
Unit 2

� Understanding the C# Class Type

� Reviewing the Pillars of OOP

� C#’s Encapsulation Services

� C#’s Inheritance Support

� Programming for Containment/Delegation

� C #’s Polymorphic Support, C# Casting rules

� Understanding C# Partial types

� Documenting C# Source Code via XML

� Understanding Object Lifetime Classes

C# Programming Sahaj Computer Solutions 2

� Objects and References

� The basics of Object Lifetime

� System.GC type

� Building Finalizable Objects

� Building Disposable Objects

C# Programming Sahaj Computer Solutions 3

� Formally, a class is nothing more than a

custom user-defined type (UDT) that is

composed of field data (sometimes termed

member variables) and functions (often

called methods) that act on this data.

� The set of field data collectively represents

the “state” of a class instance.

� The power of object-oriented languages is

by grouping data and functionality in a single

UDT, to model your software types into real-

world entities.

C# Programming Sahaj Computer Solutions 4

� For example, if you wish to create a generic

employee for a payroll system, you may wish

to build a class that maintains the name,

current pay, and employee ID for each

worker.

� In addition, the Employee class defines a

method, named GiveBonus(), which increases

an individual’s current pay by some amount,

and another, named DisplayStats(), which

prints out the state data for this individual

C# Programming Sahaj Computer Solutions 5

� Figure 2-1 illustrates the Employee class

type.

C# Programming Sahaj Computer Solutions 6

� C# classes can define any number of
constructors.

� These special class methods provide a simple
way for a user to create an instance of a
class.

� Every class is initially provided with a
default constructor, which never takes
arguments.

� In addition to the default constructor, you
are also free to define as many constructors
which can take parameters (parameterized
constructors).

C# Programming Sahaj Computer Solutions 7

� To create an instance of a class we need to

create objects.

� Objects in C# are created using the new

keyword.

� The syntax for creating an instance of a class

object is as follows:

 ClassName object-name = new ClassName();

C# Programming Sahaj Computer Solutions 8

� Like C++ and Java, if you choose to define

custom constructors in a class definition, the

default constructor is silently removed.

� Therefore, if you wish to create an instance

of Employee class then you can create this as

follows:

// Calls the default constructor.

Employee e = new Employee();

� You must explicitly redefine the default

constructor for your class to execute the

above code.

C# Programming Sahaj Computer Solutions 9

� If you do not, you will receive a compiler

error when creating an instance of your class

type using the default constructor.

� To call the parameterized constructor of the

Employee class, we need to use the following

code:

Employee e = new Employee ("Joe", 80, 30000);

� Program :ch02pg01.cs

C# Programming Sahaj Computer Solutions 10

� Like other object-oriented languages, C#

allows a type to overload various methods.

� Simply put, when a class has a set of

identically named methods that differ by the

number (or type) of parameters, the method

in is said to be overloaded.

� For example:

� Assume you have a class named Triangle that

supports an overloaded Draw() method.

� By doing so, you allow the object user to render

the image using various input parameters:

C# Programming Sahaj Computer Solutions 11

public class Triangle

{

// The overloaded Draw() method.

public void Draw(int x, int y, int height, int

width) {...}

public void Draw(float x, float y, float

height, float width) {...}

public void Draw(Point upperLeft, Point

bottomRight) {...}

public void Draw(Rect r) {...}

} Program: ch01pg02.cs

C# Programming Sahaj Computer Solutions 12

� Not only methods but you can also overload
constructors in a class. This concept is called
as constructor overloading. For example:

public class Employee

{

...

// Overloaded constructors.

public Employee(){ }

public Employee(string fullName, int

empID, float currPay){...}

...

} Program:ch02pg03.cs

C# Programming Sahaj Computer Solutions 13

� C# ‘this’ keyword is used when you wish to
explicitly reference the fields and members
of the current object.

� The main use of ‘this’ in your class members
is to avoid clashes between the parameter
names and names of member variables. For
example:

public Employee(string name, int id, float pay)

{

this.fullName = name;

this.empID = id;

this.currPay = pay;

}

C# Programming Sahaj Computer Solutions 14

� Another use of this keyword is to force one

constructor to call another in order to avoid

redundant member initialization logic.

� The general form is shown here:
constructor-name(parameter-list1) : this(parameter-

list2) {

// ... body of constructor, which may be empty

}

C# Programming Sahaj Computer Solutions 15

� Encapsulation:

� The first pillar of OOP is called encapsulation.

� This trait boils down to the language’s ability to

hide unnecessary implementation details from

the object user.

� Inheritance:

� The next pillar of OOP, inheritance, boils down to

the language’s ability to allow you to build new

class definitions based on existing class

definitions.

C# Programming Sahaj Computer Solutions 16

� Polymorphism:

� The final pillar of OOP is polymorphism which is

the ability to treat related objects the same way.

� This concept of object-oriented language allows

a base class to define a set of members (formally

termed the polymorphic interface) to all

descendents.

� A class type’s polymorphic interface is

constructed using any number of virtual or

abstract members.

C# Programming Sahaj Computer Solutions 17

� Polymorphism(Contd)

� In a nutshell, a virtual member may be changed

(or more formally speaking, overridden) by a

derived class, whereas an abstract method must

be overriden by a derived type.

� When derived types override the members

defined by a base class, they are essentially

redefining how they respond to the same

request.

C# Programming Sahaj Computer Solutions 18

� The concept of encapsulation revolves

around the notion that an object’s field data

should not be directly accessible from the

public interface.

� In C#, encapsulation is enforced at the

syntactic level using the public, private,

protected, and protected internal keywords.

� Encapsulation provides a way to preserve the

integrity of state data.

C# Programming Sahaj Computer Solutions 19

� Rather than defining public fields (which can

easily foster data corruption), you should get

in the habit of defining private data fields,

which are indirectly manipulated by the

caller using one of two main techniques:

� Define a pair of traditional accessor and mutator

methods.

� Define a named property.

C# Programming Sahaj Computer Solutions 20

� Enforcing Encapsulation Using Traditional
Accessors and Mutators
� If you want the outside world to interact with your

private fullName data field, tradition dictates
defining an accessor (get method) and mutator (set
method).

� For example:
// Traditional accessor and mutator for a
point of private data.

public class Employee

{

private string fullName;

// Accessor.

public string GetFullName() { return
fullName; }

C# Programming Sahaj Computer Solutions 21

// Mutator.

public void SetFullName(string n)

{

// Remove any illegal characters (!,

@, #, $, %),

// check maximum length (or case

rules) before making assignment.

fullName = n;

}

C# Programming Sahaj Computer Solutions 22

� In contrast to traditional accessor and

mutator methods, .NET languages prefer to

enforce encapsulation using properties,

which simulate publicly accessible points of

data.

� Rather than requiring the user to call two

different methods to get and set the state

data, the user will call the property like a

public field.

C# Programming Sahaj Computer Solutions 23

� The general form of a property is shown
here:
type name {

get {

// get accessor code

}

set {

// set accessor code

}

}

� Here, type specifies the data type of the
property, such as int, and name is the name
of the property.

C# Programming Sahaj Computer Solutions 24

� Once the property has been defined, any use

of name results in a call to its appropriate

accessor.

� The set accessor automatically receives a

parameter called value that contains the

value being assigned to the property.

� Program ch02pg05.cs: Here is a simple

example that defines a property called

MyProp, which is used to access the field

prop. In this case, the property allows only

positive values to be assigned.

C# Programming Sahaj Computer Solutions 25

� By default, the set and get accessors have
the same accessibility as property of which
they are a part.

� For example, if the property is declared
public, then by default the get and set
accessors are also public.

� It is possible, however, to give set or get its
own access modifier, such as private or
protected.

� In all cases, the access modifier for an
accessor must be more restrictive then the
access specification of its property.

C# Programming Sahaj Computer Solutions 26

� Program ch02pg06.cs:

� Program to demonstrate the use an access

modifier with an accessor.

� Here is a property called MyProp that has its

set accessor specified as private.

C# Programming Sahaj Computer Solutions 27

� Properties can be defined as read-only,
write-only or read-write property depending
upon its underlying field to be read or
written.

� To create a read-only property, define only a
get accessor.

� To define a write-only property, define only a
set accessor.

� Program ch02pg07.cs: This program
demonstrates read-only property. Here we
have a Customer class which has two read-
only properties, ID and Name.

C# Programming Sahaj Computer Solutions 28

� Program ch02pg08.cs: This program
demonstrates the use of write-only property.
Here we have a Customer class which has two
write-only properties, ID and Name. This time,
the get accessor is removed from the ID and
Name properties of the Customer class. The set
accessors have been added, assigning value to
the backing store fields, m_id and m_name.

� Program ch02pg09.cs : This program shows a
Person class that has two read-write properties:
Name (string) and Age (int). Both properties
provide get and set accessors, so they are
considered read/write properties.

C# Programming Sahaj Computer Solutions 29

� When a property declaration includes a static

modifier, the property is said to be a static

property.

� A static property is not associated with a specific

instance, and it is a compile-time error to refer

to this in the accessors of a static property.

� Program ch02pg10.cs: This example

demonstrates instance, static, and read-only

properties. It accepts the name of the employee

from the keyboard, increments

numberOfEmployees by 1, and displays the

Employee name and number.

C# Programming Sahaj Computer Solutions 30

� Inheritance is the aspect of OOP that facilitates
code reuse.

� In C#, a class that is inherited is called a base
class.

� The class that does the inheriting is called a
derived class.

� Therefore, a derived class is a specialized
version of a base class.

� It inherits all of the variables, methods,
properties, and indexers defined by the base
class and add its own unique elements.

� In C#, extending a class is accomplished using
the colon operator (:) on the class definition.

C# Programming Sahaj Computer Solutions 31

� Inheritance comes in two flavors:

� Classical inheritance (the “is-a” relationship) and

� The containment/ delegation model (the “has-a”

relationship).

� When you establish “is-a” relationships

between classes, you are building a

dependency between types.

� The basic idea behind classical inheritance is

that new classes may leverage (and possibly

extend) the functionality of other classes.

C# Programming Sahaj Computer Solutions 32

� To illustrate, assume that you wish to

leverage the functionality of the Employee

class to create two new classes (SalesPerson

and Manager).

C# Programming Sahaj Computer Solutions 33

� As illustrated in Figure 2-1, you can see that

a SalesPerson “is-a” Employee (as is a

Manager).

� In the classical inheritance model, base

classes (such as Employee) are used to define

general characteristics that are common to

all descendents.

� Subclasses (such as SalesPerson and Manager)

extend this general functionality while

adding more specific behaviors.

C# Programming Sahaj Computer Solutions 34

� The general form of a class declaration that
inherits a base class is shown here:
class derived-class-name : base-class-name {

// body of class

}

� Program ch02pg11.cs:
� For example, the following program uses
TwoDShape to derive a class called Triangle.
TwoDShape can be used as a base class (that is,
as a starting point) for classes that describe
specific types of two-dimensional objects. Pay
close attention to the way that Triangle is
declared.

C# Programming Sahaj Computer Solutions 35

� In a hierarchy, it is possible for both base

classes and derived classes to have their own

constructors.

� The constructor for the base class constructs

the base class portion of the object, and the

constructor for the derived class constructs

the derived class part.

� A derived class can call a constructor defined

in its base class by using an expanded form

of the derived class’ constructor declaration

and the base keyword.

C# Programming Sahaj Computer Solutions 36

� The general form of this expanded

declaration is shown here:

derived-constructor(parameter-list) : base(arg-list)

{

// body of constructor

}

� Here, arg-list specifies any arguments

needed by the constructor in the base class.

Notice the placement of the colon.

C# Programming Sahaj Computer Solutions 37

� In C#, the default constructor of a base class is

called automatically before the derieved class

constructor is executed.

� To call the parameterized constructor of a

derived class, you need to explicitly call an

appropriate custom base class constructor with

the base keyword, rather than the default.

� Program ch01pg12.cs: To see how base is used,

consider the version of TwoDShape in the following

program. It defines a constructor that initializes the

Width and Height properties. This constructor is then

called by the Triangle constructor.

C# Programming Sahaj Computer Solutions 38

� Speaking of base classes, it is important to
keep in mind that C# demands that a given
class have exactly one direct base class.

� Therefore, it is not possible to have a single
type with two or more base classes (this
technique is known as multiple inheritance,
or simply MI).

� C# does allow a given type to implement any
number of discrete interfaces.

� In this way, a C# class can exhibit a number
of behaviors while avoiding the problems
associated with classic MI.

C# Programming Sahaj Computer Solutions 39

� As you already know, public items are

directly accessible from anywhere, while

private items cannot be accessed from any

object beyond the class that has defined it.

� C# takes the lead of many other modern

object languages and provides an additional

level of accessibility: protected .

� When a base class defines protected data or

protected members; it is able to create a set

of items that can be accessed directly by any

descendent.

C# Programming Sahaj Computer Solutions 40

� For example
// Protected state data.

public class Employee

{

// Child classes can directly access this information. Object users
cannot.

protected string fullName;

protected int empID;

protected float currPay;

protected string empSSN;

protected int empAge;

...

}

� The benefit of defining protected members in a base class
is that derived types no longer have to access the data
using public methods or properties.

C# Programming Sahaj Computer Solutions 41

� As powerful and useful as inheritance is,
sometimes you will want to prevent it.

� For example, you might have a class that
encapsulates the initialization sequence of some
specialized hardware device, such as a medical
monitor.

� In this case, you don’t want users of your class
to be able to change the way the monitor is
initialized, possibly setting the device
incorrectly.

� Whatever the reason, in C# it is easy to prevent
a class from being inherited by using the
keyword sealed.

� To prevent a class from being inherited, precede
its declaration with sealed.

C# Programming Sahaj Computer Solutions 42

� Here is an example of a sealed class:

sealed class A {

// ...

}

// The following class is illegal.

class B : A { // ERROR! Can't derive from class A

// ...

}

� As the comments imply, it is illegal for B to

inherit A because A is declared as sealed.

C# Programming Sahaj Computer Solutions 43

� Program ch02pg13.cs: This program

demonstrates the use of sealed keyword in

inheritance. In this example, you might try

to inherit from the sealed class by using the

following statement:

 class MyDerivedC: SealedClass {} // Error

� The result is an error message: 'MyDerivedC'

cannot inherit from sealed class 'SealedClass'.

C# Programming Sahaj Computer Solutions 44

� In the second pillar of OOP, let’s examine the
“has-a” relationship (also known as the
containment/delegation model).

� Assume you have created a new class that
models an employee benefits package:

// This type will function as a contained class.

public class BenefitPackage

{

// Assume we have other members that represent

// 401K plans, dental / health benefits and so on.

public double ComputePayDeduction()

{ return 125.0; }

}

C# Programming Sahaj Computer Solutions 45

� Obviously, it would be rather odd to establish

an “is-a” relationship between the

BenefitPackage class and the employee

types.

� (Manager “is-a” BenefitPackage? I don’t think

so).

� However, you would like to express the idea

that each employee “has-a” BenefitPackage.

� To do so, you can update the Employee class

definition as follows:

C# Programming Sahaj Computer Solutions 46

// Employees now have benefits.

public class Employee

{

...

// Contain a BenefitPackage object.

protected BenefitPackage empBenefits = new
BenefitPackage();

}

� At this point, you have successfully contained
another object.

� However, to expose the functionality of the
contained object to the outside world requires
delegation.

C# Programming Sahaj Computer Solutions 47

�Delegation is simply the act of adding

members to the containing class that make

use of the contained object’s functionality.

� For example, we could update the Employee

class to expose the contained empBenefits

object using a custom property as well as

make use of its functionality internally using

a new method named GetBenefitCost():

public class Employee

{

protected BenefitPackage empBenefits = new

BenefitPackage();

 C# Programming Sahaj Computer Solutions 48

// Expose certain benefit behaviors of object.

public double GetBenefitCost()

{

return empBenefits.ComputePayDeduction();

}

// Expose object through a custom property.

public BenefitPackage Benefits

{

get { return empBenefits; }

set { empBenefits = value; }

}

}

 C# Programming Sahaj Computer Solutions 49

� In the following updated Main() method, notice
how we can interact with the internal
BenefitsPackage type defined by the Employee
type:

static void Main(string[] args)

{

Manager mel;

mel = new Manager();

Console.WriteLine(mel.Benefits.ComputePayDeduction()
);

...

Console.ReadLine();

}

C# Programming Sahaj Computer Solutions 50

� In C#, it is possible to define a type (enum,

class, interface, struct, or delegate) directly

within the scope of a class or structure.

� Such type is termed as nested types.

� When you have done so, the nested (or

“inner”) type is considered a member of the

nesting (or “outer”) class, and in the eyes of

the runtime can be manipulated like any

other member (fields, properties, methods,

events, etc.)

C# Programming Sahaj Computer Solutions 51

� The syntax used to nest a type is quite

straightforward:

public class OuterClass

{

// A public nested type can be used by anybody.

public class PublicInnerClass {}

// A private nested type can only be used by

members

// of the containing class.

private class PrivateInnerClass {}

}

C# Programming Sahaj Computer Solutions 52

� Nesting types is similar to composition (“has-

a”), except that you have complete control

over the access level of the inner type

instead of a contained object.

� Because a nested type is a member of the

containing class, it can access private

members of the containing class.

� Oftentimes, a nested type is only useful as

helper for the outer class, and is not

intended for use by the outside world.

C# Programming Sahaj Computer Solutions 53

� Polymorphism is often referred to as the

third pillar of object-oriented programming,

after encapsulation and inheritance.

� Polymorphism is a Greek word that means

"many-shaped".

� One aspect of polymorphism is that Base

classes may define and implement virtual

methods, and derived classes can override

them, which means they provide their own

definition and implementation.

C# Programming Sahaj Computer Solutions 54

� At run-time, when client code calls the

method, the CLR looks up the run-time type

of the object, and invokes; which in turn

override of the virtual method.

� Thus in your source code you can call a

method on a base class, and cause a derived

class's version of the method to be executed.

C# Programming Sahaj Computer Solutions 55

�Virtual methods enable you to work with

groups of related objects in a uniform way.

� For example, suppose you have a drawing

application that enables a user to create

various kinds of shapes on a drawing surface.

� You do not know at compile time which

specific types of shapes the user will create.

� However, the application has to keep track of

all the various types of shapes that are

created, and it has to update them in

response to user mouse actions.

C# Programming Sahaj Computer Solutions 56

� You can use polymorphism to solve this

problem in two basic steps:

� Create a class hierarchy in which each specific

shape class derives from a common base class.

� Use a virtual method to invoke the appropriate

method on any derived class through a single call

to the base class method.

� Program ch02pg15.cs

C# Programming Sahaj Computer Solutions 57

� When a derived class inherits from a base

class, it gains all the methods, fields,

properties and events of the base class.

� The designer of the derived class can choose

whether to

� override virtual members in the base class,

� inherit the closest base class method without

overriding it

� define new non-virtual implementation of those

members that hide the base class

implementations

C# Programming Sahaj Computer Solutions 58

� A derived class can override a base class

member only if the base class member is

declared as virtual or abstract.

� The derived member must use the override

keyword to explicitly indicate that the

method is intended to participate in virtual

invocation.

� The following code provides an example:

C# Programming Sahaj Computer Solutions 59

public class BaseClass

{

 int x;

 public virtual void
DoWork() { }

 public virtual int
WorkProperty

 {

 set { x=value; }

 get { return x; }

 }

}

public class DerivedClass :
BaseClass

{

 public override void DoWork()
{ }

 public override int
WorkProperty

 {

 get { return 0; }

 }

}

C# Programming Sahaj Computer Solutions 60

� Fields cannot be virtual; only methods,

properties, events and indexers can be virtual.

� When a derived class overrides a virtual member,

that member is called even when an instance of

that class is being accessed as an instance of the

base class.

� The following code provides an example:

DerivedClass B = new DerivedClass();

B.DoWork(); // Calls the new method.

BaseClass A = (BaseClass)B;

A.DoWork(); // Also calls the new method.

C# Programming Sahaj Computer Solutions 61

� Program ch02pg16.cs:

� This program demonstrates the above discussed

logic with a change.

� In derived class we have not defined override

method DoWork().

� When we invoke the objects created as above,

the first object B will call the derived class

DoWork() with derived class WorkProperty.

� The second object A calls the base class DoWork()

with derived class WorkProperty.

C# Programming Sahaj Computer Solutions 62

� The sealed keyword can also be applied to type

members to prevent virtual members from being

further overridden by derived types.

� This can be helpful when you do not wish to seal

an entire class, just a few select methods or

properties.

� Sealing a method requires putting the sealed

keyword before the override keyword in the

class member declaration.

� The following code provides an example:

public class C : B{ public sealed override void

DoWork() { }}

C# Programming Sahaj Computer Solutions 63

� Classes can be declared as abstract by
putting the keyword abstract before the class
definition.

� For example:
public abstract class A

{

 // Class members here.

}

� An abstract class cannot be instantiated.

� The purpose of an abstract class is to provide
a common definition of a base class that
multiple derived classes can share.

C# Programming Sahaj Computer Solutions 64

� For example, class A may be defined as abstract
class, and then can be used to provide different
implementation of it, by creating a derived
class.

� Abstract classes may also define abstract
methods.

� This is accomplished by adding the keyword
abstract before the return type of the method.

� For example:

public abstract class A

{

 public abstract void DoWork(int i);

}

C# Programming Sahaj Computer Solutions 65

� Abstract methods have no implementation,

so the method definition is followed by a

semicolon instead of a normal method block.

� Derived classes of the abstract class must

implement all abstract methods.

� When an abstract class inherits a virtual

method from a base class, the abstract class

can override the virtual method with an

abstract method.

� Program ch02pg17.cs

C# Programming Sahaj Computer Solutions 66

� If a virtual method is declared abstract, it is

still virtual to any class inheriting from the

abstract class.

� A class inheriting an abstract method cannot

access the original implementation of the

method—in the previous example; DoWork on

class F cannot call DoWork on class D.

� In this way, an abstract class can force

derived classes to provide new method

implementations for virtual methods.

C# Programming Sahaj Computer Solutions 67

� C# introduces a new type modifer named partial
that allows you to define a C# type across
multiple *.cs files.

� Earlier versions of the C# programming language
required all code for a given type be defined
within a single *.cs file.

� Given the fact that a production-level C# class
may be hundreds of lines of code (or more), this
can end up being a mighty long file indeed.

� In these cases, it would be ideal to partition a
type’s implementation across numerous C# files
in order to separate code that is in some way
more important for other details.

C# Programming Sahaj Computer Solutions 68

� For example, using the partial class modifer,

you could place all public members in a file

named MyType_Public.cs, while the private

field data and private helper functions are

defined within MyType_Private.cs:

C# Programming Sahaj Computer Solutions 69

// MyClass_Private.cs

namespace PartialTypes

{

public partial class
MyClass

{

// Private field data.

private string
someStringData;

}

}

// MyClass_Public.cs

namespace PartialTypes

{
public partial class MyClass

{

// Constructors.

public MyClass() { }

// All public members.

public void MemberA() { }

}

}

C# Programming Sahaj Computer Solutions 70

� As you might guess, this can be helpful to

new team members who need to quickly

learn about the public interface of the type.

� Rather than reading though a single (lengthy)

C# file to find the members of interest, they

can focus on the public members.

� Of course, once these files are compiled by

csc.exe, the end result is a single unified

type.

� Program ch02pg18.cs

C# Programming Sahaj Computer Solutions 71

� C# give us the ability to maintain code and

documentation in the same file, which makes

the whole process a lot easier.

� VS.NET does this by taking specially marked

and structured comments from within the

code and building them into an XML file.

� This XML file can then be used to generate

human-readable documentation.

C# Programming Sahaj Computer Solutions 72

� When you wish to document your C# types in

XML, your first step is to make use of one of

two notations, the triple forward slash (///)

or a delimited comment that begins with a

single forward slash and two stars (/**) and

ends with a single star-slash combo (*/).

� Once a documentation comment has been

declared, you are free to use any well-

formed XML elements, including the

recommended set shown in Table 2-1

C# Programming Sahaj Computer Solutions 73

Predefined

XML

Documentation Element Meaning in Life

<c> Indicates that the following text should be

displayed in a specific “code font”

<code> Indicates multiple lines should be marked as

code

<example> Mocks up a code example for the item you are

describing

<exception> Documents which exceptions a given class may

throw

<list> Inserts a list or table into the documentation file

<param> Describes a given parameter

<paramref> Associates a given XML tag with a specific

parameter

C# Programming Sahaj Computer Solutions 74

Predefined

XML

Documentation Element Meaning in Life

<permission> Documents the security constraints for a given

member

<remarks> Builds a description for a given member

<returns> Documents the return value of the member

<see> Cross- references related items in the document

<seealso> Builds an “also see” section within a description

<summary> Documents the “executive summary” for a given

member

<value> Documents a given property

C# Programming Sahaj Computer Solutions 75

� Program ch02pg19.cs: The following sample

provides a basic overview of a type that has

been documented.

� If you are building your C# programs using

csc.exe, the /doc flag is used to generate a

specified *.xml file based on your XML code

comments:

� csc /doc:XmlCarDoc.xml *.cs

C# Programming Sahaj Computer Solutions 76

� XML Code Comment Format Characters

� If you were now to open the generated XML file,

you will notice that the elements are qualified by

numerous characters such as “M”, “T”, “F”, and

so on.

� For example:

<member name="T:XmlDocCar.Car">

<summary>

This is a simple Car that illustrates

working with XML style documentation.

</summary>

</member>

 C# Programming Sahaj Computer Solutions 77

Format Character Meaning in Life

E Item denotes an event.

F Item represents a field.

M Item represents a method (including constructors

and overloaded operators).

N Item denotes a namespace.

P Item represents type properties (including indexes).

T Item represents a type (e.g., class, interface,

struct, enum, delegate).

C# Programming Sahaj Computer Solutions 78

� Classes, of course, are defined within a code

file (which in C# takes a *.cs extension by

convention).

� Consider a simple Car class defined within

Car.cs:

// Car.cs

public class Car

{

……….

}

C# Programming Sahaj Computer Solutions 79

� Once a class is defined, you can allocate any

number of objects using the C# new

keyword.

� Understand, however, that the new keyword

returns a reference to the object on the

heap, not the actual object itself.

� This reference variable is stored on the stack

for further use in your application.

� When you wish to invoke members on the

object, apply the C# dot operator to the

stored reference

C# Programming Sahaj Computer Solutions 80

� For example:

// The C# dot operator (.) is used

// to invoke members on the object

// using our reference variable.

Console.WriteLine(refToMyCar.ToString());

C# Programming Sahaj Computer Solutions 81

� When you are building your C# applications,
you are correct to assume that the managed
heap will take care of itself without your
direct intervention.

� In fact, the golden rule of .NET memory
management is simple:

�Rule: Allocate an object onto the managed
heap using the new keyword and forget
about it.

� Once created the garbage collector will
destroy the object when it is no longer
needed.

C# Programming Sahaj Computer Solutions 82

� The next obvious question, of course, is,

“How does the garbage collector determine

when an object is no longer needed”?

� The short (i.e., incomplete) answer is that

the garbage collector removes an object

from the heap when it is unreachable by any

part of your code base.

C# Programming Sahaj Computer Solutions 83

� When the C# compiler encounters the new
keyword, it will emit a CIL newobj
instruction into the method implementation.

� The .NET garbage collector is quite a tidy
housekeeper of the heap, given that it will
compact empty blocks of memory (when
necessary) for purposes of optimization.

� Before we examine the exact rules that
determine when an object is removed from
the managed heap, let’s check out the role
of the CIL newobj instruction in a bit more
detail.

C# Programming Sahaj Computer Solutions 84

� These things being said, the newobj instruction

informs the CLR to perform the following core

tasks:

� Calculate the total amount of memory required for

the object to be allocated (including the necessary

memory required by the type’s member variables and

the type’s base classes).

� Examine the managed heap to ensure that there is

indeed enough room to host the object to be

allocated. If this is the case, the type’s constructor is

called, and the caller is ultimately returned a

reference to the new object in memory, whose

address just happens to be identical to the last

position of the next object pointer.

 C# Programming Sahaj Computer Solutions 85

� Finally, before returning the reference to the

caller, advance the next object pointer to point

to the next available slot on the managed heap.

� The basic process is illustrated in Figure

below:

C# Programming Sahaj Computer Solutions 86

� When processing the newobj instruction, if

the CLR determines that the managed heap

does not have sufficient memory to allocate

the requested type, it will perform a garbage

collection in an attempt to free up memory.

� Thus, the next rule of garbage collection is

also quite simple.

�Rule: If the managed heap does not have

sufficient memory to allocate a requested

object, a garbage collection will occur.

C# Programming Sahaj Computer Solutions 87

� When a collection does take place, the

garbage collector temporarily suspends all

active threads within the current process to

ensure that the application does not access

the heap during the collection process.

C# Programming Sahaj Computer Solutions 88

� The base class libraries provide a class type

named System.GC that allows you to

programmatically interact with the garbage

collector using a set of static members.

� Typically speaking, the only time you will

make use of the members of System.GC is

when you are creating types that make use

of unmanaged resources.

� Table 2 provides a rundown of some of the

more interesting members:

C# Programming Sahaj Computer Solutions 89

System.GC Member Meaning in Life

AddMemoryPressure(),

RemoveMemoryPressure()

Allow you to specify a numerical value

that represents the calling

RemoveMemoryPressure() object’s

“urgency level” regarding the garbage

collection process. Be aware that these

methods should alter pressure in tandem

and thus

never remove more pressure than the

total amount you have added.

Collect() Forces the GC to perform a garbage

collection

C# Programming Sahaj Computer Solutions 90

System.GC Member Meaning in Life

GetGeneration() Returns the generation to which an object

currently belongs.

GetTotalMemory() Returns the estimated amount of memory (in

bytes) currently allocated

on the managed heap.

MaxGeneration Returns the maximum of generations supported

on the target system. Under Microsoft’s .NET,

there are three possible generations (0, 1, and

2).

SuppressFinalize() Sets a flag indicating that the specified object

should not have its

Finalize() method called.

C# Programming Sahaj Computer Solutions 91

� The supreme base class of .NET, System.Object,

defines a virtual method named Finalize().

� When you override Finalize() for your custom

classes, you establish a specific location to

perform any necessary cleanup logic for your

type.

� Given that this member is defined as protected,

it is not possible to directly call an object’s

Finalize() method.

� Rather, the garbage collector will call an

object’s Finalize() method (if supported) before

removing the object from memory.

C# Programming Sahaj Computer Solutions 92

� Of course, a call to Finalize() will (eventually)
occur during a “natural” garbage collection or
when you programmatically force a collection
via GC.Collect().

� In addition, a type’s finalizer method will
automatically be called when the application
domain hosting your application is unloaded from
memory.

� Given this, consider the next rule of garbage
collection:

� Rule: The only reason to override Finalize() is if
your C# class is making use of unmanaged
resources via PInvoke or complex COM
interoperability tasks .

C# Programming Sahaj Computer Solutions 93

� To override Finalize() is that you cannot do

so using the expected override keyword:

public class MyResourceWrapper

{

// Compile time error!

protected override void Finalize(){ }

}

� Rather, you make use of the following (C++-

like) destructor syntax to achieve the same

effect.

C# Programming Sahaj Computer Solutions 94

// Override System.Object.Finalize() via destructor

syntax.

class MyResourceWrapper

{

~MyResourceWrapper()

{

// Clean up unmanaged resources here.

// Beep when destroyed (testing purposes only!)

Console.Beep();

}

}

C# Programming Sahaj Computer Solutions 95

� As an alternative to overriding Finalize(), your

class could implement the IDisposable interface,

which defines a single method named Dispose():

public interface IDisposable

{

void Dispose();

}

� When you do support the IDisposable interface,

the assumption is that when the object user is

finished using the object, it manually calls

Dispose() before allowing the object reference

to drop out of scope.

C# Programming Sahaj Computer Solutions 96

� In this way, your objects can perform any

necessary cleanup of unmanaged resources

without incurring the hit of being placed on

the finalization queue and without waiting

for the garbage collector to trigger the

class’s finalization logic.

� Here is an updated MyResourceWrapper class

that now implements IDisposable, rather

than overriding System.Object.Finalize():

C# Programming Sahaj Computer Solutions 97

// Implementing IDisposable.

public class MyResourceWrapper : IDisposable

{

// The object user should call this method

// when they finished with the object.

public void Dispose()

{

// Clean up unmanaged resources here.

// Dispose other contained disposable objects.

}

}

C# Programming Sahaj Computer Solutions 98

� The calling logic is straightforward:

public class Program

{

static void Main()

{

MyResourceWrapper rw = new MyResourceWrapper();

rw.Dispose();

Console.ReadLine();

}

}

C# Programming Sahaj Computer Solutions 99

