
past purchases, displaying,

302-306
pictures, 140
product catalog databases,

89
adding records to,

95-100
connecting to, 93-95
creating, 89-90
manageproducts.asp

page, 100-102,
113-117

Products table, 91-93
quotation marks,

102-104
retrieving information

from, 106-108

online stores 589

 32 0672318989 index 3/30/00 8:32 AM Page 589

updating, 104-105,
109-112

upgrading to SQL
Server, 90

product displays, 123-124
lists of all products,

126-128, 137-139
main store page,

128-130
multiple-page product

listings, 134-137
product categories,

125-126
product details,

130-134
product names,

120-121
scalability, 137-139
search pages, 152

creating, 152-157
optimizing, 157

security, 325-326
Administrator

accounts, 331-332
Children’s Advertising

Review Unit (Better
Business Bureau),
342-343

databases, 337-338
domain name registra-

tion, 326-327
Control Panel settings,

327-328
foreign domains,

326-327
privacy policies,

340-341
privacy seal programs,

339-341
Reliability Program

(Better Business
Bureau), 338-339

servers, 329-334
SSL (Secure Sockets

Layer), 335-337
shopping carts, 191

creating with database
tables, 204-209, 211

creating with Session
variables, 191-199,
211

subscription-based sites,
273

database authentica-
tion, 276-285, 295

HTTP (Hypertext
Transport Protocol)
authentication,
274-276, 288

hybrid authentication,
288-294

security information,
passing from page to
page, 285-287

transactions. See transac-
tions

OnTransactionAbort event,
216, 218

OnTransactionCommit
event, 218

opening recordsets, 121-122
OpenTextFile method, 81
operators, LIKE, 152
Optimistic Locking (record-

sets), 201
optimization specialists, 498
optimizing

display of featured prod-
ucts, 149-152

search pages, 157
ORDER BY clause (SQL),

122
ordering product lists, 140

orders
completing, 219-220

address/payment infor-
mation, 220-224

transferring to Orders
table, 224-226

package tracking, 272
past purchases, displaying,

302-306
processing, 226

order status values, 226
processOrders.asp

page, 227-234
shipping costs, calculating

iisCARTship compo-
nent, 264-269, 272

sample application,
269-271

ShipInfo collection,
267

tracking, 260
account.asp page,

260-261
advantages, 259-260
showorders.asp page,

262-263
showOrderStatus

method, 263-264
Orders table, 170, 224
OrigPostal property

(iisCARTship component),
265

output delimiters, 26
outsourcing server opera-

tions, 329, 335
Overwrite parameter

CopyFile method, 82
CreateTextFile method, 78

590 online stores

 32 0672318989 index 3/30/00 8:32 AM Page 590

P

package tracking, 272
page counter application,

58-60
page views, 443
PageCount property

(Recordset object), 134
PageRank, 508
PageSize property

(Recordset object), 134
paging through recordsets,

134-137
partial-success status code

(CyberCash), 247
passing

query strings
special characters,

30-31
variables, 29-30

security information from
page to page, 285

cookies, 286
hidden form fields, 287
query strings, 286-287
Session variables, 286

password dialog boxes, forc-
ing, 288-289

password-protecting sites,
273

database authentication,
276-277

Add User scripts,
281-282

example of, 284-285
login pages, 278, 280
login validation,

283-284
registration forms, 278
server load, 295
user authentication,

282

HTTP (Hypertext
Transport Protocol)
authentication, 274

basic authentication,
274, 288

digest authentication,
274

enabling, 275-276
integrated authentica-

tion, 274
when to use, 276

hybrid authentication
AUTHORIZATION

headers, 290-292
forcing password

dialogs, 288-289
hybrid.asp example,

292-294
security information, pass-

ing from page to page,
285

cookies, 286
hidden form fields, 287
query strings, 286-287
Session variables, 286

past purchases, displaying,
302-306

pastpurchases.asp page,
303-305

paths (ASPs), 40-41
PATH_TRANSLATED vari-

able, 40-41
payment terminal solutions,

239
paymentURL variable

(CyberCash), 246
Pending status (order pro-

cessing), 226
percent sign (%), 153
permissions

File Access component, 77
Visual InterDev debug-

ging, 356-357

persistent cookies, 49
Personal Web Server, 10
physical commerce, 468-469
physical paths (ASPs), 40-41
physical security (servers),

334
pictures, adding to online

stores, 140. See also cus-
tomer interfaces

policies (privacy), 340-341
popularity algorithms,

507-508
Posting Acceptor, 391-395
privacy policies, 340-341
privacy seal programs,

339-341
BBBOnline, 341
CPA WebTrust, 341
TRUSTe, 341

processCards.asp page,
250-252

processCards2.asp page,
252-253

processes, 387
processing credit cards, 237

choosing processing
systems, 240

component-based solu-
tions, 239-240

CyberCash, 240
acquiring financial

institutions, 241
authorizing transac-

tions, 245-253
capturing transactions,

254-256
credit card merchant

accounts, 241-242
installation, 243-244
MCK (Merchant

Connection Kit), 243

processing credit cards 591

 32 0672318989 index 3/30/00 8:32 AM Page 591

MessageBlock compo-
nent, 245

registration, 242-243
security, 256
Socket component, 245

offsite payment proces-
sors, 238-239

payment terminal solu-
tions, 239

SET (Secure Electronic
Transaction) standard,
256

processing orders, 226
order status values, 226
processOrders.asp page,

227-234
processOrders.asp page,

227-234
product catalog database

(storeDB), 89
adding records to, 95

addProduct.asp page,
97-100

INSERT INTO state-
ment, 95-96

variables, 96-97
connecting to, 93-95
creating, 89-90
manageproducts.asp page,

100-102, 113-117
Products table

columns, 91
creating, 92-93

quotation marks, 102-104
recordsets, paging

through, 134-137
retrieving information

from, 106-108
updating

UPDATE statement,
104-105

updateProduct.asp
page, 109-112

upgrading to SQL Server,
90

Product.asp page, 124,
131-134

production systems
debugging applications on

capturing errors,
366-372

debug libraries, 366
session variables,

362-366
definition of, 346
separating from develop-

ment systems, 346-347
deploying applications,

350-353
IP addresses, 347, 349
Web sites, 349-350

ProductList.asp page,
124-128

products
displaying, 123-124

details, 130-134
lists of all products,

126-128, 137-139
main store page,

128-130
names of, 120-121
product categories,

125-126
favorite product categories

(customized ads), 307
default.asp page modi-

fications, 315-316
displaying featured

products, 313-315
retrieving, 310-311
saving, 311-312
selecting, 308-310
storing, 307
updating, 312

list of featured products,
143-144

displaying on Web
page, 146-149

optimizing display,
149-152

selecting products for,
144-146

multiple-page product
listings, 134-137

pictures of, 140
Products directory, 158
Products table

adding records to, 95
addProduct.asp page,

97-100
INSERT INTO state-

ment, 95-96
variables, 96-97

columns, 91
creating, 92-93

product_briefDesc column
(Products table), 91

product_category column
(Products table), 91

product_fulldesc column
(Products table), 91

product_id column
(Products table), 91

product_name column
(Products table), 91

product_picture column
(Products table), 91

product_price column
(Products table), 91

product_status column
(Products table), 91

program listings. See list-
ings

promoting sites. See
publicity

592 processing credit cards

 32 0672318989 index 3/30/00 8:32 AM Page 592

properties
FileSystemObject object,

80
iisCARTship component,

265-266
NCSA Common Log File

format, 445
Recordset object

AbsolutePage, 134
CursorType, 122-123
LockType, 200-201
PageCount, 134
PageSize, 134
RecordCount, 122-123

W3C Extended Log File
format, 452-454

Protocol Version property
(W3C Extended Log File
format), 453

protocols
client-server, 387
FTP (File Transport

Protocol) Service, 385
anonymous access, 386
configuring, 386-387
CuteFTP, 389
file uploads, 387-389
installing, 385-386

IP (Internet Protocol)
addresses

retrieving, 41-42
second IP addresses,

347-349
SMTP Service

configuring, 411-413
installing, 412

proxy servers, 456
publicity, 495-496

Ad Rotator component,
514-515

implementing, 516-517
redirection files, 515
schedule files, 515-516

ad targeting, 513
affiliate programs, 514
banner ads, 510

link exchanges,
510-512

purchasing, 513
bulk mailings, 428

marketing, 438
message composition,

432-435
recipients, 429-432
sending messages,

435-437
reward/loyalty programs,

513-514
search engines, 496

listing sites with,
496-508

spidering process, 496
Web rings

definition of, 508
example of, 508-510

purchases. See orders

Q-R

query strings, 286-287
example of, 28
retrieving, 28-29
special characters, 30-31
variables, 30

passing, 29
retrieving, 38-39

quotation marks (“)
Access databases and,

102-104
displaying, 24-25
HTML forms and,

112-113

radio buttons, 33
Rate Our Store form, 32-33
Read method, 80
ReadAll method, 80
reading

cookies, 49-52
text files, 79-80

ReadLine method, 80
RecordCount property

(Recordset object),
122-123

records
adding, 95

AddNew method,
201-202

addProduct.asp page,
97-100

INSERT INTO
statement, 95-96

variables, 96-97
updating

Delete method,
203-204

Update method,
202-203

UPDATE statement,
104-105

updateProduct.asp
page, 109-112

Recordset object, 119
adding records to, 201-202
cursors, 122-123
deleting records, 203-204
displaying records in,

119-121
locking, 200-201
methods

AddNew, 201-202
Delete, 203
GetRows, 148-149
Update, 202-203

opening, 121-122

Recordset object 593

 32 0672318989 index 3/30/00 8:32 AM Page 593

paging through, 134-137
properties

AbsolutePage, 134
CursorType, 122-123
LockType, 200-201
PageCount, 134
PageSize, 134
RecordCount, 122-123

updating, 202-203
Redirect method, 75
redirection, 75

alternatives to, 76
disadvantages of, 75-76
example of, 75

redirection files, 515
redisplaying form fields,

35-37
Referrer property (W3C

Extended Log File for-
mat), 454

REFERRER variable, 41
register.asp page, 174-175,

477-480
registering customers, 172

cart.asp page, 172-174
error handling, 181-183
register.asp page, 174-175
security (SSL), 183-185

in ASPs (Active Server
Pages), 187-188

Certificate Request
Files, 185-186

enabling, 185
server certificates,

186-187
storefuncs.asp page, 176

addCookie method,
181

addUser method,
176-178

alreadyUser method,
180

cleanCCNum method,
180

invalidEmail method,
178

validCCNumber
method, 179

registering domain names,
326

Control Panel settings,
327-328

domain name registrars,
327

foreign domains, 326-327
registration forms, 172

cart.asp page, 172-174
error handling, 181-183
register.asp page, 174-175
security (SSL), 183-185

Certificate Request
Files, 185-186

enabling, 185
in ASPs (Active Server

Pages), 187-188
server certificates,

186-187
storefuncs.asp page, 176

addCookie method,
181

addUser method,
176-178

alreadyUser method,
180

cleanCCNum method,
180

invalidEmail method,
178

validCCNumber
method, 179

registration pages (database
authentication), 278

relevance metrics, 498-499

Reliability Program (Better
Business Bureau), 338-339

remote administration. See
Internet Service Manager
(HTML)

REMOTE_ADDR variable,
41-42

Remove method, 61
RemoveAll method, 62
reports. See site usage logs
Request objects, 15, 27

forms, 31
credit card form, 37
empty fields, 33-35
radio buttons, 33
Rate Our Store form,

32-33
redisplaying field data

in, 35-37
retrieving information

from, 31-32
simple HTML form

example, 31
variables, 38-39

query strings, 28
example of, 28
retrieving, 28-29
special characters,

30-31
variables, 29-30, 38-39

server variables, 39
PATH_TRANSLAT-

ED, 40-41
REFERRER, 41
REMOTE_ADDR,

41-42
SCRIPT_NAME,

39-40
USER_AGENT, 42-43

Resellers Subscription Sales
service, 238

594 Recordset object

 32 0672318989 index 3/30/00 8:32 AM Page 594

Response objects, 15-16, 22,
75

dynamic content, display-
ing, 22

date/time, 22
long strings, 23
output delimiters, 26
quotation marks (“),

24-25
special characters,

23-24
Write method, 22-23

script execution, ending,
26-27

retrieveFavorites method,
310-311

retrieving database records,
106-108

reward programs, 513-514
RollbackTrans method, 218

S

s-computername element
(W3C Extended Log
Files), 453

s-ip element (W3C
Extended Log Files), 453

s-port element (W3C
Extended Log Files), 453

s-sitename element (W3C
Extended Log Files), 453

sales promotions, list of fea-
tured products, 143-144

displaying on Web page,
146-149

optimizing display,
149-152

selecting products for,
144-146

savefavorites.asp page,
311-312

saving form data, 85-86
sc-bytes element (W3C

Extended Log Files), 453
sc-status element (W3C

Extended Log Files), 453
sc-win32-status element

(W3C Extended Log
Files), 453

scalability (online stores),
137-139

testing for, 372-374
schedule files, 515-516
scripting languages, 14
SCRIPT_NAME variable,

39-40
search engines, 496

listing sites with, 496-497
optimization special-

ists, 498
PageRank, 508
popularity algorithms,

507-508
relevance metrics,

498-499
spider pages, 502-507
titles/meta tags, 500
URL submission

pages, 500-501
spidering process, 496

search pages, 152
creating, 152-157
optimizing, 157

searching online stores
search pages, 152

creating, 152-157
optimizing, 157

search tips, 160
Secure Electronic

Transaction (SET) stan-
dard, 256

Secure Sockets Layer. See
SSL

security
ASPs (Active Server

Pages), 428-429
Better Business Bureau

services
Children’s Advertising

Review Uni, 342-343
Reliability Program,

338-339
CyberCash, 256
databases, 337-338
domain names, registering,

326
Control Panel settings,

327-328
domain name regis-

trars, 327
foreign domains,

326-327
Internet Service Manager

(HTML), 379-384
Luhn check, 189
privacy policies, 340-341
privacy seal programs,

339-341
BBBOnline, 341
CPA WebTrust, 341
TRUSTe, 341

servers, 329
Administrator

accounts, 331-332
firewalls, 334
hot fixes, 330-331
NTFS (NT File

System), 332-333
physical access, 334
service packs, 330-331
Windows NT Server,

329-330

security 595

 32 0672318989 index 3/30/00 8:32 AM Page 595

SET (Secure Electronic
Transaction) standard,
256

SSL (Secure Sockets
Layer), 183-185,
335-337

in ASPs (Active Server
Pages), 187-188

Certificate Request
Files, 185-186

enabling, 185
server certificates,

186-187
security information, pass-

ing from page to page, 285
cookies, 286
hidden form fields, 287
query strings, 286-287
Session variables, 286

seeding, 341
SELECT statement, 121,

152
SELECT...CASE statement,

74-76
selectCust.asp page, 429-431
Send method, 415-416
SendCCServer method, 247
sending email from ASPs

(Active Server Pages), 415
CDONTS constants,

417-419
on errors, 419-420
HTML mail, 423-428
Newmail.Send method,

415-416
to new users, 421-422
verbose option, 416-417

sendMsg.asp page, 435-437
sendNewUserMail method,

421-422, 426-428

separating development and
production systems,
346-347

deploying application,
350-353

IP (Internet Protocol)
addresses, 347, 349

Web sites, 349-350
server certificates

applying for, 186-187
installing, 187

Server IP property (W3C
Extended Log File for-
mat), 453

Server Name property
(W3C Extended Log File
format), 453

Server object, 15, 77
Server Port property (W3C

Extended Log File for-
mat), 453

server processes, 387
server variables, 39

PATH_TRANSLATED,
40-41

REFERRER, 41
REMOTE_ADDR, 41-42
SCRIPT_NAME, 39-40
USER_AGENT, 42-43

server-side components
Ad Rotator, 16
Browser Capabilities, 16
Content Linking, 16
definition of, 15
File Access, 16

server-side wallets, 471
general server-side wal-

lets, 472-473
single-site wallets,

471-472

servers, 10
development servers,

346-347
deploying applications

to, 350-353
IP (Internet Protocol)

addresses, 347-349
Web sites, 349-350

IIS. See IIS (Internet
Information Server)

Microsoft Index Server,
157

outsourcing operations,
329, 335

Personal Web Server, 10
production servers,

361-372
proxy servers, 456
security, 329-330
SQL Server, 11-12
Windows 2000 Advanced

Server, 11
ServerVariables collection,

39. See also server vari-
ables

Service Name property
(W3C Extended Log File
format), 453

service packs, 330-331
Session arrays, 198-199

changing value of, 55
creating, 54-55

session cookies, 48
Session objects, 15
Session variables, 52-53,

286. See also cookies
alternatives to, 66
creating, 53, 362-364
debugging routines,

364-366
deleting, 192
displaying, 53-54

596 security

 32 0672318989 index 3/30/00 8:32 AM Page 596

SessionIDs, 56
shopping carts, creating,

191
advantages, 211
disadvantages, 192-193
Product.asp page, 193
sessionCart.asp page,

193-199
storing arrays in, 54-55
user sessions, ending,

56-57
sessionCart.asp page

code listing, 193-196
FOR...NEXT loop, 198
isArray method, 198
localCart array, 198
Session array, 198-199

SessionID property (Session
object), 56

Session_OnEnd event, 63
Session_OnStart event, 63
SET (Secure Electronic

Transaction) standard, 256
SetAbort method, 218
SetComplete method, 218
settling credit card transac-

tions (CyberCash),
254-256

setup fees (banks), 241
ShipCalc method, 266-267
ShipInfo collection, 267
Shipped status (order pro-

cessing), 226
shipping costs, calculating

iisCARTship component,
264

installing, 265
instantiating, 265
methods, 266-269
properties, 265-266
ShipInfo collection,

267
troubleshooting, 272

sample application,
269-271

shopping carts, 191
checkout pages, 213

order completion,
219-220

order processing, 226
processOrders.asp

page, 227-234
retrieving customer

information, 220-221
transferring items to

Orders table, 224-226
updating customer

information, 221-224
creating with database

tables, 204
addCart.asp page,

206-211
Cart table, 205
cart.asp page, 205
Product.asp page, 205

creating with Session vari-
ables, 191

advantages, 211
disadvantages, 192-193
Product.asp page, 193
sessionCart.asp page,

193-199
showorders.asp page

(Account page), 262-263
showOrderStatus method,

263-264
showtime.asp page, 13-14
single-site wallets, 471-472
Site Server Express 3.0, 464
site usage logs, 441-444

analyzing, 455
ASPs (Active Server

Pages), 462-464
commercial log-analy-

sis tools, 464

enumerating, 457-459
limitations of, 456
loading into databases,

460-461
Microsoft IIS Log File

format, 449
naming conventions,

449
sample entry, 450-451

NCSA Common Log File
format, 444

properties, 445
sample entry, 446

ODBC Logging format,
446-449

W3C Extended Log File
format, 451

naming conventions,
451-452

properties, 452-454
sample entry, 454-455

Skip method, 80
SkipLine method, 80
SmartCards, 474
SMTP Service

configuring, 411-413
installing, 412

Socket component
(CyberCash), 245

sockets
CyberCash Socket compo-

nent, 245
SSL (Secure Sockets

Layer), 183-185,
335-337

in ASPs (Active Server
Pages), 187-188

Certificate Request
Files, 185-186

enabling, 185
server certificates,

186-187

sockets 597

 32 0672318989 index 3/30/00 8:32 AM Page 597

software
electronic wallets. See

wallets
ICVerify, 239

SonicWALL Web site, 334
source code listings. See list-

ings
Source parameter

CopyFile method, 81
MoveFile method, 82

spamming, 160
special characters

displaying, 23-24
query strings, 30-31

spider pages, 502
creating

crawler.asp, 506-507
CreateStaticPage

method, 502-505
potential problems, 502

spidering (search engines),
456, 496

spoofing, 336
SQL (Standard Query

Language)
SQL Server, 11-12
statements

INSERT INTO, 95-96
LIKE operator, 152
SELECT, 121-122, 152
UPDATE, 104-105

Transact-SQL, 219
SSL (Secure Sockets Layer),

183-185, 335-337
in ASPs (Active Server

Pages), 187-188
Certificate Request Files,

185-186
enabling, 185
server certificates

applying for, 186-187
installing, 187

standardfooter.asp file, 71
standardfuncs.asp file, 73
standardheader.asp file, 71
starting Access, 90
statements

FOR...NEXT, 198
INSERT INTO, 95-96
looping. See loops
SELECT, 121-122, 152
SELECT...CASE, 74-76
UPDATE, 104-105
WHILE...WEND, 120,

210
static cursors, 122-123
stopping

ADO (Active Data Object)
transactions, 218

script execution, 26-27
storeDB database. See prod-

uct catalog database
storefuncs.asp page, 176

addCookie method, 181
addUser method, 176-178
alreadyUser method, 180
cleanCCNum method, 180

storefuncs.asp page
client-side upload routine,

393
invalidEmail method, 178
validCCNumber method,

179
stores. See online stores
storing

arrays
in Application vari-

ables, 60-61
in Session variables,

54-55
cookies, 49
product lists in memory,

137-139

strings
displaying, 23
query strings, 28

example of, 28
retrieving, 28-29
special characters,

30-31
variables, 29-30, 38-39

submitting URLs to search
engines, 500-501

subscription-based sites, 273
database authentication,

276-277
Add User scripts,

281-282
example of, 284-285
login pages, 278, 280
login validation,

283-284
registration forms, 278
server load, 295
user authentication,

282
HTTP (Hypertext

Transport Protocol)
authentication, 274

basic authentication,
274, 288

digest authentication,
274

enabling, 275-276
integrated authentica-

tion, 274
when to use, 276

hybrid authentication
AUTHORIZATION

headers, 290-292
forcing password

dialogs, 288-289
hybrid.asp example,

292-294

598 software

 32 0672318989 index 3/30/00 8:32 AM Page 598

security information, pass-
ing from page to page,
285

cookies, 286
hidden form fields, 287
query strings, 286-287
Session variables, 286

success status code
(CyberCash), 247

success-duplicate status
code (CyberCash), 247

survey form, 84-86
System DSNs (Data Source

Names), 93

T

tables
shopping carts, creating

with, 204
addCart.asp page,

206-209, 211
Cart table, 205
cart.asp page, 205
Product.asp page, 205

transaction database,
170-171

Cart, 170
Orders, 170, 224
Products, 91-93,

95-100
Users, 170-171

tags (HTML)
<INPUT>, 391
<META>, 72, 499
<TITLE>, 499

targeted advertising (cus-
tomized ads), 307

default.asp page, 315-316
favorites.asp page,

308-310

featured.asp page, 313-315
retrieveFavorites method,

310-311
savefavorites.asp page,

311-312
updateFavorites method,

312
TerminalCapture model

(CyberCash), 255
testing for scalability,

372-374
text files. See also files

appending, 81
copying, 81-82
creating, 78-79
deleting, 82
listing, 83-84
moving, 82
reading, 79-80
verifying existance of, 83
writing to, 79

TextStream object, 77, 80
time, displaying, 13-14, 22
time element (W3C

Extended Log Files), 453
Time property (W3C

Extended Log File for-
mat), 453

Time Taken property (W3C
Extended Log File for-
mat), 453

time-taken element (W3C
Extended Log Files), 453

<TITLE> tag (HTML), 499
tools

Microsoft WCAT (Web
Capacity Analysis Tool),
372-373

Upsizing Tools, 11, 90

tracking customers
Application variables, 57

creating, 57-58
locking, 60
removing from memo-

ry, 61-62
sample hit counter

applications, 58-60
storing arrays in, 60-61

cookies, 48
adding to customers’

browsers, 50-51
alternatives to, 66
Cookie Central Web

site, 48
displaying, 52
persistent cookies, 49
reading, 49-52
session cookies, 48
storing, 49
support for, 50

Global.asa files, 62-63
counting customers,

63-64
displaying active

customers, 64-65
Session variables, 52-53

alternatives to, 66
creating, 53
displaying, 53-54
SessionIDs, 56
storing arrays in, 54-55
user sessions, ending,

56-57
tracking orders, 260

account.asp page, 260-261
advantages, 259-260
packages, 272
showorders.asp page,

262-263
showOrderStatus method,

263-264

tracking orders 599

 32 0672318989 index 3/30/00 8:32 AM Page 599

Transact-SQL, 219
transaction database tables,

170-171
Cart, 170
Orders, 170, 224
Products

adding records to,
95-100

columns, 91
creating, 92-93

Users, 170-171
@TRANSACTION direc-

tive, 215, 234
transaction fees (banks),

241
transactions

abandoned transactions,
467-468

ACID test, 214
ADO (Active Data

Objects), 218-219
beginning, 218
disadvantages, 234
example of, 218-219
marking end of, 218
stopping, 218

ASP page transactions,
214

error handling,
215-216, 218

example of, 215
business-to-business, 8
business-to-consumer, 8
consumer-to-consumer, 8
credit cards. See credit

card transactions
database transactions, 219
definition of, 213-214
wallets, 469

accepting information
from, 492

client-side, 469-471

customizing. See
custom store wallets

definition of, 469
server-side, 471-473
SmartCards, 474
standards, 475-476

Transfer method, 77
transferring customer items

to Orders table, 224-226
troubleshooting. See also

debugging
ADO methods, 211
database connections, 117
iisCARTship component,

272
TRUSTe privacy program,

341

U

unauthorized disclosure,
336

Unicode parameter
(CreateTextFile method),
78

unique users, 443
United States Government

Electronic Commerce
Policy Web site, 9

Update method, 202-203
UPDATE statement (SQL),

104-105
updateFavorites method,

312
UpdateProduct form, 109-

112
updateProduct.asp page,

109-112
debug routine, 365
image uploads, 398-401

updateUser method,
222-223, 490-491

updating
address/payment informa-

tion, 221-224
database records

UPDATE statement,
104-105

updateProduct.asp
page, 109-112

favorite product list, 312
upgrading Access databases

to SQL Server, 90
upload.asp page, 393-394
uploading files

ASPs (Active Server
Pages)

addProduct.asp page,
396-397

updateProduct.asp
page, 398-401

FTP (File Transport
Protocol) Service,
387-389

Posting Acceptor, 391-395
UPS shipping codes, con-

verting, 267
Upsizing Tools, 11, 90
UPSproductConversion

method, 267
URI Query property (W3C

Extended Log File for-
mat), 453

URI Stem property (W3C
Extended Log File for-
mat), 453

URLs, submitting to search
engines, 500-501

usage logs. See site usage
logs

600 Transact-SQL

 32 0672318989 index 3/30/00 8:32 AM Page 600

User Agent property (W3C
Extended Log File for-
mat), 454

user authentication
database authentication,

276-277
Add User scripts,

281-282
example of, 284-285
login pages, 278, 280
login validation,

283-284
registration forms, 278
server load, 295
user authentication,

282
HTTP (Hypertext

Transport Protocol), 274
basic authentication,

274, 288
digest authentication,

274
enabling, 275-276
integrated authentica-

tion, 274
when to use, 276

hybrid authentication
AUTHORIZATION

headers, 290-292
forcing password

dialogs, 288-289
hybrid.asp example,

292-294
security information, pass-

ing from page to page,
285

cookies, 286
hidden form fields, 287
query strings, 286-287
Session variables, 286

User Name property (W3C
Extended Log File for-
mat), 453

user settings, 297
displaying, 300-301
retrieving, 298-300

users. See customers
Users table, 170-171
USER_AGENT variable,

42-43
user_ccexpire field (Users

table), 171
user_ccname field (Users

table), 171
user_ccnumber field

(Users table), 171
user_cctype field (Users

table), 171
user_city field (Users table),

171
user_email field (Users

table), 171
user_id field (Users table),

171
user_password field

(Users table), 171
user_state field (Users

table), 171
user_street field (Users

table), 171
user_username field

(Users table), 171
user_zip field (Users table),

171
utilities

Disk Administrator, 332
Disk Management, 332
UUEncoding, 290-291

V

validatelogin method,
282-283

validating
forms, 33-35
logins, 282-283

validCCNumber method,
179

variables
Application variables, 57

creating, 57-58
hit counter applica-

tions, 58-60
locking, 60
removing from memo-

ry, 61-62
storing arrays in, 60-61
form variables, retrieving,

38-39
query string variables,

286-287
passing, 29-30
retrieving, 38-39

server variables, 39
PATH_TRANSLAT-

ED, 40-41
REFERRER, 41
REMOTE_ADDR,

41-42
SCRIPT_NAME,

39-40
USER_AGENT, 42-43

Session variables, 52-53,
286. See also cookies

alternatives to, 66
creating, 53, 362-364
debugging routines,

364-366
deleting, 192

variables 601

 32 0672318989 index 3/30/00 8:32 AM Page 601

displaying, 53-54
SessionIDs, 56
shopping carts, creat-

ing, 191-199, 211
storing arrays in, 54-55
user sessions, ending,

56-57
verifying file existance, 83
VIRTUAL attribute

(#INCLUDE directive), 70
virtual stores. See online

stores
Visual InterDev, 12

applications, deploying,
350-353

debugging feature, 354
breakpoints, 357
enabling, 355
Locals window,

360-361
permissions, 356-357
watch window,

358-359

W-Z

W3C Extended Log File
format, 451

naming conventions,
451-452

properties, 452-454
sample entry, 454-455

wallets, 469
accepting information

from, 492
client-side, 469

advantages/disadvan-
tages, 470-471

obtaining, 469-470

custom store wallets, 476
addUser method,

488-489
doCheckout.asp page,

481-483
ECML (E-Commerce

Modeling Language)
standards, 483-487

register.asp page,
477-480

updateUser method,
490-491

definition of, 469
server-side, 471

general server-side
wallets, 472-473

single-site wallets,
471-472

SmartCards, 474
standards, 475-476

watch window (Visual
InterDev debugger),
358-359

WCAT (Web Capacity
Analysis Tool), 372-373

Web pages
indexable pages, 158-159
Internet Service Manager

(HTML), 377-378
access restrictions,

379-384
installing, 378-379
remote administration

tasks, 384
search pages, 152

creating, 152-157
optimizing, 157

uploading files to
ASPs (Active Server

Pages), 396-401
FTP (File Transport

Protocol) Service,
387-389

Posting Acceptor,
391-395

third-party upload
components, 392

Web rings
definition of, 508
example of, 508-510

Web servers. See servers
Web sites. See also site

usage logs
BBBOnline, 341
Certification Authorities,

336-337
client-side wallets, 470
Cookie Central, 48
CPA WebTrust, 341
development sites,

349-350
listing with search

engines, 496-497
optimization special-

ists, 498
PageRank, 508
popularity algorithms,

507-508
relevance metrics,

498-499
spider pages, 502-507
titles.meta tags, 500
URL submission

pages, 500-501
Microsoft

Personal Web Server,
10

Upsizing Tools, 90
server-side wallets, 473
SmartCards, 474
SonicWALL, 334
subscription-based sites,

273
database authentica-

tion, 276-285, 295

602 variables

 32 0672318989 index 3/30/00 8:32 AM Page 602

HTTP authentication,
274-276, 288

hybrid authentication,
288-294

security information,
passing from page to
page, 285-287

TRUSTe, 341
United States Government

Electronic Commerce
Policy, 9

URL submission pages,
500-501

WebTrust privacy program,
341

Weight property
(iisCARTship component),
265

WHERE clause (SQL), 121
WHILE...WEND loop

paging through recordsets,
120

shopping cart application,
210

wildcard (%), 153
Win32 Status property

(W3C Extended Log File
format), 453

Windows 2000 Advanced
Server, 11

Windows NT Server
installing, 330
NTFS (NT File System),

332-333
security, 329-330

Write method, 22-23, 79
WriteBlankLines method,

79
WriteLine method, 78-79
writing to text files, 79

writing to text files 603

 32 0672318989 index 3/30/00 8:32 AM Page 603

	Sams E-Commerce Programming with ASP in 21Days Teach Yourself
	Copyright © 2000 by Sams
	Contents at a Glance
	Contents
	About the Authors
	Tell Us What You Think!

	Introduction
	WEEK 1 At A Glance
	DAY 1 Introduction to E-Commerce
	What Is E-Commerce?
	Microsoft Technologies for E-Commerce
	What Is an ASP Page?
	Summary
	Q&A
	Workshop

	DAY 2 Interacting with the Customer
	Working with the Response Object
	Working with the Request Object
	Retrieving Query String and Form Variables
	Summary
	Q&A
	Workshop

	DAY 3 Using Application and Session Objects in E-Commerce Applications
	Tracking Customers with Cookies
	Tracking Customers with Session Variables
	Using Application Variables
	Using the Global.asa File
	Summary
	Q&A
	Workshop

	DAY 4 Working with Files in Your E-Commerce Application
	Including Files in an ASP Page
	Using File Redirection
	Using the File Access Component
	Summary
	Q&A
	Workshop

	DAY 5 Building Your Product Catalog
	Creating the Store Database
	Creating the Products Table
	Connecting to a Database
	Adding Products to the Products Table
	Updating Product Information in the Products Table
	Summary
	Q&A
	Workshop

	DAY 6 Displaying Your Products
	Using Recordsets
	Displaying Products
	Making Your Store More Scalable
	Summary
	Q&A
	Workshop

	DAY 7 Searching for Products
	Displaying a Rotating List of Featured Products
	Creating a Search Page
	Creating Indexable Web Pages
	Summary
	Q&A
	Workshop

	WEEK 1 In Review
	Bonus Project

	WEEK 2 At A Glance
	DAY 8 Building the Transaction Databases
	The Transaction Database Tables
	Creating the Users Database Table
	Registering Users
	Gracefully Handling Form Errors
	Using the Secure Sockets Layer
	Summary
	Q&A
	Workshop

	DAY 9 Building the Shopping Cart
	Using Session Variables to Create a Shopping Cart
	Using Native ADO Methods
	Using a Database Table to Create a Shopping Cart
	Summary
	Q&A
	Workshop

	DAY 10 Checking Out
	Understanding Transactions
	Completing the Order
	Processing Orders
	Summary
	Q&A
	Workshop

	DAY 11 Working with Credit Cards
	Methods of Processing Credit Cards
	Preparing for CyberCash
	Authorizing a Credit Card Transaction
	Settling Credit Card Transactions
	Summary
	Q&A
	Workshop

	DAY 12 Letting Customers Track Their Orders
	Enabling Customers to Track Orders with a Web Page
	Calculating Shipping Costs
	Summary
	Q&A
	Workshop

	DAY 13 Creating a Subscription-Based Site
	Using HTTP Authentication
	Using Database Authentication
	Using Hybrid Authentication
	Summary
	Q&A
	Workshop

	DAY 14 Customizing the Shopping Experience
	Retrieving the Existing User Settings
	Showing Past Purchases
	Advertising Items Your Customers Would Like
	Summary
	Q&A
	Workshop

	WEEK 2 In Review
	Bonus Project

	WEEK 3 At A Glance
	DAY 15 Securing Your Store
	Registering Your Own Domain
	Making Your Server More Secure
	Protecting Your Users’ Private Information with SSL
	Protecting Your Database
	Registering with the Better Business Bureau Reliability Program
	Establishing a Privacy Policy and Joining a Privacy Seal Program
	The Better Business Bureau’s Children’s Advertising Review Unit Guidelines
	Summary
	Q&A
	Workshop

	DAY 16 Debugging Your E-Commerce Applications
	Keeping Your Development and Production Systems Separate
	Debugging Your Application Using Visual InterDev’s Integrated Debugger
	Debugging Your Application on a Production Server
	Capturing Errors into a Log File
	Testing for Scalability
	Summary
	Q&A
	Workshop

	DAY 17 Administering Your Store Remotely with ASPs
	The IIS Administration Pages
	Installing and Administering the IIS FTP Service
	Uploading Files to Your Site Using FTP
	Advanced Web-Based Product Catalog Maintenance
	Summary
	Q&A
	Workshop

	DAY 18 Using Email from Active Server Pages
	The Basics of Internet Mail
	Configuring the SMTP Service
	The Collaboration Data Objects for NT Server (CDONTS)
	Sending Email from an ASP Page
	Sending Batches of Email
	Summary
	Q&A
	Workshop

	DAY 19 Generating Store Reports
	Reporting on Site Usage
	Summary
	Q&A
	Workshop

	DAY 20 Working with Wallets
	Physical Commerce Versus Electronic Commerce
	Wallet Standards
	Your Own Store Wallet
	Accepting Information from Wallets
	Summary
	Q&A
	Workshop

	DAY 21 Promoting Your Site and Managing Banner Advertising
	Search Engines
	Web Rings
	Banner Ads
	Paying for Banner Ads
	Participating in Reward Programs
	Other Ways to Increase Revenue
	Summary
	Q&A
	Workshop

	WEEK 3 In Review
	Bonus Project

	APPENDIX A Quiz Answers
	APPENDIX B Frequently Asked Questions About Active Server Pages
	APPENDIX C SQL Reference
	INDEX

