
Chapter 5: Advanced Concepts in VB.NET 1

Prof. Sushant S.Sundikar VB.NET

Unit 5

Advanced Concepts in VB.Net

Topic Contents

• Object Oriented Programming- Creating Classes , Objects, Fields, Properties, Methods, Events ,

Constructors and destructors

• Exception Handling- Models, Statements

• File Handling- Using File Stream Class, File Mode, File Share, File Access Enumerations, Opening or

Creating Files with File Stream Class, Reading and Writing Text using StreamReader and StreamWriter

Classes

• Data Access with ADO.Net – What are Databases? Data Access with Server Explorer, Data Adapter

and DataSets, ADO.NET Objects and Basic SQL.

Object-Oriented Programming

Classes and Objects

A class is a blueprint, a template, a specification, a pattern, or any other founding definition of an

object. Objects absolutely depend on classes; without classes, you don't have objects. This should be

clear from Figure 1, which shows that a class must exist before you have an object, just as the egg

must come before you can have a chicken.

Figure 1: Classes are the blueprints of objects

It's easy to create classes and objects in Visual Basic. To create a class, you only need to use the Class

statement, which, like other compound statements in Visual Basic, needs to end with End Class:

Public Class DataClass

 ⋮
End Class

This creates a new class named DataClass. You can create an object of this class, data, like this note

that you must use the New keyword to create a new instance of a class:

Dim data As New DataClass()

You also can do this like this:

Chapter 5: Advanced Concepts in VB.NET 2

Prof. Sushant S.Sundikar VB.NET

Dim data As DataClass = New DataClass()

Fields, Properties, Methods, and Events

Fields, Properties, Methods, and Events are called the members of a class. Inside the class, members

are declared as either Public, Private, Protected, Friend, or Protected Friend:

• Public— Gives variables public access, which means there are no restrictions on their

accessibility.

• Private— Gives variables private access, which means they are accessible only from within

their class, including any nested procedures.

• Protected— Gives variables protected access, which means they are accessible only from

within their own class or from a class derived from that class. Note that you can use

Protected only at class level (which means you can't use it inside a procedure), because you

use it to declare members of a class.

• Friend— Gives variables friend access, which means they are accessible from within the

program that contains their declaration, as well as anywhere else in the same assembly.

• Protected Friend— Gives variables both protected and friend access, which means they can

be used by code in the same assembly, as well as by code in derived classes.

The fields of a class, also called the class's data members, are much like built-in variables (although

they also may be constants). For example, I can declare a field named value to the DataClass class

we just saw by declaring a variable with that name:

Public Class DataClass
 Public value As Integer
End Class

Now I can refer to that field in an object of this class using the familiar object.field syntax of Visual

Basic:

Dim data As New DataClass()
data.value = 5

You also can make fields hold constant values with Const:

Public Class Class1
 Public Const Field1 As Integer = 0

 ⋮
End Class

Chapter 5: Advanced Concepts in VB.NET 3

Prof. Sushant S.Sundikar VB.NET

Using fields like this can give you direct access to the data stored inside an object, and that's unusual

in OOP because you usually want to check the data being stored in your objects to make sure it's

legal first. An easy way of guarding access to the data in your objects is to use properties.

Properties are retrieved and set like fields, but are handled with the Property Get and Property Set

procedures, which provide more control on how values are set or returned.

Methods represent the object's built-in procedures. For example, a class named Animal may have

methods named Sleeping and Eating. You define methods by adding procedures, either Sub routines

or functions, to your class; for example, here's how I might implement the Sleeping and Eating

methods:

Public Class Animal
 Public Sub Eating()
 MsgBox("Eating...")
 End Sub

 Public Sub Sleeping()
 MsgBox("Sleeping...")
 End Sub
End Class

Now I can create a new object of the Animal class and call the Eating method in the familiar way:

Dim pet As New Animal()
pet.Eating()

Creating Objects

You can create objects of a class using the Dim statement; this statement is used at module, class,

structure, procedure, or block level:

[<attrlist>] [{ Public | Protected | Friend | Protected Friend |

Private | Static }] [Shared] [Shadows] [ReadOnly] Dim

[WithEvents] name [(boundlist)] [As [New] type] [= initexpr]

Here are the parts of this statement:

• attrlist—A list of attributes that apply to the variables you're declaring in this statement. You

separate multiple attributes with commas.

• Public—Gives variables public access, which means there are no restrictions on their

accessibility. Protected—Gives variables protected access, which means they are accessible

only from within their own class or from a class derived from that class.

Chapter 5: Advanced Concepts in VB.NET 4

Prof. Sushant S.Sundikar VB.NET

• Friend—Gives variables friend access, which means they are accessible from within the

program that contains their declaration, as well as anywhere else in the same assembly.

• Protected Friend—Gives variables both protected and friend access, which means they can

be used by code in the same assembly, as well as by code in derived classes.

• Private—Gives variables private access, which means they are accessible only from within

their declaration context (usually a class), including any nested procedures.

• Static—Makes variables static, which means they'll retain their values, even after the

procedure in which they're declared ends.

• Shared—Declares a shared variable, which means it is not associated with a specific instance

of a class or structure, but can be shared across many instances.

• Shadows—Makes this variable a shadow of an identically named programming element in a

base class. A shadowed element is unavailable in the derived class that shadows it.

• ReadOnly—Means this variable can only be read and not written.

• WithEvents—Specifies that this variable is used to respond to events caused by the instance

that was assigned to the variable.

• name—The name of the variable. You separate multiple variables by commas.

• boundlist—Used to declare arrays; gives the upper bounds of the dimensions of an array

variable. Multiple upper bounds are separated by commas. An array can have up to 60

dimensions.

• New—Means you want to create a new object immediately. If you use New when declaring

an object variable, a new instance of the object is created.

• type—The data type of the variable. Can be Boolean, Byte, Char, Date, Decimal, Double,

Integer, Long, Object, Short, Single, or String ; or the name of an enumeration, structure,

class, or interface.

• initexpr—An initialization expression which is evaluated and the result is assigned to the

variable when it is created.

When you create a new object from a class, you use the New keyword. You can do that in either of

these ways:

Dim employee As New EmployeeClass()
Dim employee As EmployeeClass = New EmployeeClass()

Chapter 5: Advanced Concepts in VB.NET 5

Prof. Sushant S.Sundikar VB.NET

Creating Constructors

Constructors are special methods that provide control over the initialization of Objects. A

constructor is nothing more than a subroutine named 'New'. When the class is instantiated, New

(constructor) is fired. We can place the startup code just like we do in Form_Load in windows

applications and Page_Load in web applications.

There are two types of constructors.

1. Shared constructors

2. Instance constructors

Implementation of Shared Constructors

Shared constructors are used to initialize the shared variables of a type. Shared variables are

created using the Shared keyword and store values that can be shared by all the instances of a class.

Shared constructors have an implicit public access. A shared constructor will not run more than once

during a single execution of a program.

The following example is an illustration of the shared constructor.

Public Class class1

Shared x As Integer

Shared Sub New()

x=0

End Sub

End Class

Instance Constructor in Visual Basic

Instance constructors are used to initialize variables that are declared with Dim, Public, Private,

Friend, Protected, and Protected Friend keywords. Write the following code in the class module.

Public Class ItemClass
 Private ItemCode As String
 Private ItemName As String
 Private ItemDescription As String
 Private ItemCategory As String
 Private ItemPrice As Single
 Private ItemUnit As String

 Public Sub New(ByVal Category As string)
 ItemCategory = Category

Chapter 5: Advanced Concepts in VB.NET 6

Prof. Sushant S.Sundikar VB.NET

 End Sub

End Class

Creating Data Members:

The fields of a class, also called the class's data members, are much like built-in variables.

Public Class DataClass
 Public value As Integer
End Class

Now I can refer to that field in an object of this class using the familiar object.field syntax of Visual

Basic:

Dim data As New DataClass()
data.value = 5

You also can make fields hold constant values with Const:

Public Class Class1
 Public Const Field1 As Integer = 0

 ⋮
End Class

Creating Properties

Using fields like this can give you direct access to the data stored inside an object, and that's unusual

in OOP because you usually want to check the data being stored in your objects to make sure it's

legal first. An easy way of guarding access to the data in your objects is to use properties.

Properties are retrieved and set like fields, but are handled with the Property Get and Property Set

procedures, which provide more control on how values are set or returned.

Module Module2
 Private PropertyValue As String
 Public Property Prop1() As String
 Get
 Return PropertyValue
 End Get
 Set(ByVal Value As String)
 PropertyValue = Value
 End Set
 End Property
End Module

Chapter 5: Advanced Concepts in VB.NET 7

Prof. Sushant S.Sundikar VB.NET

Note that you can make properties write-only with the WriteOnly keyword (and you must omit the

Get method):

Module Module2
 Private PropertyValue As String
 Public WriteOnly Property Prop1() As String
 Set(ByVal Value As String)
 PropertyValue = Value
 End Set
 End Property
End Module

You can make properties read-only with the ReadOnly keyword (and you must omit the Set

method):

Module Module2
 Private PropertyValue As String
 Public ReadOnly Property Prop1() As String
 Get
 Return PropertyValue
 End Get
 End Property
End Module

Creating Events

You can design and support your own events using OOP in Visual Basic, using the Event statement:

[<attrlist>] [Public | Private | Protected | Friend |
Protected Friend] [Shadows] Event eventname[(arglist)]
[Implements interfacename.interfaceeventname]

Here are the parts of this statement:

• attrlist—Optional. List of attributes that apply to this event. Separate multiple attributes by

commas.

• Public—Optional. Events declared Public have public access, which means there are no

restrictions on their use.

• Private—Optional. Events declared Private have private access, which means they are

accessible only within their declaration context.

• Protected—Optional. Events declared Protected have protected access, which means they

are accessible only from within their own class or from a derived class.

• Friend—Optional. Events declared Friend have friend access, which means they are

accessible only within the program that contains the its declaration.

• Protected Friend—Optional. Events declared Protected Friend have both protected and

friend accessibility.

• Shadows—Optional. Indicates that this event shadows an identically named programming

element in a base class.

• eventname—Required. Name of the event.

• interfacename—The name of an interface.

Chapter 5: Advanced Concepts in VB.NET 8

Prof. Sushant S.Sundikar VB.NET

• interfaceeventname—The name of the event being implemented.

Public Class ClickTrack

 Public Event ThreeClick(ByVal Message As String)
 Public Sub Click()
 Static ClickCount As Integer = 0
 ClickCount += 1
 If ClickCount >= 3 Then
 ClickCount = 0
 RaiseEvent ThreeClick("You clicked three times")
 End If
 End Sub
 End Class

To raise an event we use the following code:

Dim WithEvents tracker As New ClickTrack()

tracker.ThreeClick

Exception handling

Overview

Exception handling is crucial since the robustness of software depends on how effectively a program

deals with exceptions. Basically exceptions are the run time error.

Why do we need Exception handling?

We inject exception−handling code into our programs to trap errors and "handle" them "gracefully"

and to prevent a program from terminating unexpectedly. Some errors don't result in an application

crashing. But if we were to allow a program to continue mortally wounded it would present

undesirable results to the user or risk trashing data. Instead SEH anticipates the impending disaster

and presents a viable rescue plan.

Visual Basic .NET provides us with the facility to catch all types of exceptions. We can code specific

handlers to catch only certain types of exceptions, or exceptions generated by related types, or

classes.

To summarize, we need exception handling for the following reasons:

• Applications need a facility to catch a method's inability to complete a task.

• To process exceptions caused by a process accessing any functionality in methods, libraries,

or classes where those elements are unable to directly handle any exception that arises as a

result of the access and the ensuing computation.

• To process exceptions caused by components that are not able to handle any particular

exception in their own processing space.

Chapter 5: Advanced Concepts in VB.NET 9

Prof. Sushant S.Sundikar VB.NET

• To ensure that large and complex programs (actually, any Visual Basic program) can

consistently and holistically provide program−wide excepIon handling.

Structured Exception Handling

Structured Exception Handling (SEH) is new to the Visual Basic language. Although it prevents further

execution of troublesome code in a manner similar to the familiar On Error Goto construct, it is a

very different construct to On Error Goto. When a program encounters an error in classic VB, all

further processing of statements after the violating line is suspended, and the execution is

transferred to a region in the current routine where the programmer can deal with the error. That's

where the similarity ends.

The concept of SEH is straightforward. Code is optionally enclosed in a block that sets up a guarded

perimeter around the code to be executed. This guarded code is everything that falls between the

Try and Catch keywords. Here is an example.

13 Try
14 GetTrim = Call(SetFalloff) <− begin protected code

15

16 <−end protected code
17 Catch

18 End Try

As soon as an exception is raised, all further execution of the method's code is halted and

transferred to a catchment area. The catchment area is the Catch block between Try and End Try.

File Handling

The .NET Framework provides an impressive range of IO namespaces that contain dozens of classes

used for writing, reading, and streaming all manner of text, characters, and binary data, as well as

file, folder, and path support.

The files you work with in your programs are typically ordered collections of bytes, representing

characters on a file system. Streams, on the other hand, are continuous "rivers" of data, writing to

and reading from various devices.

Stream is an abstract class and has been extended in a variety of specialized child classes. The

Stream class and its children provide a facility for handling data, blocks of bytes, without having to

care about what happens down in the basement of the operating system.

Chapter 5: Advanced Concepts in VB.NET 10

Prof. Sushant S.Sundikar VB.NET

The following classes derive from Stream:

• BufferedStream Reads and writes to other Stream objects. This class can be derived from

and instantiated.

• FileStream Bridges a Stream object to a file for synchronous and asynchronous read and

write operations. This class can be derived from and instantiated.

• MemoryStream Creates a Stream in memory that can read a block of bytes from a current

stream and write the data to a buffer. This class can be derived from and instantiated.

• CryptoStream Defines a Stream that bridges data objects to cryptographic services. This

class can be derived from and instantiated.

• NetworkStream Defines a Stream that bridges data objects to network services. This class

can be derived from and instantiated.

FileStream

FileStream objects can be used to implement all of the standard input, output, and error stream

functionality. With these objects, you can read and write to file objects on the file system. With it

you can also bridge to various file−related operaIng system handles, such as pipes, standard input,

and standard output. You can use the FileStream class to open or create files, and then use other

classes, like BinaryWriter and BinaryReader, to work with the data in the file.

Noteworthy public properties of FileStream objects.

Property Description

CanRead Determines if the stream supports reading.

CanSeek Determines if the stream supports seeking.

CanWrite Determines if the stream supports writing.

Handle Gets the operating system file handle for the stream's file.

IsAsync Determines if the stream was opened asynchronously or synchronously.

Length Gets the length of the stream in bytes.

Name Gets the name of the file stream passed to the constructor.

Position Gets/sets the position in this stream.

Chapter 5: Advanced Concepts in VB.NET 11

Prof. Sushant S.Sundikar VB.NET

Noteworthy public methods of FileStream objects.

Method Description

BeginRead Starts an asynchronous read operation.

BeginWrite Starts an asynchronous write operation.

Close Closes a file, making it available in Windows to any other program.

EndRead Waits for an asynchronous read operation to finish.

EndWrite Ends an asynchronous write operation, waiting until the operation has finished.

Flush Flushes all buffers for this stream, writing any buffered data out to its target (such as a

disk file).

Lock Withholds any access to the file to other processes.

Read Reads a block of bytes.

ReadByte Reads a byte from the file.

Seek Sets the current read/write position.

SetLength Sets the length of the stream.

Unlock Gives access to other processes to a file that had been locked.

Write Writes a block of bytes to this stream.

WriteByte Writes a byte to the current read/write position.

Using the FileMode Enumeration

When you open a file with the FileStream class, you specify the file mode you want to use—for

example, if you want to create a new file, you use the file mode FileMode.Create. The various

possible file modes are part of the FileMode enumeration; you can find the members of this

enumeration in Table 5.3.

Table 5.3: Members of the FileMode enumeration.

Member Means

Append Opens a file and moves to the end of the file (or creates a new file if the specified

file doesn't exist). Note that you can only use FileMode.Append with

FileAccess.Write.

Create Creates a new file; if the file already exists, it is overwritten.

Chapter 5: Advanced Concepts in VB.NET 12

Prof. Sushant S.Sundikar VB.NET

CreateNew Creates a new file; if the file already exists, an IOException is thrown.

Open Opens an existing file.

OpenOrCreate Open a file if it exists; or create a new file.

Truncate Open an existing file, and truncate it to zero length so you can write over its data.

Using the FileAccess Enumeration

When you open files with the FileStream class, you can specify the file mode (see the previous topic)

and access. The access indicates the way you're going to use the file-to read from, to write to, or

both. To indicate the type of file access you want, you use members of the FileAccess enumeration.

You can find the members of the FileAccess enumeration in Table 5.4.

Table 5.4: Members of the FileAccess enumeration.

Member Means

Read Gives read access to the file, which means you can read data from the file.

ReadWrite Gives both read and write access to the file, which means you can both read and write

to and from a file.

Write Gives write access to the file, which means you can write to the file.

Using the FileShare Enumeration

When you open a file, you can specify the file-sharing mode you want to use in some of the

FileStream constructors (you don't have to specify a file-sharing mode with other FileStream

constructors). For example, if you want to allow other programs to read a file at the same time

you're working with it, you use the file-sharing mode FileShare.Read. The various possible file-

sharing modes are part of the FileShare enumeration, and you can find the members of this

enumeration in Table 5.5.

Table 5.5: Members of the FileShare enumeration.

Member Means

None The file cannot be shared. Other processes cannot access it.

Read The file also may be opened by other processes for reading.

Chapter 5: Advanced Concepts in VB.NET 13

Prof. Sushant S.Sundikar VB.NET

ReadWrite The file also may be opened by other processes for reading and writing.

Write The file also may be opened by other processes for writing.

Opening or Creating a File with the FileStream Class

When you want to open or create a file, you use the FileStream class, which has many constructors,

allowing you to specify the file mode (for example, FileMode.Create), file access (such as

FileAccess.Write), and/or the file-sharing mode (such as FileShare.None), like this (these are only a

few of the FileStream constructors):

Dim fs As New System.IO.FileStream(String, FileMode)

Dim fs As New System.IO.FileStream(String, FileMode, FileAccess)

Dim fs As New System.IO.FileStream(String, FileMode, FileAccess, FileShare)

Example:

Let us create a file named file.txt and opening it for writing with a FileStream object; We will set the

file mode to Create to create this new file, and explicitly set the file access to Write so we can write

to the file:

Imports System

Imports System.IO

Public Class Form1

 Inherits System.Windows.Forms.Form

 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click
 Dim fs As New System.IO.FileStream("file.txt", FileMode.Create, _
 FileAccess.Write)

 ⋮

Using the StreamWriter Class

After you've opened a file for writing using the FileStream, you can create a StreamWriter object to

write text to the file.

Table 5.6: Noteworthy public properties of StreamWriter objects.

Property Description

AutoFlush Gets/sets if the StreamWriter will flush its buffer after Write or WriteLine operation.

BaseStream Gets the base stream for this stream, giving you access to the base stream's

Chapter 5: Advanced Concepts in VB.NET 14

Prof. Sushant S.Sundikar VB.NET

properties and methods.

Encoding Gets the character encoding for this stream.

Table 5.7: Noteworthy public methods of StreamWriter objects.

Method Description

Close Closes the current stream.

Flush Flushes all buffers for the stream writer, writing any buffered data to the base stream.

Write Writes data to the stream.

Writing Text with the StreamWriter Class

The following example will create a file named file.txt and then write some text in the file.

Imports System

Imports System.IO

Public Class Form1

 Inherits System.Windows.Forms.Form

 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 Dim fs As New System.IO.FileStream("file.txt", FileMode.Create, _

 FileAccess.Write)

 Dim w As New StreamWriter(fs)
 w.BaseStream.Seek(0, SeekOrigin.End)

 w.WriteLine("Here is the file's text.")

 w.Write("Here is more file text." & ControlChars.CrLf)

 w.WriteLine("And that's about it.")

 w.Flush()
 w.Close()

 ⋮
 End Sub

End Class

Using the StreamReader Class

You can use the StreamReader class to read text data from files; here's the hierarchy of this class:

Table 5.7: Noteworthy public properties of StreamReader objects

Property Means

BaseStream Holds the underlying stream, giving you access to that stream's properties and

Chapter 5: Advanced Concepts in VB.NET 15

Prof. Sushant S.Sundikar VB.NET

methods.

CurrentEncoding Gets the character encoding for the stream reader.

Table 5.8: Noteworthy public methods of StreamReader objects.

Method Means

Close Closes the stream reader.

DiscardBufferedData Discards the data in the buffer.

Peek Looks ahead and returns the next available character (but does not actually

read it as Read would, so does not advance the read/write position). Returns

-1 if there is no more data waiting to be read.

Read Reads the next character or characters.

ReadLine Reads a line of text from the stream, returning that data as a string.

ReadToEnd Reads from the current position to the end of the stream.

Reading Text with the StreamReader Class

The following example will read text from the file and then display the text in the textbox.

Imports System

Imports System.IO

Public Class Form1

 Inherits System.Windows.Forms.Form

 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 fs = New System.IO.FileStream("file.txt", FileMode.Open, _
 FileAccess.Read)

 Dim r As New StreamReader(fs)
 r.BaseStream.Seek(0, SeekOrigin.Begin)

 While r.Peek() > -1
 TextBox1.Text &= r.ReadLine() & ControlChars.CrLf
 End While

 r.Close()

 End Sub

End Class

Chapter 5: Advanced Concepts in VB.NET 16

Prof. Sushant S.Sundikar VB.NET

Data Access with ADO.NET

What Are Databases?

A database is a collection of related data. By data, we mean known facts that can be recorded and

that have implicit meaning. For example, consider the names, telephone numbers, and addresses of

the people you know. This is a collection of related data with an implicit meaning and hence is a

database. A collection of records—that is, rows of records, where each column is a field— becomes

a table. Database is just a collection of one or more tables.

Visual Basic .NET uses ADO.NET (ADO stands for ActiveX Data Objects) as its primary data access and

manipulation protocol. There are plenty of objects available in ADO.NET, but at root, they're not

difficult to use in practice.

Here's what happens when you use ADO.NET—you first get a connection to a data source, which

means using a data provider to access a database. After you have a connection to a data source, you

create a data adapter to work with that data. The data adapter is what actually applies your SQL

statements to a database and causes your datasets to fill with data. Once you have a data adapter,

you can generate a dataset using that adapter. So those are the three objects that it's essential to

know about: data connections to connect to the database, data adapters to execute SQL with, and

datasets to store the data—as returned from data adapters—that your code will actually work on.

Accessing Data with the Server Explorer

To work with a database, you need a connection to that database. In Visual Basic, the Server

Explorer lets you work with connections to various data sources. To display the Server Explorer if it's

not already visible, use the View|Server Explorer menu item, or press Ctrl+Alt+S. 0.This tool lets you

create and examine data connections, including connections to Web servers; you can see

connections to various databases in the Server Explorer already.

When Visual Basic .NET is installed, it searches your local computer for database servers and adds

them to the Server Explorer automatically. To add additional servers to the Server Explorer, you

select the Tools|Connect to Server menu item or right-click the Servers node that appears at the

bottom of the Server Explorer, and select the Add Server menu item. This opens the Add Server

dialog, which lets you enter new database servers by computer name or IP address on the Internet.

When you subsequently create data connections, you can specify what server to use, as you see in

the drop-down list box in Figure 5.2.

Chapter 5: Advanced Concepts in VB.NET 17

Prof. Sushant S.Sundikar VB.NET

To access data from database just drag the database table onto the main form. This automatically

creates the SqlConnection1 and SqlDataAdapter1 objects you see in the component tray .

Now it's time to generate the dataset that holds the data from the data adapter. To do that, just

select the Data|Generate Dataset menu item, or right-click SqlDataAdapter1 and select the

Generate Dataset menu item. This displays the Generate Dataset dialog.

Click the New option to create a new dataset. I'll stick with the default name given to this new

dataset object, DataSet1; make sure the database table checkbox is checked, as well as the "Add

this dataset to the designer" checkbox, then click OK. Doing so adds a new dataset, DataSet11,

To display the data in the dataset, I'll use a data grid control, and set the data grid's DataSource

property to Data11(not DataSet11) and its DataMember property to table, which will be displayed

automatically as an option when you click that property. This connects the data in the dataset to the

data grid.

To fill the dataset with data from the data adapter write the following code in form load event

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 DataSet11.Clear()
 SqlDataAdapter1.Fill(DataSet11)

End Sub

Chapter 5: Advanced Concepts in VB.NET 18

Prof. Sushant S.Sundikar VB.NET

Accessing Data with Data Adaptors and Datasets

In the previous example, we dragged an entire data table from the Server Explorer to a form, but

often you'll want to look at only a few fields in a table, or otherwise customize what you want to do

with a table before working with its data. To do that, you can create a data adapter yourself.

To see how this works, just click the Data tab in the toolbox now. In this case, I'll drag an

OleDbDataAdapter object from the toolbox to the main form. Doing so opens the Data Adapter

Configuration Wizard. This wizard will let you customize your data adapter as you want, which

usually means we can create the SQL statement using this adapter. Now create a new dataset using

this data adapter by clicking Data|Generate Dataset menu item, and connect the new dataset to a

data grid using the DataSource and DataMember properties. Now add a Load Button and write the

following code:

Private Sub btnLoad_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnLoad.Click

 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)

End Sub

Here's a summary of the steps we took in this example:

1. Create a data connection or use an existing data connection.

2. Drag an OleDBAdaptor object onto a form; creates connection and adaptor objects.

3. Use the Data Adapter Configuration Wizard to configure the data adapter and create the

SQL you want.

4. Generate a dataset.

5. Bind the dataset to controls.

6. Fill the dataset in code.

Overview of ADO.NET Objects

Here's a list of the most common ADO.NET objects:

• Data connection objects—To start working with a database, you must have a data

connection. A data adapter needs a connection to a data source to read and write data, and

it uses OleDbConnection or SqlConnection objects to communicate with a data source.

• Data adapters—Data adapters are a very important part of ADO.NET. You use them to

communicate between a data source and a dataset. You typically configure a data adapter

Chapter 5: Advanced Concepts in VB.NET 19

Prof. Sushant S.Sundikar VB.NET

with SQL to execute against the data source. The two types of data adapters are

OleDbDataAdapter and SqlDataAdapter objects.

• Command objects—Data adapters can read, add, update, and delete records in a data

source. To allow you to specify how each of these operations work, a data adapter contains

command objects for each of them. Data adapters support four properties that give you

access to these command objects: SelectCommand, InsertCommand, UpdateCommand,

and DeleteCommand.

• Datasets—Datasets store data in a disconnected cache. The structure of a dataset is similar

to that of a relational database; it gives you access to an object model of tables, rows, and

columns, and it contains constraints and relationships defined for the dataset. Datasets are

supported with DataSet objects.

• DataTable objects—DataTable objects hold a data table from a data source. Data tables

contain two important properties: Columns, which is a collection of the DataColumn objects

that represent the columns of data in a table, and Rows, which is a collection of DataRow

objects, representing the rows of data in a table.

• Data readers— DataReader objects hold a read-only, forward-only (i.e., you can only move

from one record to the succeeding record, not backwards) set of data from a database.

Using a data reader can increase speed because only one row of data is in memory at a time.

See "Using a Data Reader" in Chapter 22

• Data views—Data views represent a customized view of a single table that can be filtered,

searched, or sorted. In other words, a data view, supported by the DataView class, is a data

"snapshot" that takes up few resources.

• DataRelation objects—DataRelation objects specify a relationship between parent and

child tables, based on a key that both tables share.

• DataRow objects—DataRow objects correspond to a particular row in a data table. You use

the Item property to get or set a value in a particular field in the row. See "Creating Data

Rows in Code" in Chapter 22.

• DataColumn objects—DataColumn objects correspond to the columns in a table. Each

object has a DataType property that specifies the kind of data each column contains, such as

integers or string values..

Chapter 5: Advanced Concepts in VB.NET 20

Prof. Sushant S.Sundikar VB.NET

Answer the following Question:

1. What is a class? Explain with an example how you create a class.

2. Write a short note on Constructors in VB.net

3. Explain with an example how do you declare and call functions in a class.

4. What is SEH? Explain in detail each keyword with an example.

5. Write a short note on ADO.Net Objects

6. What is server explorer? How do you access data from server explorer?

7. What is data adapter? How do you access data from the data adapter object?

